
Heterogeneity of resting-state EEG features
in juvenile myoclonic epilepsy and controls
Amy Shakeshaft,1,2 Petroula Laiou,3 Eugenio Abela,1 Ioannis Stavropoulos,4

Mark P. Richardson,1,2,4,* and Deb K. Pal1,2,4,5,* on behalf of the BIOJUME Consortium1

* These authors contributed equally to this work.

Abnormal EEG features are a hallmark of epilepsy, and abnormal frequency and network features are apparent in EEGs from people
with idiopathic generalized epilepsy in both ictal and interictal states. Here, we characterize differences in the resting-state EEG of
individuals with juvenile myoclonic epilepsy and assess factors influencing the heterogeneity of EEG features. We collected EEG
data from 147 participants with juvenile myoclonic epilepsy through the Biology of Juvenile Myoclonic Epilepsy study. Ninety-
five control EEGs were acquired from two independent studies [Chowdhury et al. (2014) and EU-AIMS Longitudinal European
Autism Project].We extracted frequency and functional network-based features from10 to 20 s epochs of resting-state EEG, including
relative power spectral density, peak alpha frequency, network topology measures and brain network ictogenicity: a computational
measure of the propensity of networks to generate seizure dynamics. We tested for differences between epilepsy and control EEGs
using univariate, multivariable and receiver operating curve analysis. In addition, we explored the heterogeneity of EEG features with-
in and between cohorts by testing for associations with potentially influential factors such as age, sex, epoch length and time, as well as
testing for associationswith clinical phenotypes including anti-seizuremedication, and seizure characteristics in the epilepsy cohort.P-
values were corrected for multiple comparisons. Univariate analysis showed significant differences in power spectral density in delta
(2–5 Hz) (P= 0.0007, hedges’ g=0.55) and low-alpha (6–9 Hz) (P=2.9×10−8, g=0.80) frequency bands, peak alpha frequency (P=
0.000007, g=0.66), functional network mean degree (P=0.0006, g=0.48) and brain network ictogenicity (P=0.00006, g=0.56)
between epilepsy and controls. Since age (P=0.009) and epoch length (P=1.7×10−8) differed between the two groups and were po-
tential confounders, we controlled for these covariates in multivariable analysis where disparities in EEG features between epilepsy
and controls remained. Receiver operating curve analysis showed low-alpha power spectral density was optimal at distinguishing epi-
lepsy from controls, with an area under the curve of 0.72. Lower average normalized clustering coefficient and shorter average nor-
malized path length were associated with poorer seizure control in epilepsy patients. To conclude, individuals with juvenile myoclonic
epilepsy have increased power of neural oscillatory activity at low-alpha frequencies, and increased brain network ictogenicity com-
paredwith controls, supporting evidence from studies in other epilepsies with considerable external validity. In addition, the impact of
confounders on different frequency-based and network-based EEG features observed in this study highlights the need for careful con-
sideration and control of these factors in future EEG research in idiopathic generalized epilepsy particularly for their use as
biomarkers.
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Introduction
An abnormal ictal EEG is the hallmark of epilepsy and the
presence of epileptiform discharges, such as spontaneous
or provoked 3–6 Hz spike and waves, are routinely used to
identify idiopathic generalized epilepsy (IGE), including ju-
venile myoclonic epilepsy (JME), in the clinical diagnostic
process. A normal background EEG is required for a JME
diagnosis,1 with no generalized or focal slowing.2

However, recent advances in computational analysis of
EEG have shown that the interictal EEG of patients with
IGE show differences compared with healthy controls.

Several studies on the EEG power spectrum in individuals
with epilepsy have focused on alterations in the alpha rhythm:
the oscillatory activity most apparent at posterior EEG elec-
trodes at around 8–13 Hz. Early EEG studies reported shifts
in alpha power from a higher frequency (around 8–13 Hz)
to a lower frequency (6–8 Hz) in patients with epilepsy,3,4

with recent studies confirming these findings using robust
and standardized quantitative methodology in patients with
focal and generalized epilepsy, and controlling for anti-seizure
medication (ASM).5–7 Furthermore, there is evidence for a de-
creased peak alpha frequency in patients with epilepsy8 and
their asymptomatic first-degree relatives.9 The alpha rhythm
is of particular interest in IGE due to evidence of its basis in
cortico-thalamic interactions,10 which are central to the gen-
eration of generalized seizures/spike-wave discharges11,12

and functionally and structurally altered in JME.13,14 There
is also evidence of abnormalities in other EEG frequency
bands in IGE, such as increased theta15,16 and beta power.16

Furthermore, functional networks derived from EEG or
MEG (magnetoencephalography) activity have altered top-
ology in IGE, as quantified using graph theory,17–21 with
evidence for the most extensive changes in functional connect-
ivity existing in JME compared with other IGE syndromes.22

Whilst the reported differences in network topology are vari-
able, increased clustering coefficient (indicating increased regu-
larity of networks) is a somewhat consistent finding across
studies.20 The variability of results in studies of functional con-
nectivity in IGE likely comes from factors such as heterogeneity
of patient groups, ages of participants, frequency bands in
which functional networks are derived, epoch length and the
use of different network types (binary/weighted and undirect-
ed/directed), as well as methods used for their computation.
Furthermore, there is little known about the external validity
and reproducibility of these network topology measures across
different cohorts at different sites.

In addition to these static models of functional brain net-
works, dynamic models can aid the understanding of seizure
mechanisms bymodelling transitions of brain networks from
stable, interictal states to ictal states, and the parameters that
are the most influential in this transition. Several dynamic
models have been proposed as biomarkers of epilepsy, in-
cluding the integration of global network structure and local
node coupling into a phase oscillator model, which showed
57% sensitivity (given 100% specificity) and 66% specificity
(given 100% sensitivity) as a biomarker of IGE.19 Brain

network ictogenicity (BNI) is a computational method that
quantifies the ability of a network to generate seizures. It
models the dynamics at each node of a functional network
using a dynamical model23,24 and measures the time each
network spends in a seizure-like state. Therefore, BNI de-
picts the propensity of a given functional network to gener-
ate seizure activity. This method has been used to predict
surgical outcomes24,25 and aid with resection site choice in
patients with focal epilepsy,26 as well as differentiating be-
tween focal and generalized epilepsies18 when applied to
EEG data. Furthermore, using MEG data, Lopes et al.27

showed that BNI can act as a biomarker of JME with 73%
classification accuracy. However, this model has not yet
been explored in EEG data of patients with JME.

There have been variable findings as to whether these EEG
features differ within IGE cohorts, according to specific phe-
notypes. Abela et al.5 showed that patients with poor seizure
control (both IGE and focal epilepsy) had an increased shift
of alpha oscillatory activity from high frequencies to low fre-
quencies compared to those with good seizure control and
healthy controls. However, similar work by Pegg et al.7

found no difference in spectral power between patients
with well-controlled IGE and drug-resistant IGE. In add-
ition, there were no differences in functional network top-
ology in the same IGE cohort.21 However, studies in
patients with focal epilepsy have shown that dynamic net-
work measures, such as BNI, show promise as a predictor
of prognostic outcome,24,25 as well as indicating differences
in seizure/epilepsy type.18

The aim of this study is to assess and compare a range of
resting-state interictal EEG features in a large cohort of indi-
viduals with JME to healthy controls, using EEGs collected
across multiple sites. Further we will investigate the reliabil-
ity and heterogeneity of these measures in these cohorts and
any clinical factors influencing them. Table 1 shows the hy-
pothesized direction of change of each EEG measure in
JME compared with controls based on evidence from previ-
ous literature.

Methods
Participants
Biology of juvenile myoclonic epilepsy study
The Biology of Juvenile Myoclonic Epilepsy (BIOJUME)
Consortium is an international cross-sectional study, span-
ning 72 sites from 12 countries focused on young people
and adults with JME.28 BIOJUME collects clinical and
EEG data from patients with JME.

Participant recruitment
Inclusion criteria for this study are based on Avignon Class II
consensus criteria for the diagnosis of JME:1 (i) age of myo-
clonus onset 6–25 years; (ii) seizures comprising predomin-
ant or exclusive early morning myoclonus of upper
extremities and (iii) EEG interictal generalized spikes/
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polyspike and waves with normal background. Participants
aged between 6 and 55 years were included. Exclusion cri-
teria were as follows: (i) myoclonus only associated with
carbamazepine or lamotrigine therapy; (ii) EEG showing
predominant focal interictal epileptiform discharges or ab-
normal background; (iii) any evidence of progressive or
symptomatic myoclonus epilepsy or focal seizures; (iv) glo-
bal learning disability; (v) dysmorphic features or (vi) unable
to provide informed consent.

Clinical data collection
Clinical data were collected by study site researchers
face-to-face and augmented by clinical records and EEG re-
ports. The data set included general demographics and
health information, epilepsy history, including seizure types,
seizure frequency, drug/lifestyle interventions and the pres-
ence of a photoparoxysmal response (PPR).29 Sites uploaded
clinical data onto a secure central REDCap (Research
Electronic Data Capture) database.30,31

Phenotyping
A phenotyping panel, comprising seven epilepsy experts,
then evaluated the diagnosis of JME according to the inclu-
sion criteria.

Seizure prognosis
To test associations of EEG features with seizure prognosis,
we categorized participants based on their answers to two
questions (using the internationally agreed definitions of

seizure freedom and drug resistance as a basis32): (i) whether
they had been free from seizures over the past year and (ii)
current ASM therapy, categorized as either no drug therapy,
monotherapy (not necessarily the first appropriate ASM),
dual therapy, or drug-resistant (two or more ASM failures).
Based on answers to these two questions, participants were
categorized based on their seizure control:

(a) Good prognosis—those who are seizure-free on mono-
therapy or no drug therapy,

(b) Moderate prognosis—those who are either seizure-free
on ≥2 ASMs or not seizure-free on 0/1 ASM, or

(c) Poor prognosis—those who are not seizure-free on ≥2
ASMs (drug-resistant).

Using this classification, eight individuals were unable to
be categorized, due to missing data.

EEG data collection
Juvenile myoclonic epilepsy
Routine clinical EEGs were collected for participants from
each BIOJUME study site. Natus Xltek or Nicolet systems
were used for clinical EEG data collection. Sites used be-
tween 19 and 25 scalp electrodes placed according to the
10–20 system, apart from Danish EEGs which used the
modified 10–20 system whereby electrodes T3/T4 are re-
placed by T7/T8 and electrodes T5/T6 are replaced by P7/
P8. EEGs were sent securely to a central site where one (or
two where possible) 10–20 s resting-state, eyes-closed,
awake segments with clear background oscillatory activity
were selected by a trained EEG neurophysiologist. Epoch
lengths between 10 and 20 s was chosen based on evidence
of stability of EEG network measures in epochs over 10–
12 s,33 and since previous analysis of EEG measures in IGE
found differences to controls using 20 s epochs.5,17,19,34 A
single, fixed length was not used due to our aim to investigate
the effect of epoch length on EEG features, and also the dif-
ficulties in finding 20 s epochs with clear background alpha
activity with few artefacts in clinical EEGs, as noted in
Chowdhury et al.17

Control
Control EEG data were acquired from Chowdhury et al.17

study and the EU-AIMS Longitudinal European Autism
Project (LEAP) study.35 Controls were not age-matched to
the JME cohort to maximize the available sample, but any
differences in demographics were adjusted for in analysis.

Chowdhury controls. Healthy controls with no personal or
family history of neurological or psychiatric diseases were re-
cruited via a local research participant database. Participants
were excluded if they had any other neuropsychiatric condi-
tion or a full-scale IQ <70. Ethical approval was obtained
from King’s College Hospital Research Ethics Committee
(08/H0808/157). Written informed consent was obtained
from all participants. EEGs were acquired as previously de-
scribed in Chowdhury et al.17 Briefly, conventional 19

Table 1 Hypothesized change of direction of EEG
features in JME compared with controls

EEG measure

Hypothesized direction
of change in JME

compared with controls
Previous
evidence

Delta PSD — —

Low-alpha PSD ↑ Abela et al. (2019)5

Pegg et al. (2020)7

High-alpha
PSD

↓ Abela et al. (2019)5

Beta PSD ↑ Glaba et al. (2020)16

Peak alpha
frequency

↓ Larsson & Kostov
(2005)8 Yaakub
et al. (2020)9

Log10 alpha
shift

↑ Abela et al. (2019)5

Mean strength ↑ Chowdhury et al.
(2014)17

Mean strength
variance

↑ Chowdhury et al.
(2014)17

Clustering
coefficient

↑ Chowdhury et al.
(2014)17

Path length — —

Small-world
index

↓ Lee et al. (2020)22

BNI ↑ Lopes et al. (2021)27

BNI= brain network ictogenicity; JME= juvenile myoclonic epilepsy; PSD= power
spectral density.

4 | BRAIN COMMUNICATIONS 2022: Page 4 of 17 A. Shakeshaft et al.



channel 10–20 layout scalp EEG were collected (sampling
rate 256 Hz, filtered band-pass 0.3–70 Hz) using a
NicoletOne system. A single 20 s epoch was selected which
included continuous dominant background rhythm with
eyes-closed, without any artefacts or patterns indicating
drowsiness or arousal.

Longitudinal European Autism Project controls. Another control
group was recruited as part of the EU-AIMS LEAP.35 Only
healthy control EEG data were used. Participants were typic-
ally developing individuals aged 6–30 years. Two minutes of
eyes-closed resting-state EEG were recorded per participant.
Data used for this study was acquired from three sites: King’s
College London (KCL, United Kingdom) (N=2), University
Campus BioMedico (UCBM, Rome, Italy) (N= 15) and
University Medical Centre Utrecht (UMCU, Netherlands)
(N= 40). The following EEG systems were employed:
Brainvision (KCL), Biosemi (UMCU) and Micromed
(UCBM), with sampling frequencies of 5000 Hz (KCL),
2048 Hz (UMCU) and 256–1000 Hz (UCBM). All sites
used 10–20 layout caps, with 60–64 electrodes.
Eyes-closed, resting-state segments were marked on the
EEGs and from these segments, 10–20 s resting-state,
eyes-closed, awake segments with clear background oscilla-
tory activity were selected.

EEG pre-processing
An overview of the EEG processing and analysis pipeline can
be seen in Fig. 1.

We carried out pre-processing using Fieldtrip36 or custom
written MATLAB (Version R2019a)37 scripts. Analysis was
only undertaken on the following 19 EEG channels: Fp1,
Fp2, Fz, F3, F7, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz,
P4, T6, O1, O2 (channels labelled T7, T8, P7, P8 were
used for Danish EEGs as are in the same location as T3,
T4, T5, T6 in the traditional 10–20 system). Any additional
channels were removed. Data were re-referenced to average
montage and resampled to the minimum sampling rate of all
data (256 Hz). EEGs were then segmented at the pre-defined
epochs (10–20 s eyes-closed, resting-state sections). Epochs
across all three subgroups [(i) BIOJUME (JME); (ii) LEAP
controls and (iii) Chowdhury controls] were independently
reviewed and confirmed to ensure consistency in epoch
choice between subgroups.

EEG features
Twelve measures (six frequency-based and six network-
based) were extracted from JME and control EEGs. Full
methodology for the calculation of EEG features is presented
in Supplementary Methods but outlined briefly below.

Frequency-based
Independent component analysis (ICA) was used to remove
any remaining artefacts existing in the EEG between 2 and
20 Hz and re-referenced to average montage. We calculated
the mean relative power spectral density (PSD) in (i) delta

(2–5 Hz), (ii) low-alpha (6–9 Hz), (iii) high-alpha (10–
11 Hz), (iv) beta (12–19 Hz) frequency bands, (v) the peak
alpha frequency (PAF) and (vi) the shift in alpha PSD from
high to low-alpha (alpha shift).

Network-based
Functional networks were inferred using phase-locking value
(PLV) on EEG epochs Butterworth band-pass filtered be-
tween 6 and 9 Hz. Five measures were used to characterize
functional network topology: (i) mean strength, (ii) mean
strength variance, (iii) average clustering coefficient, (iv)
average characteristic path length and (v) small-world index.
In addition, the propensity of networks to generate seizure-
like dynamics was modelled using the framework of
BNI.24,25 Larger BNI values indicate that the brain network
has a higher tendency to transmit from normal to seizure-like
dynamics.

Statistical analysis procedure
Statistical analysis was carried out in SPSS38 software and
graphics produced in GraphPad Prism. Prior to statistical
testing, violations of test assumptions were checked, and
statistical tests chosen accordingly. For all multiple linear re-
gression models, variance inflation factors (VIFs) were
checked to ensure no problematic multicollinearity (VIF<
10). Transformations and removal of outliers were done
where required. Hedge’s g was used to calculate effect sizes.

Demographics, clinical characteristics and EEG
details
Differences in age, epoch length and EEG time between co-
horts were testing using two-tailed Mann–Whitney tests.
Differences in sex distribution were tested using two-tailed
χ2 tests.

EEG features in juvenile myoclonic epilepsy
compared with controls
Disparities in EEG features in JME and controls were first
tested univariately using Mann–Whitney tests. P-values
were corrected for multiple comparisons for the four fre-
quency bands in PSD analysis and for the five measures of
network topology using Bonferroni–holm correction.
Kruskal–Wallis tests were then used to test for differences
in EEG features between the two control groups (LEAP &
Chowdhury controls) and JME, again corrected for multiple
comparisons for the four frequency bands and for the five
measures of network topology using Bonferroni–holm cor-
rection. If these tests were significant (corrected P-value
<0.05), Bonferroni–holm corrected Mann–Whitney tests
were carried out between each of the three groups.

We then performed multiple linear regression analysis of
each EEG feature to investigate differences between JME
and control groups whilst accounting for the appropriate
covariates (sex, age, epoch length, EEG time, ASM treat-
ment, control subgroup). For EEG features where there
was an opposing direction of effect between the two control
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groups and JME, LEAP controls and Chowdhury controls
were added separately into the regression models as dummy
variables (JME= 0/LEAP=1; JME=0/Chowdhury= 1).
This enabled differences between each control subgroup to
be detected rather than combining control subgroups.
Similarly, for EEG measures which differed between JME

patients not on ASM therapy (untreated) and those on
ASM therapy (treated), these were also added separately to
the model as dummy variables (control=0/untreated
JME= 1; control= 0/treated JME= 1). Estimated marginal
means of EEG measures for subgroups were obtained from
these multivariable regression models.

Figure 1 Summary ofmethods for EEGprocessing and analysis. BIOJUME=Biology of Juvenile Myoclonic Epilepsy; BNI= brain network
ictogenicity; JME= juvenile myoclonic epilepsy; LEAP= Longitudinal European Autism Project
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Receiver operating characteristic analysis
We calculated receiver operating characteristic (ROC)
curves for EEG features which were significantly different
in univariate JME versus control analysis, to quantify their
ability to discriminate JME and control EEGs. An optimal
cut-off point was obtained for the EEG feature with the high-
est ROC area under the curve (AUC), using the value with
the highest sensitivity and specificity values. Positive and
negative predictive values were calculated using standard
methods.39

Heterogeneity of EEG features within and between
cohorts and recording conditions

Influence of confounding factors on EEG features. Associations
between potential confounders and EEG features were tested
using Spearman’s rank tests for continuous variables (age,
EEG time, epoch length) and two-tailedMann–Whitney tests
(stratified by JME and control groups) for sex. For analysis
of EEG time, 11 JME EEGs with recording times between
23.35 and 00.21 were excluded, leaving only EEGs with re-
cording times between 8:00–20:00. Differences in EEG fea-
tures between JME individuals not on ASM therapy
(untreated) and those on ASM therapy (treated) at the time
of the EEG were tested using multiple linear regression mod-
els of each EEG feature including age as a covariate. A one-
way analysis of covariance (ANCOVA) was used to test for
differences in EEG features between BIOJUME recruitment
countries (n= 7), controlling for age and epoch length.

Associations with clinical phenotypes in juvenile myoclonic
epilepsy. Multiple linear regression analysis was performed
to test for associations of EEG features with clinical variables
(seizure type, seizure control, PPR) within the JME cohort.
Estimated marginal means of EEG measures for JME sub-
groups were obtained from these multivariable regression
models.

Since sodium valproate is the most effective ASM in JME,
we also performed additional analysis of the association be-
tween seizure control and EEG features in the subset of pa-
tients who report having used sodium valproate to control
their seizures to check if a lack of sodium valproate use in fe-
males was creating additional heterogeneity in the
drug-resistant subgroup (results presented in Supplementary
Material).

Test–retest reliability of EEG measures. Two methods were
used to investigate the test–retest reliability of each EEG
measure: (i) Spearman’s rank correlation coefficient and (ii)
intra-class correlation (ICC). The test–retest reliability of
EEG features were tested first between epochs within the
same EEG recording session (between-epoch) and second,
between EEGs from different recording sessions but in the
same ASM treatment state (both EEG taken whilst untreated
or both while treated) (between-EEG). For the
between-epoch analysis a two-way mixed model ICC with
absolute agreement was used, using single measures. For
the between-EEG analyses, a two-way mixed model ICC

with absolute agreement, using average measures was used.
To control for the effect of epoch length, we ran further ana-
lysis comparing EEG measures between epochs of the same/
similar (± 5 s) length.

Ethical approval
BIOJUME is funded by the Canadian Institutes of Health
Research (MOP-142405) and received ethical approval
from the National Health Service (NHS) Health Research
Authority (South Central—Oxford C Research Ethics
Committee, reference 16/SC/0266) and the Research Ethics
Board of the Hospital for Sick Children, Toronto
(REB#1000033784). Local ethical approvals were also
held for all international sites. All procedures complied
with appropriate regulatory requirements and ethical princi-
ples in line with the Declaration of Helsinki. Informed con-
sent was obtained and documented for all participants.
Assent was obtained from minors (under 16), and informed
consent was obtained on their behalf by a parent or legally
appropriate guardian. All data from participants were
de-identified before entry onto the central database.

Data availability
The data supporting the findings of this study are available
from the corresponding author upon reasonable request.

Results
Demographics, clinical
characteristics and EEG details
One hundred and ninety-four EEGs from 147 individuals
with JME and 95 EEGs from 95 control participants were in-
cluded in this study. Demographics from both groups and
EEG details are presented in Table 2, with the JME group
further stratified by ASM treatment status and the control
group broken down by data origin. There were significant
age (U= 5156, P= 0.003) and sex (χ2= 7.3, P= 0.007) dif-
ferences between JME and control cohorts. Furthermore,
EEG time was significantly different between JME and con-
trols, with JME EEGs occurring earlier than control EEGs
(U=661, P=2.6×10−13). Whilst all EEG epochs were be-
tween 10 and 20 s long, control epochs were on average signifi-
cantly longer than JME epochs (U=4353, P=1.7×10−8). The
clinical characteristics of the JME cohort are presented in
Table 3.

Differences in EEG features between
juvenile myoclonic epilepsy and
controls
Table 4 shows the results of univariate tests of EEG features
between controls and JME. Average relative PSD plots for
both JME and controls are displayed in Supplementary
Fig. 3. Relative delta PSD and PAF are significantly lower
in JME than controls whilst relative low-alpha PSD, alpha
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shift, mean strength and BNI are significantly higher in JME
in univariate analysis. Relative low-alpha PSD has the great-
est effect size of g=0.72. Analysis with stratified control sub-
groups (Table 4) shows an opposite direction of effect in
LEAP and Chowdhury control subgroups compared with
JME for relative beta PSD, mean strength variance, average
clustering coefficient, average characteristic path length
and small-world index.

To account for different subgroups and the effect of poten-
tial confounders (age, sex, epoch length, EEG time), multiple
linear regressionmodels were performed for each EEGmeas-
ure, containing the appropriate covariates. A summary of the
differences in EEG features between JME and Controls are
presented in Fig. 2A, and all regression models presented in
Supplementary Tables 2–6. Relative low-alpha PSD (un-
treated JME β= 0.0033, P= 2.9× 10−7; treated JME β=
0.0022, P= 9.1× 10−5) and BNI (β= 3.0, P= 5.1×10−7)
were the features with the greatest difference between JME
and controls whilst accounting for covariates (Fig. 2A).

Receiver operating characteristic
analysis
To test which EEG feature best served to discriminate JME
and control EEGs, ROC curve analysis was performed for
delta PSD, low-alpha PSD, PAF, alpha shift, mean strength
and BNI, based on the results of the analysis above.
Low-alpha PSD had the greatest ROC AUC of 0.72 (95%
CI=0.66–0.79, P=7.2×10−9), followed by PAF (AUC=
0.67, 95% CI=0.60–0.74, P= 7.4× 10−6) and BNI
(AUC=0.65, 95% CI= 0.58–0.72, P=0.000056) (Fig. 2B).T
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Table 3 Demographics and clinical characteristics of
participants included in this study. Percentage
denominators are adjusted for missing data

Demographic/clinical characteristic
Summary
statistic

Total JME cohort (N, %) 147 (100%)
Females (N, %) 83 (60%)
Age at EEG (years, mean± SD) 20.5± 7.7
Age at clinical data collection (years, mean±
SD)

24.8± 7.9

Years between-EEG and clinical data
collection (median, range)

3.7 (−1.4–12.3)

Seizure control
Good (N, %) 56 (40%)
Moderate (N, %) 40 (29%)
Poor (N, %) 43 (31%)

Seizure types
Generalized tonic–clonic seizures (GTCS) (N, %) 127 (91%)
Absence seizures (N, %) 60 (44%)

Morning predominance of seizures (N, %) 100 (76%)
Age atmyoclonus seizure onset (years, mean±
SD)

14.5± 3.4

Seizure duration (at the time of EEG) (years,
mean± SD)

6.6± 7.8

Self-reported triggered seizures (N, %) 97 (72%)
Photoparoxysmal response (N, %) 52 (43%)

JME= juvenile myoclonic epilepsy.
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A proposed cut-off value for low-alpha PSD is >0.0066,
which has a sensitivity of 0.69 and a specificity of 0.67
(Supplementary Fig. 4). Using this threshold of relative low-
alpha PSD gives a positive predictive value (PPV) of 77%and
a negative predictive value (NPV) of 58%.

Using only untreated JME EEGs compared with controls
increases the ROC AUC for low-alpha PSD to 0.78 (95%
CI=0.70–0.85, P= 6.2× 10−9). The same thresholding
method gave the same cut-off value of >0.0066, as above
(sensitivity=75%, specificity= 67%), giving a PPV of 59%
and a NPV of 81%.

Heterogeneity of EEG features within
and between cohorts
Influence of confounding factors on EEG features

Sex. Therewas aweak association of higher PAF in females
with JME (U=1841, P=0.07), otherwise there were no sex
differences in any EEG feature in JME or control groups.

Age, epoch length and EEG time. Figure 3A and
Supplementary Table 7 shows the results of Spearman’s
rank correlation between each EEG feature and potentially
confounding continuous variables (age, EEG time and epoch
length) in controls and JME. Age and epoch length were as-
sociated with a variety of frequency-based and network-
based EEG features, whilst EEG time was associated only
with frequency-based features. Interestingly, the relationship
between PAF and EEG time was opposing in controls (rs=
−0.38, P=0.015) and JME (rs= 0.18, P= 0.038).

Anti-seizure medication treatment. Low-alpha PSD was sig-
nificantly higher in untreated JME EEGs compared with
treated JME EEGs (β=−0.002, P=0.03) in a multiple linear
regressionmodel controlling for age. P-values for ASM treat-
ment status were ≥0.1 for all other EEG features.

EEG site. The site at which BIOUME EEGs were recorded
had no significant association (P> 0.28) with any frequency-
based EEG features. Clustering coefficient was the only fea-
ture to show evidence of a difference between sites
[ANCOVA: (F(6130)= 2.14, P= 0.053), Supplementary
Fig. 5]. No other network-based measure significantly dif-
fered between sites (P>0.20).

Test–retest reliability
Table 5A shows the test–retest reliability between epochs in
the same EEG recording and Table 5B betweenmultiple EEG
recordings in the same ASM treatment state in JME partici-
pants. Between epochs, there is excellent reliability (rs>
0.87, ICC> 0.88) for all frequency-basedmeasures, with dif-
ferences in epoch length having a minimal effect on reliabil-
ity. However, for network topology measures there is lower
test–retest reliability but improving when epoch length is
consistent. BNI has a good reliability (rs> 0.73, ICC>
0.77), with epoch length having little effect.

The results presented in Table 5B should be interpreted
with more caution due to the smaller number of EEGsT
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available for this analysis (total n=21) and the potential effect
of age on these measures (13 EEGs were performed ≤1 year
apart, 8 EEGs between 2 and 10 years apart). To account
for epoch length, we further ran the analysis including only
epochs ±5 s difference in length. The reliability is much
more variable across the frequency and network topology
measures, however, remains good (ICC>0.75) for delta, low-
alpha and beta PSD, mean strength, path length and BNI.

Associations of EEG features with clinical variables
within juvenile myoclonic epilepsy cohort
Figure 3B shows a summary of associations of each EEG fea-
ture with a variety of clinical variables in the JME cohort,
showing standardized beta coefficients from multiple linear
regression models controlling for age and epoch length.
The greatest standardized beta-coefficient changes from 0
exist for functional network topology measures, particularly
average clustering coefficient, average characteristic path
length and small-world index. All clinical outcomes in
Fig. 3B (absence seizures, lack of PPR, no morning predom-
inance of seizures and triggered seizures) have been asso-
ciated with worse seizure control in this dataset.28

Additional sensitivitychecksofassociationsofEEGfeatures
with seizure prognosis in a limited dataset of only those with
JMEwho report having used sodium valproate (n=83) are re-
ported in SupplementaryTable 9.A similar patternof results is
seen in this smaller sample,with a significant association of de-
creased path lengthwithworse seizure control (standardized β
=−0.24, P=0.04). However, unlike in the full sample, in-
creased relative beta PSD is weakly associated with seizure
control in this subsample (standardized β=0.23, P=0.05).

Discussion
This study uses a range of EEG features to characterize dif-
ferences in the interictal EEG of individuals with JME com-
paredwith controls and assess their heterogeneity within and
between cohorts. Our results support findings from previous
studies in IGE,5,7,17 showing that the low-alpha frequency
range is the most abnormal, with significantly elevated low-
alpha PSD and lower peak alpha frequency in JME com-
pared with controls. Furthermore, we show that these find-
ings are reproducible when using EEGs from multiple sites

Figure 2 Results from analysis of EEG features between JME and controls. (A) Summary of the estimated marginal mean difference of
EEG features in JME compared with controls, from multiple linear regression models. Models control for epoch length, age (for all measures) and
EEG time (for log10 alpha shift and PAF only). The central marker shows estimated marginal mean difference and error bars are 95% confidence
intervals. Model result tables, including beta coefficients and exact P-values are presented in Supplementary material. *P< 0.05, **P< 0.01 and ***P
< 0.001. (B) ROC curves for EEG features in JME and controls. Area under the ROC values are presented in the legend. Low-alpha PSD, Alpha shift
& Delta PSD: JME N= 147, control N= 95; PAF: JME N= 146, control N= 93; mean strength and BNI: JME N= 146, control N= 95BNI= brain
network ictogenicity; JME= juvenile myoclonic epilepsy; LEAP= Longitudinal European Autism Project; PAF= peak alpha frequency; PSD=
power spectral density; ROC AUC= area under the receiver operating curve
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and multiple cohorts of patients, giving them considerable
external validity andpotential for application in settings outside
of research. A novel finding was increased BNI in functional
networks derived from JME EEGs, which corroborates the
same findings in other epilepsies18,24,25 and using other modal-
ities, such as MEG.27

Functional network topology measures, such as average
clustering coefficient, average characteristic path length
and small-word index, were the only features which consist-
ently differ within the JME cohort depending on seizure phe-
notypes. JME patients with poor seizure control (or risk
factors for it) have significantly lower path length and clus-
tering coefficient than those with good seizure control.

In addition, our results highlight that confounding factors
such as age and epoch length have a considerable effect on
many EEG features and so should be carefully controlled
for. These confounding factors may explain the variability
of findings from previous studies investigating network top-
ology measures in epilepsy.

Differences in EEG features between
juvenile myoclonic epilepsy and
controls
Power spectral density measures
ROC analysis showed that low-alpha PSD has ‘acceptable’
clinical discriminatory ability between JME and controls
(AUC between 0.7–0.8),40 with PAF and BNI falling just

below this threshold at 0.67 and 0.65, respectively.
However, associated P-values show these measures are high-
ly significant in their ability to differentiate above chance.
Further investigation of relative low-alpha PSD as a bio-
marker showed satisfactory sensitivity (69%), specificity
(67%), PPV (77%) and NPV (58%) in analysis including
all JME individuals, improving when comparing controls
to only untreated JME individuals (AUC improvement
from 0.72 to 0.78). This suggests low-alpha PSD may have
promise as a biomarker of JME; however, this requires rep-
lication in independent cohorts. A previous study by Schmidt
et al.19 investigated EEG biomarkers of IGE and found that a
local coupling biomarker best classified IGEs from controls,
compared with other EEG parameters such as average power
across the whole EEG power spectrum, peak alpha fre-
quency and mean degree of functional networks. However,
this study did not investigate the low-alpha PSD specifically
and investigated all IGE syndromes, not just JME.

Neural oscillations in the alpha frequency band are thought
to arise from cortico-thalamic interactions and govern top–
down control of cognitive processes and feedback processing
from higher-order cortical areas to lower-order visual areas.10

However, the exact mechanisms of alpha oscillations are com-
plex and poorly understood. Despite the mechanistic complex-
ity, it is clear that alterations in alpha oscillations are seen in a
number of neurological and psychiatric disorders, including de-
mentia, schizophrenia, stroke41 and epilepsy. The shift in alpha
oscillatory activity from a higher frequency in healthy controls
to a lower frequency in epilepsy patients, is particularly relevant

Figure 3 Factors influencing EEG features within and between cohorts. (A) Heatmap representing the influence of continuous
covariates on each EEG feature in control and JME cohorts. Colour represents the Spearman’s rank correlation coefficient between the
continuous covariates and EEG features (green= positive correlation, red= negative correlation). Age and EEG time results are stratified by JME/
controls. Test statistics, exact P-values and N for each correlation is displayed in Supplementary Table 7. (B) Heatmap showing the standardized
beta coefficients of clinical variables in multiple linear regression models of EEG features in JME cohort. All models control for age and epoch
length. Unstandardized and standardized β coefficients and exact P-values for each association are displayed in Supplementary Table 8. *P< 0.05,
**P< 0.01BNI= brain network ictogenicity; JME= juvenile myoclonic epilepsy; PPR= photoparoxysmal response; PSD= power spectral density;
Sz= seizures
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to IGE syndromes, since dysfunction in thalamocortical con-
nections are thought to drive the generation of spike-wave dis-
charges and generalized seizures.11,12

Delta PSD was lower in JME EEGs compared with con-
trols in both univariate and multivariable analysis. Unlike
the alpha frequency band, we are not aware of any previous
evidence regarding abnormal delta frequency in patients
with IGE, and no differences were reported in patients
with temporal lobe epilepsy;42 therefore replication would
be required for any conclusions to be drawn. Furthermore,
in the ROC analysis, delta PSD differentiates between con-
trols and JME to a lesser (weaker) extent than other EEG
measures (such as low-alpha PSD and BNI), however still
warrants further investigation.

Network topology measures
Our results indicate that functional network topology, as de-
rived from activity in the 6–9 Hz frequency range, is

inherently different in JME compared with healthy controls,
supporting evidence from other studies in IGE.17,19–22,43 We
can conclude that these differences are not due to ASM treat-
ment as there were no differences in network topology mea-
sures between untreated and treated individuals with JME.
The mean strength of JME functional networks was signifi-
cantly higher than controls in both univariate and multivari-
able analysis, and the variance of mean strength was also
significantly higher in JME thanChowdhury controls, replicat-
ing results from the original study.17 An increase in the mean
strength of networks in JME indicates that the EEG signal,
and therefore brain oscillatory activity, at each node is syn-
chronized to the activity at other nodes to a higher extent
than in controls. However, the increase in mean strength vari-
ability also indicates that theremay be both abnormally under-
connected brain regions aswell as over-connected regions. The
opposing direction of effect between clustering coefficient and
path length in Chowdhury/LEAP control networks compared

Table 5 (A) The test–retest reliability of EEG features in different epochs from the same EEG. ICC (intra-class correlation). (B) The
test–retest reliability of EEG features in multiple EEG recordings taken when the participant was in the same treatment state (either
both in the untreated state or both in the treated state)

(A) Test–retest reliability (between epochs in the same EEG)

EEG feature

Spearman’s r ICC

All epochs
(n=178)

Equal length
epochs (n=116)

All epochs
(95% CI) (n=178)

Equal length
epochs (n=116)

Delta PSD 0.90 0.90 0.91 (0.88–0.93) 0.91 (0.88–0.94)
Low-alpha PSD 0.90 0.92 0.91 (0.88–0.93) 0.93 (0.91–0.95)
High-alpha PSD 0.90 0.91 0.88 (0.84–0.91) 0.91 (0.87–0.94)
Beta PSD 0.91 0.95 0.90 (0.87–0.92) 0.94 (0.92–0.96)
Peak alpha frequency 0.88 0.86 0.87 (0.84–0.91) 0.89 (0.85–0.92)
Log10 alpha shift 0.91 0.91 0.91 (0.88–0.93) 0.93 (0.90–0.95)
Mean strength 0.79 0.83 0.82 (0.76–0.86) 0.85 (0.79–0.89)
Mean strength
variance

0.69 0.74 0.73 (0.66–0.80) 0.78 (0.70–0.84)

Clustering coefficient 0.41 0.36 0.59 (0.48–0.68) 0.64 (0.52–0.74)
Path length 0.45 0.54 0.49 (0.38–0.60) 0.55 (0.41–0.67)
Small-world index 0.44 0.44 0.55 (0.44–0.64) 0.58 (0.45–0.69)
BNI 0.76 0.81 0.78 (0.72–0.83) 0.81 (0.73–0.86)

(B) Test–retest reliability (between multiple EEGs in same treatment state)

EEG feature

Spearman’s r ICC

All epochs (n=
21)

Equal length epochs ±5s (n=
13)

All epochs (95% CI) (n=
21)

Equal length epochs ±5s (n=
13)

Delta PSD 0.70 0.80 0.83 (0.57–0.93) 0.86 (0.54–0.96)
Low-alpha PSD 0.72 0.59 0.78 (0.48–0.91) 0.73 (0.09–0.92)
High-alpha PSD 0.34 0.45 0.51 (−0.24–0.81) 0.55 (−0.58–0.86)
Beta PSD 0.72 0.70 0.87 (0.68–0.95) 0.89 (0.62–0.97)
Peak alpha frequency 0.34 0.18 0.48 (−0.27–0.79) 0.36 (−1.34–0.81)
Log10 alpha shift 0.54 0.43 0.67 (0.22–0.87) 0.62 (−0.34–0.89)
Mean strength 0.74 0.67 0.85 (0.65–0.94) 0.84 (0.51–0.95)
Mean strength
variance

0.38 0.03 0.67 (0.18–0.87) 0.55 (−0.59–0.86)

Clustering coefficient 0.18 0.41 0.54 (−0.05–0.81) 0.86 (0.51–0.96)
Path length 0.42 0.42 0.78 (0.45–0.91) 0.77 (0.25–0.93)
Small-world index 0.46 0.63 0.72 (0.29–0.89) 0.86 (0.53–0.96)
BNI 0.64 0.55 0.80 (0.50–0.92) 0.75 (0.24–0.92)

BNI= brain network ictogenicity; JME= juvenile myoclonic epilepsy; PSD= power spectral density.
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with JME is unexpected and puzzling, and potential factors in-
fluencing this, including differences in age and epoch length,
are discussed in the following context.

As well as differences in static network topology, this
study also investigated differences in JME functional net-
works using BNI, a computational framework that uses a dy-
namicmodel to characterize the likelihood of brain networks
to enter a seizure-like state. The use of dynamic models in
epilepsy research, such as BNI, shows promise both in the
identification of diagnostic and prognostic biomar-
kers,18,19,25,27 and also in aiding the understanding and
modelling the transition of the brain into a seizure state. As
hypothesized, this study revealed that individuals with
JME have an increased likelihood of brain networks to tran-
sition to a seizure state (higher BNI) compared with controls.

Heterogeneity of EEG features within
and between cohorts
Associations with age, epoch length and time of day
We investigated how factors such as age, time of day and
epoch length influenced EEG features in JME and control co-
horts. Epoch length was highly associated with network top-
ology measures, particularly clustering coefficient and
small-world index, as well as lower frequency PSD measures,
supplementing evidence from previous studies.33 Agewas also
associated with multiple EEG features, as expected from
knowledge of EEG and brain network changes through devel-
opment. For example, delta PSD decreased and beta PSD in-
creased with age in both JME and control cohorts, reflecting
known associations of EEG oscillations with maturation.44,45

Alpha shift (the ratio of low to high-alpha PSD) was nega-
tively correlatedwith EEG time (lower values later in the day)
in JME but showed no association in controls. A morning
predominance of seizures is a hallmark of JME and transcra-
nialmagnetic stimulation studies indicate cortical excitability
is highest in the morning in patients.46,47 Hence, the fact that
certain EEG parameters differ in JME throughout the day
may reflect a differing seizure threshold. However, this ana-
lysis was somewhat limited since most JME EEGs took place
in the morning, compared to the afternoon for controls.
Matching future studies on EEG time would allow this diur-
nal change in hyperexcitability in JME and the effect on EEG
features to be investigated further.

Associations with clinical phenotypes
Our investigation of the association of EEG features with
clinical phenotypes in the JME cohort showed little evidence
of associations with frequency-based EEG features in main
analysis, but some evidence of associations with functional
network topology.However, whenwe included only the sub-
set of individuals exposed to valproate, we found some evi-
dence of an association between increased beta PSD with
poor seizure control. This slightly differing result limits any
conclusions about this association, and highlights the limita-
tion of the commonly used definitions of seizure control/seiz-
ure prognosis, which are discussed in the following context.

Previously, work from Abela et al.,5 showed associations
of alpha oscillatory activity with seizure control in IGE
and, however more recent evidence from Pegg et al.7 showed
no difference in PSD between well-controlled and
drug-resistant patients with IGE. However, we note differing
definitions and methods of defining seizure control/progno-
sis between studies. EEGs in the present study were obtained
from patients at any point during their epilepsy clinical care
with a median of 4 years between-EEG acquisition and re-
cruitment into the study (when seizure prognosis was re-
corded). Conversely, Abela et al.5 and Pegg et al.7 recorded
EEGs at the time of recruitment. Definitions of seizure con-
trol also differ between studies, with the present study and
Pegg et al.7 using the commonly used definition of drug re-
sistance in epilepsy32 (continuation of seizures despite at
least two ASM trials), whereas Abela et al.5 defined those
with poor seizure control as four or more seizures of any
type during the 12 months prior to the study inclusion.

Alterations in functional network topology showed asso-
ciations with clinical features in JME, particularly clustering
coefficient, reflecting a network’s functional segregation, and
path length, reflecting a network’s functional integration.
Shorter average path length and decreased clustering coeffi-
cient were associated with poorer seizure control in this
JME cohort. Shorter path length was also associated with ex-
periencing triggered seizures, and decreased clustering coef-
ficient was associated with not experiencing PPR, both
phenotypes associated with having a worse seizure outcome
in this cohort.28 A short average path length and low cluster-
ing is representative of more random networks, whereby in-
formation can pass easily through the network from one
node to functionally distinct nodes due to longer range func-
tional connections,48 and therefore, speculatively, may have
an increased likelihood to synchronize more easily, implying
an increased vulnerability to seizures. Indeed, JME networks
have been shown to transition to more random network top-
ology during spike-wave discharges, with decreased cluster-
ing in theta and beta frequency bands.49

Conversely, higher small-world index, a measure derived
from CC and PL, was significantly associated with experien-
cing absence seizures. A higher small-world index indicates
networks have more regular, lattice-like structures, with
high clustering, but also with long range connections from
functionally distinct regions, keeping the average path length
short. Given that experiencing absence seizures is strongly as-
sociated with poorer seizure outcome,28,50 it is surprising that
differing network types (random versus ordered) are asso-
ciated with these two phenotypes. However, several studies
of network topology in patients with absence seizures have
also shown increased clustering, both in the ictal51 and inter-
ictal state,43 indicating networks with a more ordered, lattice-
like topology may be more vulnerable to absence seizures. In
addition, a study by Lee et al.22 showed that individuals with
absence epilepsy had the highest small-world index compared
with other IGE syndromes, including JME.

Previous literature on functional connectivity in epilepsy is
variable because results can differ depending on modality
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(EEG, MEG, fMRI), functional connectivity measure (PLV,
coherence, correlation, and so on) and the frequency band
[low-alpha (6–9 Hz), high-alpha (10–11 Hz) or wider bands
(2–20 Hz)], therefore making comparisons between the pre-
sent results and previous evidence challenging. A study from
Pegg et al.,21 using EEG derived functional networks from
patients with IGE, showed no differences in network top-
ology between well-controlled (n= 19) and drug-resistant
patients (n=18) at 6–9 Hz nor 10–11 Hz, using PLV.
Potential reasons for this difference in results include sam-
pling differences (IGE versus JME only) and a small sample
size in the prior study,21 potentially reducing the statistical
power to detect the differences apparent in this larger cohort.

Methodological considerations and
limitations
In this study, functional networks were modelled in the 6–
9 Hz frequency range only. We chose this band based on
the results of our frequency analysis showing that the low-
alpha range showed the most significant changes in JME
compared to controls, but also on previous evidence from
frequency and network studies in IGE showing similar
results.5,17,19,34

As indicated previously, there are limitations in definitions
of seizure prognosis in epilepsy research in general that also
apply to this study. We decided to use the internationally
agreed definition of drug resistance in epilepsy32 (continu-
ation of seizures despite≥2 appropriate ASM trials) to define
poor prognosis, and the internationally agreed definition of
seizure freedom32 (no seizures for at least one year) as good
prognosis. The addition of an intermediate group for those
who do not fit into either category was used to maximize
the sample and avoid excessive heterogeneity within groups
which would likely be present if using binary drug-resistant
(yes/no) or binary seizure freedom (yes/no) groups.

Conclusion
Individuals with JME have increased power of neural oscil-
latory activity at low-alpha frequencies, along with in-
creased BNI compared with controls, supporting evidence
from studies in other epilepsies with considerable external
validity. There is encouraging evidence for the use of low-
alpha PSD as a biomarker of JME but requires replication
in an independent data set. Functional network topology
measures are variable and prone to confounding but show
significant associations with clinical features and outcomes
in JME.
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