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Abstract

Background: Molecular genetic testing is recommended for diagnosis of inherited cardiac disease, to guide prognosis and
treatment, but access is often limited by cost and availability. Recently introduced high-throughput bench-top DNA
sequencing platforms have the potential to overcome these limitations.

Methodology/Principal Findings: We evaluated two next-generation sequencing (NGS) platforms for molecular
diagnostics. The protein-coding regions of six genes associated with inherited arrhythmia syndromes were amplified
from 15 human samples using parallelised multiplex PCR (Access Array, Fluidigm), and sequenced on the MiSeq (Illumina)
and Ion Torrent PGM (Life Technologies). Overall, 97.9% of the target was sequenced adequately for variant calling on the
MiSeq, and 96.8% on the Ion Torrent PGM. Regions missed tended to be of high GC-content, and most were problematic for
both platforms. Variant calling was assessed using 107 variants detected using Sanger sequencing: within adequately
sequenced regions, variant calling on both platforms was highly accurate (Sensitivity: MiSeq 100%, PGM 99.1%. Positive
predictive value: MiSeq 95.9%, PGM 95.5%). At the time of the study the Ion Torrent PGM had a lower capital cost and
individual runs were cheaper and faster. The MiSeq had a higher capacity (requiring fewer runs), with reduced hands-on
time and simpler laboratory workflows. Both provide significant cost and time savings over conventional methods, even
allowing for adjunct Sanger sequencing to validate findings and sequence exons missed by NGS.

Conclusions/Significance: MiSeq and Ion Torrent PGM both provide accurate variant detection as part of a PCR-based
molecular diagnostic workflow, and provide alternative platforms for molecular diagnosis of inherited cardiac conditions.
Though there were performance differences at this throughput, platforms differed primarily in terms of cost, scalability,
protocol stability and ease of use. Compared with current molecular genetic diagnostic tests for inherited cardiac
arrhythmias, these NGS approaches are faster, less expensive, and yet more comprehensive.
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Introduction

Molecular diagnostics are recommended in the management of

inherited diseases, for diagnosis and stratified therapy [1,2,3,4],

but in practice are under-used due to issues of cost, time and

availability of services. Next Generation Sequencing (NGS) DNA

analysis technologies have the potential to overcome these issues

[5]. Inherited cardiac conditions (ICC), such as inherited

arrhythmia syndromes and cardiomyopathies, have been identi-

fied as a suitable area to pilot the development of NGS assays for

clinical use [6,7]. This is due to the relatively high burden of

disease in the population and limitations of current diagnostic

approaches in genetically heterogeneous conditions such as these.

A number of bench-top NGS platforms have recently been

introduced capable of Gigabase-scale DNA sequencing with

relatively short run times (,27 hrs), including the MiSeq

(Illumina) and the Ion Torrent Personal Genome Machine

(PGM; Life Technologies). Initial studies have used these to

characterise genetic targets of clinical significance including;

bacterial genomes [8,9,10,11,12,13,14,15,16], the human breast

cancer BRCA gene [11,17], the cystic fibrosis CFTR gene [18],

HLA type [19] and somatic variation in cancer [20]. The high
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analytical throughput and relative speed make NGS assays very

attractive for early clinical implementation, requiring an in-depth

understanding of the strengths and limitations of each platform in

a clinical diagnostic setting.

A recent study by Loman et al [10] compared bench-top NGS

platforms for sequencing E.coli genomes, which have a GC-content

of 50%, during an outbreak investigation. They identified a higher

rate of homopolymer-associated indel errors in raw reads when

comparing the Ion Torrent PGM to the MiSeq (1.5 and ,0.001

errors per 100 bases, respectively). The MiSeq also detected fewer

single-base substitutions than the Ion Torrent PGM. A further

recent study by Quail et al [8] performed similar analyses using a

number of different bacterial reference genomes representing a

range of GC-contents, including the B.pertussis genome which has a

GC-content of ,68% with some sub-genomic regions .90%.

They observed a higher substitution error rate when using Ion

Torrent PGM than the MiSeq platform (1.78 and 0.4 errors per

100 bases, respectively). Again, they reported fewer homopolymer-

associated errors in MiSeq data than the Ion Torrent PGM. More

variants were called using the Ion Torrent PGM versus MiSeq;

however, this resulted in a slight increase in the number of false

positive calls using the Ion Torrent PGM platform. Both NGS

platforms generated adequate coverage across templates even in

sub-genomic regions of very high GC-content. Significant efforts

to improve sequencing performance and bioinformatics processing

have been undertaken both by the bench-top sequencer manu-

facturers and the NGS community.

In this study, we used microfluidic multiplex PCR and NGS to

sequence six genes that cause inherited arrhythmia syndromes in a

panel of well characterised patient-derived genomic DNAs. We

compared the performance of two bench-top MiSeq and Ion

Torrent PGM DNA sequencing platforms, aiming to develop a

comprehensive pipeline applicable to clinical diagnostics.

Materials and Methods

Human Specimens
The Hammersmith and Queen Charlotte’s & Chelsea Research

Ethics Committee approved the study. DNA was obtained from

subjects who had given written informed consent and was

provided in accordance with Human Tissue Act, UK guidelines.

Fifteen anonymised DNA samples were selected for technical assay

evaluation. Eleven (group I) had undergone mutation scanning of

five Long QT syndrome (LQT) associated genes (See Table 1)

using denaturing high performance liquid chromatography

(dHPLC) [21] coupled with Sanger DNA sequence analysis to

confirm putative variants. Four (group II) underwent exon PCR

amplification and direct Sanger DNA sequence analysis of the full

coding sequence of the same five genes.

Target Enrichment by PCR Capture
Initial Access Array primer design was undertaken by Fluidigm

Corp. (South San Francisco, CA) using the Primer3 oligonucle-

otide design tool [22]. Prior to this study the assay was further

optimized in-house, with additional primers designed to target

regions that were not well captured in pilot studies using the Ion

Torrent PGM [23]. In the final assay 386 amplicons targeted the

protein-coding sequence of six inherited arrhythmia genes

(Table 1), with an overhang at exon boundaries to capture splice

site variants. Figure S1 in the Supporting Information illustrates

the GC-content and length distribution of the 386 Access Array

amplicons.

Genomic DNA templates were amplified using the 48.480

Access Array IFC, according to the manufacturer’s instructions
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(Fluidigm). In brief, each sample DNA was combined with primer

pairs in a microfluidic chip, with a maximum capacity of 48

samples648 10-plex reactions. The chip was loaded with PCR

reagents and transferred to a thermocycler. Common flanking

sequences (CS) on each primer pair permit attachment of

platform-specific barcode indexes and sequencing adaptors in a

subsequent fusion PCR. Pooled amplicons from each DNA

template were harvested and used as input for platform-specific

library preparation.

Platform-specific Barcode/Adapter Attachment
For MiSeq, we followed standard Fluidigm protocols. Ampli-

cons were diluted 1:100 and subjected to a single fusion PCR

reaction using the bidirectional 386 barcode kit, with the FastStart

High Fidelity Enzyme kit (Roche), as per manufacturer’s

instructions. A unidirectional library was prepared for paired-

end sequencing: for each reaction, 1 ml of the diluted harvested

PCR pool was mixed with forward ‘‘A’’ barcodes (indexes 1 to 15,

final concentration 400 nM) and 15ml of PCR pre-mix. Cycling

conditions were as follows: initial incubation at 95uC for 10 min;

15 cycles of 95uC for 15 sec, 60uC for 30 sec and 72uC for 1 min;

final incubation at 72uC for 3 min; hold at 4uC.

For Ion Torrent PGM, commercial barcoding protocols were

not available at the time of the study, so we employed an

equivalent fusion PCR approach using custom oligonucleotides,

yielding a 10 base pair (bp) barcode and Ion Torrent PGM

adaptor (Table S1 in the Supporting Information). The amplicon

harvest volume was adjusted to 20ml using PCR certified water,

and two barcode-fusion PCR reactions were prepared using

opposing CS-tagged primer pairs (e.g. pairing A_BC6_CS1 with

CS2_P1, and A_BC6_CS2 with CS1_P1). This strategy permitted

sequencing of each amplicon in both orientations, in lieu of paired-

end sequencing. For each reaction, 10 ml of the Fluidigm harvest

was added to 86 ml of a Herculase II Fusion PCR mix, as per

manufacturer’s instructions (Agilent Technologies Inc, Santa

Clara, CA) along with 20 pmol each primer. Cycling conditions

were as follows: initial incubation at 98uC for 30 sec; two cycles of

98uC for 30 sec, 54uC for 30 sec and 72uC for 30 sec; final

incubation at 72uC for 2 min; hold at 4uC.

MiSeq Sequencing
MiSeq sequencing was performed at the MRC Clinical Sciences

Centre Genomics Laboratory, Imperial College London, using

MiSeq Reagent kit v1, MCS v1.1.1 and RTA v1.13.56 for

performing image analysis, base calling and quality control (QC).

Ion Torrent PGM Sequencing
Ion torrent PGM sequencing was completed at Royal

Brompton Hospital using Ion One Touch 200 reagents kits

(Release: 20 February 2012, Rev. C), Ion PGM 200 Sequencing

Kit (Release: 21 February 2012, Rev. B) and 316 scale chips.

Sequence analysis was completed with Ion Torrent Suite 2.2

(ITS2.2; Life Technologies) packages. Sequence analysis and

variant calling were subsequently repeated using ITS3.2, but the

results were unchanged, and data from ITS2.2 is presented here.

Bioinformatic Primer Trimming and Read Mapping
Default parameters were used for all data processing and

analysis stages unless otherwise specified. FastQC version 0.9.5

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

was used to assess sequence quality metrics for each sample,

including per-base and per-sequence quality scores, GC-content,

and read length distribution. Raw sequences generated by MiSeq

and Ion Torrent PGM included primer sequences at both 59 and

39 ends. For MiSeq data, primers were trimmed using an in-

house Perl script, before quality control (average base quality in a

30 bp sliding window .20; 39 read trimming of bases with a

quality score ,6; removal of reads ,20 bp in length) and

alignment with BWA (version 0.6.1-r112-master) [24]. Figure S2

and S3 in the Supporting Information demonstrates the base

quality and length distribution before and after primer trimming

for one sample from MiSeq. Ion Torrent PGM reads were

aligned using ITS2.2, incorporating tmap (version 0.3.7). The

variantCaller plugin module trimmed primers using an aligned

bam file intersected with an amplicon-only bed file. Human

genome reference sequence (hg19) was used for both platforms.

Coverage of the target was assessed using BedTools [25]. The

number of bases covered at sufficient depth and quality for variant

calling was assessed using the Genome Analysis Toolkit (GATK;

version 1.5) [26] Callable Loci Walker. Evenness was calculated

according to the method described by Mokry et al [27] and

implemented with the R statistical package (http://www.r-project.

org). This yielded a score in the range 0–1, with 1 indicating

uniform coverage. Target enrichment factor (EF) was calculated

as, EF~
R=N

T=G
, here R represents the reads on target; N represents

total mapped reads; T represents target size and G represents

genome size [28].

Variant Detection
MiSeq reads were processed using Picard tools (version 1.65,

http://picard.sourceforge.net) and Samtools (version 0.1.18) [29],

and variants were called with GATK. A standard GATK pipeline

was applied including realignment around known indels

(dbSNP135) and recalibration. All reads were used for variant

calling, without downsampling or removal of PCR duplicates.

Variants with QD ,5 or MQ ,30 or DP,30 were filtered out.

For the Ion Torrent PGM, variants were called using the ITS2.2

variantCaller plugin with the Ampliseq and germline workflow.

Primers were trimmed and variants called with a variant frequency

threshold at 25%. The Integrative Genomics Viewer (IGV) [30]

was used for visualization.

Reference Comparator by Sanger DNA Sequencing
Direct dideoxy Sanger DNA sequencing was used to sequence

all protein coding regions of five LQT genes in samples from

group II. Amplicons were prepared using Platinum Taq PCR (Life

Technologies) and GC-Rich PCR system (Roche), and sequenced

using the ABI 3730XL DNA analyzer (Life Technologies).

Though sequenced by NGS, RYR2 was not included in

comparisons as its large size made validation prohibitive. DNA

sequence analysis was performed using Sequencher 4.10.1

(Genecodes Inc, Ann Arbor, MI). Any discordant variant calls

between NGS and dHPLC in group I were also confirmed by

Sanger sequencing. The total number of bases sequenced by the

direct Sanger DNA sequencing method was 61,380 bp.

The sensitivity and positive predictive value (PPV) of variant

detection were calculated by comparing the gold-standard Sanger

data to the NGS data for each platform. 95% confidence intervals

(CI) were calculated using Jeffreys interval, implemented in the

binom package in R.

Results

Sequencing Data Output and Quality
Total sequencing output and mean read lengths from the two

approaches were comparable (Table 2). A single MiSeq run

Molecular Diagnosis of Inherited Conditions
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produced 8.13 million reads (1230 Mb of sequence) as compared

to three 316 chip-scale Ion Torrent PGM runs that generated 6.56

million reads (1001 Mb of sequence). Raw reads generated by

MiSeq have 151 bp fixed length (paired-end read), whilst reads

generated by Ion Torrent PGM had a variable length, using the

200 bp Ion Torrent PGM chemistry kits. The average length of

reads in three Ion Torrent PGM runs was 150 bp (single-end

read).

The two platforms produced a similar yield of filtered sequence

bases. The MiSeq platform produced 95.8% high quality (Q20)

bases and the Ion Torrent PGM 67.5%. As platforms use different

algorithms to estimate base quality, apply different downstream

quality filters and call variants differently [31,32], these raw quality

scores are most useful for comparing runs within platform, and are

provided here for comparison to other datasets. We do not use

these data to compare sequencing performance between plat-

forms. For the MiSeq, raw reads contained primer sequences and

lower quality bases at the 39 ends. Primer trimming and quality

control discarded 4.6% of reads, and excluded 27.6% of bases;

only 18.4% of Q20 bases were excluded, and final trimmed reads

comprised 95.8% Q20 bases. 90.7% of the trimmed reads mapped

to the reference genome, and 96.7% of these mapped reads were

on-target. The average depth of coverage on-target was 1529-fold

(Table 3), with evenness 0.68 and EF 110111.

For the Ion Torrent PGM, reads still contained primer

sequences after de-multiplexing, thus primer trimming was

performed following the alignment procedure. We observed

93.5% raw reads were mapped to the reference genome; 91.2%

of the mapped reads were on-target. The average depth of

coverage on-target was 1231-fold across all samples (Table 3) with

evenness 0.79 and EF 104915. Both evenness and enrichment

factor differed significantly between platforms (p-value

,2.2610216 for evenness and p-value,3.361026 for EF; paired

t-test).

Target Enrichment Performance
Figure 1 summarises the coverage of our genes of interest for

each platform. Overall, 98.8% of the target region was covered by

at least one read for the MiSeq and 98.0% for the Ion Torrent

PGM (Table 4 and Figure S4 in Supporting Information). For

three genes (SCN5A1, KCNE2 and RYR2) coverage consistently

approached 100% on both platforms. KCNQ1 and KCNH2 were

less consistently well covered, averaging 96.2% and 94.1% for

MiSeq, and 93.1% and 88.9% for Ion Torrent PGM, respectively.

While coverage at 16was almost complete for KCNE1, part of the

gene achieved consistently low sequencing depth on the MiSeq

only (see Discussion).

The mean coverage of the protein-coding region of every gene

was consistently .200 reads on both sequencing platforms

(Fig. 1b). The depth of coverage was more consistent between

samples on the MiSeq than on the Ion Torrent PGM (Figure 1b).

By contrast, within-sample coverage was more consistent on the

Ion Torrent PGM (evenness 0.78 vs. 0.68, p,2.2610216; Table 3).

While the MiSeq provided deeper coverage overall, KCNE1 was

an outlier on this platform (Figure 1b), suggesting a platform-

specific sequencing difficulty (See Discussion).

The influence of GC-content on performance was assessed. GC-

content was calculated using a 50 bp sliding window and plotted

alongside sequencing depth across the target for each NGS

platform (KCNQ1 and KCNH2 are shown in Figure 2, remaining

genes in Supporting Information Figure S5). We found that both

platforms performed less well in regions of very high GC-content

(KCNQ1 exons 1 & 8, KCNH2 exons 1, 4, 12, and the 39 portion of

exon 2). The relationship between GC-content and performance

was most reproducible for the Ion Torrent PGM. While the MiSeq

displayed more variability in sequencing depth (See Table 3), the

relationship with GC was weaker suggesting that other factors may

be limiting (Figure S6 in the Supporting Information).

Variant Detection
Variant detection was assessed using a panel of variants

previously identified by dHPLC mutation scanning (group I) or

Sanger sequencing (group II) (Table 5). The majority of known

variants were detected on both platforms, with a small number of

variants missed by each. NGS platforms also detected a number of

variants not previously identified, mainly in samples where

dHPLC rather than Sanger sequencing was used for initial variant

detection. In these samples, validation by Sanger sequencing

confirmed 28/32 (87.5%) unexpected MiSeq variants, and 33/36

(91.7%) Ion Torrent PGM variants (Table 6), which were

therefore dHPLC false negatives. The MiSeq produced four

genuine false positive (FP) SNP calls, and the Ion Torrent PGM

five FPs (four SNPs and one indel), equivalent to positive

predictive values (PPV) of 95.9% (MiSeq; 95% CI 90.5–98.6%)

and 95.4% (PGM; 95% CI 90.3–98.2%).

Variants not detected by NGS were primarily located in regions

without any sequencing coverage. On the MiSeq platform, 14

known variants were not detected (see Table S2 in the Supporting

Information). These included a single common polymorphism in

KCNE1 that was present in 12 samples (chr21:35821821,

Supporting Information Figure S4), and a separate SNP in the

same gene (chr21:35821795). This single exon gene was well

covered by the Ion Torrent PGM, but consistently inadequately

sequenced by the MiSeq across samples, suggesting a platform-

specific, sequence context dependent limitation, rather than a

failure of the upstream PCR capture. The final false negative on

the MiSeq was also missed by the Ion Torrent PGM

(chr7:150645534, KCNH2) in same sample, with no sequencing

reads on either platform at this region of high GC content

(.70%), suggesting that the upstream PCR did not capture this

region. The final variant missed by the Ion Torrent PGM was

found in a well-captured region of KCNQ1 (del at chr11:2594088).

Individual PGM reads contain a high rate of indels in hompolymer

stretches, and the Bayesian calling algorithm has been optimised to

eliminate these when calling variants in the consensus sequence.

Table 2. Comparison of bench-top NGS platforms.

MiSeq Ion Torrent PGM*

NGS runs 1 3

Template preparation 1 hr 365.5 hr

Run time 27 hr 363 hr

Barcodes 15 (commercial) 365 (custom)

Theoretical sequencing output 1.5 Gb 361.27 Gb

Actual sequencing output 1.23 Gb 1.00 Gb

Number of sequencing reads 8.13 M 6.56 M

Read length output 151 150**

Paired-end reads Yes No

Instrument cost $125k $75k

Sequencing cost for assay $959 3x$686

Per specimen sequencing cost $64 $137

*316 scale chip; ** average.
doi:10.1371/journal.pone.0067744.t002
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This true deletion (ACCACCCT -. ACCACCT) resembles such

an error so, while putative variant alleles were detected by ITS, the

variant was rejected as a probable error. This outcome is

insensitive to user-defined filter settings.

Of variants located in sequenced regions, 93/93 (100%; 95% CI

98.0–100%) were detected by MiSeq, and 105/106 (99.1%; 95%

CI 95.7–99.9%) by the Ion Torrent PGM (Table 6). In a

diagnostic setting, the handful of regions of predictable and

consistent low coverage (which harboured the missed variants)

would be targeted with adjunct Sanger sequencing.

The study was not powered to formally compare indel calling,

but 4/4 known indels were detected by MiSeq, and 3/4 by Ion

Torrent PGM with one FP.

Resources and Costs
The MiSeq data was obtained with a single sequencing run, at a

cost of $959 (£609). It required three Ion Torrent PGM runs to

obtain equivalent sequencing output ($686 each) (£439), and one

run was repeated due to low bead deposition on the sequencing

slide. The total sequencing time (from pooled, barcoded sequenc-

ing library to raw sequence data output) was 28 hrs for MiSeq,

including one hour of hands-on time. The equivalent time for each

Ion Torrent PGM run was shorter (9 hrs), but with 4 hrs hands-on

time, as emulsion PCR, enrichment and sequencing occur on

separate machines with human intervention at each stage, whereas

chip loading and cluster generation are automated on the MiSeq

(Table 2).

In summary, PCR-based target enrichment approach followed

by MiSeq and Ion Torrent PGM sequencing interrogated 97.9%

and 96.8% of the target sufficiently for variant detection with

equivalent NGS sequencing output. Variant calling in the regions

covered had a PPV of 95.9% (MiSeq, 95% CI: 90.5–98.6%) and

95.5% (PGM, 95% CI: 90.3–98.2%) with sensitivities of 100%

(MiSeq, 95% CI: 98.0–100%) and 99.1% (PGM, 95% CI: 95.7–

99.9%) (Table 6). In a diagnostic setting, the handful of regions

missed are most likely to require adjunct Sanger sequencing to

achieve up to 100% sensitivity for the assay as a whole.

Discussion

Assay Coverage
Both platforms achieved very good coverage of the target

region. It is unlikely that such an assay will achieve 100%

coverage, largely because GC-rich target is difficult to amplify

using PCR, both at the target enrichment stage and also during

downstream NGS library preparation. We anticipate that for

diagnostic use a small number of regions will continue to require

conventional sequencing approaches, though such a hybrid

Table 3. Sequencing and target capture performance metrics.

Alignment

NGS Platform Reads
Bases
(Mb)

Mean
read
length

Q20
Bases

Mapped
Reads

Reads On
Design

Reads On
Target

Depth On
Target Evenness EF Callable

MiSeq 7757916 889 115 95.8% 90.7% 99.3% 96.7% 1529 68.1% 110111 97.9%

PGM 6133098 969 106 67.5% 100% 96.2% 91.2% 1231 78.8% 104915 96.8%

Mean read length after trimming primer sequences and low quality bases. ReadsOnDesign/ReadsOnTarget = percentage of reads mapping to amplicon design or
protein-coding target region. EF = enrichment factor.
doi:10.1371/journal.pone.0067744.t003

Figure 1. Coverage of target genes. a. The percentage of each gene that is captured and sequenced (at least one read) is shown for each
platform (MiSeq in red, PGM in black), for 15 samples; Three genes were consistently fully sequenced. Coverage of KCNQ1 and KCNH2 was more
variable: KCNQ1 and KCNE1 were fully covered in the best performing samples, while the best performance on KCNH2 covered .97% of the gene. b.
Mean sequencing depth across each gene, for 15 samples. Quartiles are shown. There is significant intra- and inter- sample variability.
doi:10.1371/journal.pone.0067744.g001
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approach still provides for a cost and time saving compared with

conventional sequencing. For the six genes studied here, there are

1256 reported disease-causing variants in this protein-coding

target region [33]; 1217 (96.9%) fall within the regions covered by

the MiSeq, and 1200 (95.5%) by the Ion Torrent PGM.

The Access Array design was iteratively optimized prior to this

study (see Methods). The performance of the manufacturer’s

original amplicon design was assessed, and additional primer pairs

added to the assay to improve the capture of regions that were

under-represented. This pilot work used the Ion Torrent PGM, as

the MiSeq was not available in the UK at that time. This may

marginally favour the Ion Torrent PGM: the MiSeq platform

performed poorly on amplicons derived from KCNE1

(chr21:35821729–35821867, Supporting Information Figures S4

and S5), though these were captured by the Access Array. It may

be possible to produce MiSeq-compatible amplicons with further

iteration tailored to this platform.

These clinically important genes include regions with a very

high GC-content (,80%), such as KCNQ1 exons 1 & 8, KCNH2

exons 1, 4, 12, and the 39 portion of exon 2, which perform

relatively poorly despite optimization efforts. We have previously

found that the performance of some amplicons in the Access Array

can be improved using a GC robust PCR mastermix at this stage,

but these gains are unlikely to persist if non-GC robust enzymes

are used in downstream emulsion PCR during NGS library

preparation. However, as Quail et al were able to successfully

sequence sub-genomic regions with GC-contents .90%, upstream

PCR capture, rather than NGS, is likely to be limiting here, and

this avenue may still yield further improvements.

An alternative upstream target capture technology might also

yield better coverage and hence sensitivity. In this study the

capture methodology was fixed to allow unbiased comparison of

downstream sequencing, but we have previously compared PCR

and hybridisation based approaches for these same gene [34], and

found that overall coverage was very similar for both approaches.

Other studies have reported reproducible patterns of non-uniform

capture across a range of platforms, particular in repetitive

sequences and at extremes of GC content [34,35]. In our opinion

the choice of upstream target capture is most likely to be driven by

cost and capacity requirements: the microfluidic PCR approach

employed here is simple, fast and cheap, but has a much smaller

capacity than hybridisation approaches, for example.

At the throughput employed in this study, both platforms had

significant redundancy of sequencing depth, making them

relatively robust to differences in sequencing depth within and

between samples. If more samples were processed in a single run to

increase throughput, the differences in coverage variability within-

and between- samples may become limiting and influence

platform choice. Inter-sample variability was most marked when

using Ion Torrent PGM, as compared to the MiSeq. Variability

between samples (See Figure 1b) is most likely due to stochastic

error during pipetting and quantification leading to differences in

DNA input at the sequencing stage. In our study there was no

evidence of systematic barcode bias where this could be assessed

on the PGM. Within sample variability is largely reproducible and

sequence-dependent, and is a well-recognized feature of all target

enrichment methodologies [34,36], though sequence-dependent

bias is present even in whole genome sequencing, without target

enrichment.

We acknowledge that we have only studied a small number of

genes here, as the assay was matched to the capacity of a PCR-

based approach, and intended to reflect a typical clinical assay.

Though a range of gene sizes and GC contents were represented,

this may limit the generalizability of findings.

Variant Calling
Variant calling was reassuringly accurate. Sensitivity in the

regions covered by the assay was excellent with just one variant

missed on one platform. Of the four FP SNPs from MiSeq and

four FP SNPs from Ion Torrent PGM, one common error in

KCNH2 exon 5 (chr7:150654468G.A) was called on both

platforms. This site was deeply sequenced with good allele balance

(sequencing depth 2730-fold with 57% alternate reads on MiSeq;

sequencing depth 2403-fold with 55% alternate on PGM), good

mapping quality and variant detection scores from both platforms.

It was the only variant to be discordant between both NGS

platforms and the Sanger method, raising the possibility that it is a

sequence error introduced by upstream PCR. Five out of six

remaining FP SNPs (three MiSeq, two Ion Torrent PGM) were

G.A transitions clustered in KCNH2 exons 12 and 13, and the

final Ion Torrent PGM FP was a G.A transition in SCN5A. Ion

Torrent PGM FPs occurred in regions with good sequencing

depth, but significant strand imbalance and noisy sequencing (high

base quality in individual reads, but poor consensus between

reads). MiSeq FPs were found in areas of relatively low coverage

(,100x), with false alternate allele bases found close to the ends of

the reads, again with strand imbalance.

Importantly, our pipeline included a custom Perl script to trim

poor quality bases at the 39 end of MiSeq reads. This significantly

improved the mapping qualities and reduced the number of false

Table 4. Sequencing coverage of each gene.

MiSeq (%) PGM (%)

1x 10x 20x 30x 50x 100x 1x 10x 20x 30x 50x 100x

KCNE1 98.83 88.77 75.2 69.44 67.64 65.5 100 100 100 100 100 99.81

KCNE2 100 96.42 88.93 85.98 85.98 85.98 100 100 100 100 100 100

KCNH2 94.07 87.66 85.67 84.3 83.22 81.79 88.86 77.91 75.63 74.51 72.95 70.59

KCNQ1 96.22 92.86 89 86.42 79.56 74.03 93.14 86.45 82.68 81.42 80.92 77.39

SCN5A 100 100 99.98 99.69 98.72 95.96 100 100 99.96 99.9 99.75 99.13

RYR2 99.69 97.2 95.16 93.7 90.69 85.78 99.87 99.67 99.65 99.61 99.38 98.86

Overall 98.77 96.14 94.19 92.83 90.3 86.37 97.99 95.98 95.39 95.12 94.72 93.73

The coverage of the protein-coding sequence of each gene of interest is tabulated, as a percentage, for a range of sequencing depths ($1x, 10x, 20x, 30x, 50x and 100x
reads).
doi:10.1371/journal.pone.0067744.t004
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negatives on this platform in our hands (i.e. 9 common variants

were rescued which would have otherwise been missed even with

depth .400). Analysis of raw reads on both platforms showed a

similar substitution mismatch rate (0.5 per 100 bases), with a

higher indel rate in homopolymer stretches on the Ion Torrent

PGM (1.3 vs 0.02 per 100 bases). Nonetheless, final variant calling

accuracy did not differ significantly (odds ratio = 0.90; 95%

confidence interval: 0.24–3.46; p-value = 1; Fisher’s exact test).

This study was not powered to robustly assess differences in indel

detection.

The number of PCR amplification cycles used in the two

methodological approaches differed slightly. The MiSeq method

used 76 PCR amplification cycles, including 26 cycles during

flowcell cluster generation, whereas the Ion Torrent PGM used 82

cycles of PCR amplification, including 45 cycles during emulsion

PCR. Increasing the number of PCR amplification cycles is known

to increase the burden of Taq-related errors [37]. There may be

room to reduce the number of cycles: for example the

manufacturer’s protocol for Illumina library preparation uses a

small aliquot of diluted template from the Access Array, removing

this dilution may allow for fewer PCR cycles.

Current practice in laboratories that are starting to use NGS for

clinical applications is to confirm medically actionable variants

using Sanger sequencing. This study identified a small but

significant number of false positives on both platforms, supporting

this practice.

Cost and Time
Given the strong technical performance of both platforms, issues

of cost and time are likely to be important to laboratories.

Figure 2. Coverage of KCNQ1 and KCNH2 for the two platforms. Mean depth of coverage for 15 samples is shown for two genes on a log
scale. Regions of no coverage therefore have negative values. The blue lines indicate local GC content (calculated with a 50 bp sliding window).
Regions consistently missed have high GC content, with similar patterns for both platforms. KCNQ1 exons 1 & 8 and KCNH2 exons 1, 4 & 12 are
difficult to sequence. A cartoon of the exon structure is shown beneath each panel. Plus (+) and minus (-) denote gene strand. Plots for all genes are
shown in Supporting Information Figure S5. a.) MiSeq b.) Ion Torrent PGM.
doi:10.1371/journal.pone.0067744.g002
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Sequencing capacity and costs change continuously as NGS

platforms evolve, but at present the instrument cost of the MiSeq is

higher than the Ion Torrent PGM. For a single run, the Ion

Torrent PGM was cheaper and faster than the MiSeq, but with

more hands-on time and a higher degree of technical complexity.

With the throughput used in this study, the final cost per sample

was lower for the MiSeq.

The relative youth of the Ion Torrent PGM (UK commercia-

lisation date: mid-2011) means that it is developing rapidly,

offering both advantages and challenges to early adopters.

Challenges have included rapidly changing laboratory and

bioinformatic protocols, reliability issues in our hands, and a

modest per-run capacity at this stage. We readily acknowledge that

performance on each platform is limited by user experience as well

as platform capability, and therefore is likely to continue to

improve. Positive developments include the semi-automation of

emulsion PCR and bead enrichment, with reduced hands-on time,

and the introduction of a larger scale 318-chip, with the potential

to match the data output of the MiSeq in a single run. These

changes may make the Ion Torrent PGM faster and cheaper

overall, though still with more hands-on time than MiSeq. Though

we have piloted the 318-scale chip with satisfactory sequencing

and quality metrics (data not shown), at the time of data collection

for this study we had not yet achieved balanced sequencing of

multiple libraries in order to make use of the increased capacity

and were continuing to use the 316. Subjectively, the MiSeq (UK

commercialisation date: early 2012) has presented a shallower

learning curve, with relatively stable protocols and software

around the study period. When using the MiSeq platform to

sequence low complexity libraries, sequence quality metrics and

the number of reads passing bioinformatic filters are noticeably

worse than those obtained during high-complexity genome

sequencing. Illumina recommend adding 40–50% of a high

complexity target (e.g. phi-X bacteriophage genomic DNA) to low

complexity PCR-generated libraries at the sample loading stage.

This may benefit smaller Access Array-generated libraries, or

libraries with fewer samples in the multiplex. Whilst not used for

this study, this practice would impact on the total useable yield of

the MiSeq platform if widely adopted.

Current diagnostic testing for inherited cardiac arrhythmias in

the United Kingdom is limited to a small number of laboratories,

using exon PCR and direct Sanger sequencing or first-generation

NGS DNA sequencing techniques. We are aware of one UK

centre offering NGS analysis of the 5 LQT genes studied here (plus

KCNJ2) on the Roche 454 GS-FLX sequencer with advertised

turnaround time of 40 working days at a cost of $950 (£600) per

specimen. The 454 currently produces fewer reads than the

desktop sequencers studied here, and the high-throughput target-

enrichment approach that we have employed does not require the

longer read-lengths that are considered one of the principle

advantages of this platform. We conservatively estimate that a

diagnostic workflow using multiplex PCR and desktop NGS takes

20 working days to complete (including variant confirmation by

Sanger sequencing), with likely cost of less than $630 (£400) per

specimen if demand is sufficient to sequence at close to full

capacity (full economic cost including DNA extraction, 15-plex

testing with MiSeq NGS and Sanger variant confirmation studies).

The assay described here also includes the large RYR2 gene that is

associated with another important inherited arrhythmia syndrome,

catecholaminergic polymorphic VT (CPVT). RYR2 is not

currently fully sequenced in available clinical assays in the UK:

testing is limited to ‘‘hotspot’’ exons (UK Genetic Testing

Network, http://www.ukgtn.nhs.uk/, accessed 19th February

2013). A combined assay for LQT & CPVT allows for higher
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assay throughput with reduced cost, and is sensible given the

phenotypic similarity, the small but important number of RYR2

mutations reported in ‘‘genotype-negative’’ LQT cases [38], and

the value of comprehensive genetic testing in molecular autopsy.

In conclusion, we compared two NGS platforms for diagnostic

sequencing. Whilst we do not recommend one platform over

another, both are mature technologies for clinical application, with

the potential to increase availability of molecular diagnostics in

line with national and international recommendations. Perfor-

mance is promising, though sequence-context and platform-

specific biases will influence diagnostic strategies for some genes.

Clinical labs should report the coverage of each gene interrogated

by such an assay and use conventional methods to cover missed

regions and to validate clinically actionable findings. The final

choice of platforms is likely to be governed largely by cost and

usability.

Accession Numbers
Sequence data has been submitted to the European Nucleotide

Archive, accession number ERP002466.

Supporting Information

File S1 ComparisonMiSeq_PGM_supplementary.docx
includes six figures and two tables. Figure S1. Charac-
teristics of target capture design: GC content and length
of Access Array IFC amplicons. a. Amplicon GC content

approximates to a normal distribution 50.3611.4 (%), ,7%

amplicons have extreme (.70% or ,30%) GC-content. b.

Amplicon length (range: 65 bp to 403 bp, median 190 bp and

mean 185629); 85% have a length ,200 bp; 98% amplicons

have sequence length ,240 bp. We used optimised Fluidigm

capture to prepare library for Illumina and Ion Torrent platforms

(see methods). 386 amplicons, with a combined length of

71,915 bp, are tiled over 47,660 bp of target sequence, of which

27,049 bp is protein coding. Figure S2. Base quality
distributions. Sequencing base qualities before (left) and after

(right) trimming and QC from (a.) MiSeq. (b.) Ion Torrent PGM.

The base quality distribution (boxplot at each bar) is plotting

against position in the read; the solid-line curve indicates the

average base quality. Reads from Ion Torrent PGM have better

base quality at 39end as compared to the raw reads generated by

MiSeq. Figure S3.Readlength distribution. The read length

from MiSeq (a) vary from 20 to 135 bp, with average 115 bp626

and median 127 bp; Ion Torrent PGM produced up to 267 bp

reads (b), with average 106 bp657 and median 102 bp. Figure
S4. Coverage of target genes. Here we show the percentage of

each target gene that is covered at $ x sequencing depth,

calculated as a mean across all samples.The lower panels show the

same data, with a larger scale on the x-axis. On the PGM, two

genes (KCNQ1 & KCHN2) show a sharp drop-off in coverage,

suggesting that some regions are difficult to robustly sequence. On

the MiSeq, KCNE1 and KCNE2 also showed significant drop-off.

Figure S5. Sequencing coverage of target genes. Sequenc-

ing depth is plotted for each coding base of the six target genes, on

a log10 scale. Depth is calculated as a mean across 15 samples.

Regions covered by a single read are therefore plotted at the

origin, and regions of zero coverage have a negative deflection on

the y-axis. GC content (calculated with a 50 bp sliding window on

the genomic DNA forward strand) is overlaid in blue. Plus (+) or

minus (-) indicates the strand on which each gene is encoded.

While some regions are clearly problematic for both platforms (e.g.

KCNQ1 exon 2, KCNH2 exons 1 & 12), there are also regions

where one platform performs better (e.g. KCNE1, KCNE2,

KCNH2 exon 4). Figure S6. The relationship between GC
content and coverage. Sequencing depth (log10 scale) for each

exon is plotted against its GC content. The coefficient of variation

is larger for MiSeq than for Ion Torrent PGM (0.931 vs. 0.407).

Loess regression is shown in red. MiSeq performance appears

more variable across the GC range, whereas Ion Torrent

performance falls off at high GC values, perhaps because of the

additional emulsion PCR. Table S1. Barcode indexes and
Ion Torrent specific adapters. Primers used for Ion Torrent

PGM barcoded library prep, with index sequences highlighted.

Each amplicon is inserted into the complex in both orienta-

tions: A-adaptor_Barcode_CommonSequence1_Amplicon_Com-

monSequence2_P1-adaptor; A-adaptor_Barcode_CommonSe-

quence2_Amplicon_CommonSequence1_P1-adaptor. Table S2.
Detected variant information. LRG = Locus Reference

Genomic; Chr = Chromosome; Ref = reference allele; Alt = Alter-

native allele; P = Variants revealed by PGM; M = variants

revealed by Miseq; Highlighted indicates the SNP was missed by

both platforms. Note: All variants appearing in this table were

confirmed by Sanger DNA sequencing analysis.

(DOCX)

Table 6. Accuracy of variant calling for NGS platforms.

Total coding
variants

Variant sites
interrogated

Variants
detected False positives

Variants
missed Sensitivity

Positive predictive
value

MiSeq

Group I 71 60 60 4 0 100% 93.8%

Group II 36 33 33 0 0 100% 100%

Total 107 93 93 4 0 100%
(98.0–100)

95.9%
(90.5–98.6)

PGM

Group I 71 71 71 3 0 100% 96.0%

Group II 36 35 34 2 1 97.1% 94.4%

Total 107 106 105 5 1 99.1%
(95.7–99.9)

95.5%
(90.3–98.2)

Group I: dHPLC with Sanger confirmation; Group II: direct Sanger sequencing 95% confidence intervals are given for sensitivity and positive predictive value.
doi:10.1371/journal.pone.0067744.t006
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