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ABSTRACT The epithelial-mesenchymal transition (EMT) is a highly complex phenotypic conversion during embryogenesis, and is important 

for metastasis, which contributes to tumor deterioration and poor prognoses of cancer patients. Lung carcinoma has a high tendency 

to develop the EMT. Circular RNAs (circRNAs) are involved in EMT-related cell invasion and metastasis in various types of cancers. 

Moreover, circRNAs have been found to be a link to EMT-related transcription factors and EMT-associated signaling pathways. This 

review mainly focuses on the influence of EMT-related circRNAs on lung carcinomas. More specifically, the roles of EMT-inducing- 

and EMT-suppressive circRNAs in lung carcinomas are discussed. With circRNAs potentially becoming promising biomarkers and 

therapeutic targets for cancer managements, they will hopefully stimulate the interest of medical workers in the early diagnosis, 

personalized treatment, and positive prognoses in the era of precision oncology.
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Introduction

The epithelial-mesenchymal transition (EMT) is a highly com-

plicated phenotypic conversion during embryogenesis, and is 

a potential process in adults by which epithelial cells gradually 

downregulate the expressions of cytokeratins and E-cadherin, 

and upregulate the expressions of mesenchymal genes such as 

vimentin and fibronectin1. Generally, the EMT can be divided 

into three subtypes: type I EMT in embryonic development, 

type II EMT in fibrosis, and type III EMT in premalignant 

and malignant stroma2. It is worth noting that EMT is not a 

purely bipolar state with two well-defined cell populations of 

mesenchymal cells and epithelial cells. There is also an inter-

mediate state, called partial, involving incomplete hybrid EMT 

states expressing various levels of epithelial and mesenchymal 

characteristics and preserving intermediate morphologies3-5.  

The EMT is involved in multiple tumor processes including 

tumor initiation, stemness, migration, cancerous progression, 

intravasation into the blood, malignant metastasis, and resist-

ance to therapy6. However, EMT-inducing transcription fac-

tors (EMT-TFs), EMT-related signaling pathways, epigenetic 

controls, and post-transcriptional regulators have also been 

found to regulate the EMT7. Nonetheless, the roles of circular 

RNAs (circRNAs) as post-transcriptional regulators in modu-

lating the EMT remain unclear.

With the rapid development of high-throughput RNA 

sequencing (RNA-seq), a variety of circRNAs have been char-

acterized in humans. In the last few years, it has been reported 

that circRNAs possess EMT-associated functions and may 

have an effect on epithelial and mesenchymal cell characteris-

tics including metastasis, migration, and invasion8. It is known 

that circRNAs are a type of covalent single chain closed-loop 

molecule lacking the 5′end cap and 3′end poly (A) tails via a 

form of alternative splicing, resulting in more stability than 

linear RNAs in the presence of RNase R9. The circRNAs can 

be divided into three classifications: exonic circRNAs (ecirc-

RNAs), circular intronic RNAs (ciRNAs), and exon-intronic 

circRNAs (EIciRNAs). Based on their translational capabili-

ties, circRNAs can be classified into noncoding circRNAs and 

protein-coding circRNAs10. In future studies, EMT-related 
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circRNAs will therefore be extensively studied in the field of 

oncology.

With a 5-year survival rate of 16.6%, lung cancer is the most 

common cancer with two major categories of non-small cell 

lung cancer (NSCLC) and small cell lung cancer (SCLC), and 

is the leading cause of cancer-related deaths11,12. Despite great 

progress in experimental research and clinical treatments, lung 

carcinoma still has a poor diagnosis and prognosis. Thus, there 

is an urgent need to improve our understanding of the mech-

anisms of tumorigenesis in the lung13. Recently, studies have 

started to decipher the significance of EMT-related circ RNAs 

in various carcinomas. Lung carcinoma tends to develop as 

a result of the EMT and metastasis; however, the function of 

EMT-related circRNAs is still unclear. This review focuses on 

EMT-related circRNAs in lung carcinoma. It is hoped that 

it will stimulate interest in the early diagnosis, personalized 

treatment, and positive prognoses in the field of precision 

oncology.

Biosynthesis, characteristics, and 
functions of circRNAs

In the past, numerous circRNAs have been found at lower 

levels of expression by using outdated detection technologies. 

As a result, they have been recognized as nonspecific byprod-

ucts14. However, it is now known that circRNAs play more 

critical roles with their unique biosynthesis and characteris-

tics, when compared to cognate linear RNAs. Most circRNAs 

are created by back-splicing in pre-mRNA, of which 3′ splice 

donors covalently link to 5′ splice acceptors in the opposite 

direction (Figure 1A). The back-splicing includes four par-

adigms such as exon-skipping, lariat-driven, intron- pairing-

driven circularization, and RNA binding protein-driven 

circulation15. Furthermore, circRNAs have four distinct 

peculiarities. First, they are conservative despite the length 

of their evolution16. Second, they are specifically expressed 

spatiotemporally in altered cell types and tissues17. Third, 

they are abundant in all species containing plants, archaea, 

mice, and humans9,18-20. Finally, they have a high stability 

because of their closed-loop construction and short free ter-

minals. Although circRNAs are stable, the understanding of 

circRNA degeneration is still unclear. Some hypotheses sug-

gest that endonucleases or N6-methyladenosine (m6A) may 

initiate degradation of circRNAs. Alternatively, circRNAs may 

be degraded when combined with miRNAs during Ago2-

facilitated cleavage21,22.

Regarding biological functions, circRNAs play different 

roles in different subcellular locations. In the cytoplasm, 

circRNA segregates miRNA as a “sponge” to modulate the 
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Figure 1 Biosynthesis and functions of circular RNAs (circRNAs). (A) Pre-mRNAs generate mRNAs through canonical splicing while  circRNAs 
are generated through back-splicing. (B) CircRNAs bind to miRNAs. (C) Exon-intronic circRNAs bind to pol II to regulate transcription.  
(D) The circRNA-derived pseudogenes insert into the genome and switch the genomic DNA configuration through circRNA-retrotranspostion. 
(E) CircRNAs control protein-protein interactions in a similar manner to reservoirs or scaffoldings. (F) CircRNAs initiate translation through 
internal ribosome entry sites or via N6-methyladenosine.
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activity of miRNA and the miRNA-targeted gene (Figure 

1B). For example, Zhang et al.23 reported that circFOXO3 

(hsa_circ_0006404) promoted the expression of nuclear 

factor of activated T cells 5 (NFAT5) as a sponge of both 

miR-138-5p and miR-432-5p in glioblastoma tissues. 

In the nucleus, circRNA regulates the splicing process or 

gene transcription (Figure 1C). Huang et al.24 showed 

that circERBB2, a circRNA generated from the ERBB2 

cognate gene, accumulated in the nucleus to bind with 

PA2G4, a nucleolus-associated protein, to regulate ribo-

somal DNA transcription and cell proliferation via the 

circERBB2-PA2G4-TIFIA axis in gallbladder cancer. Like 

linear mRNAs, circRNAs can also generate pseudogenes. 

The circRNA- derived pseudogenes are capable of inserting 

into the genome and switching the genomic DNA config-

uration during circRNA retrotransposition25 (Figure 1D). 

Moreover, circRNAs, in a similar manner to reservoirs or 

scaffoldings, can bind proteins in exact subcellular posi-

tions to control protein-protein interactions26 (Figure 1E). 

Presently, it is well-known that circRNAs involve one of the 

spliced production coding peptides. For example, Ye et al.27 

showed that circFBXW7 (hsa_circ_0001451) encoded a 

185 amino acid peptide (FBXW7-185aa) inhibiting migra-

tion and proliferation in triple-negative breast cancer cells. 

Yet unlike canonic cap-dependent translations, circRNAs 

commence translation via the internal ribosome entry site 

(IRES) or through m6A27,28 (Figure 1F).

The circRNA link to the EMT in 
multiple cancers

The EMT comprises fine-tuned phenotypic shifts, in which 

cells imperceptibly decline expressing E-cadherin and lose 

cellular adhesion and apical-basal polarity, while showing 

increased expressions of N-cadherin, extracellular matrix 

degradation, and cytoskeletal reorganization. Such shifts are 

initiated by EMT-TFs, which are regulated by EMT-related 

signaling pathways. EMT-inducing signs are spatiotempo-

rally specific when interacting with numerous regulators and 

signaling pathways. Although the contributions of the EMT 

to drug resistance and chemotherapy tolerance have been 

 well-studied, the EMT promotion of tumor metastasis is still 

controversial29. However, increasing evidence has suggested 

that circRNA-mediated EMT is an essential part of tumor 

occurrence and development (Table 1).

The circRNA link to EMT-TFs

Vimentin is a type of EMT protein marker, which is present in 

mesenchymal cells and is involved in cancer metastasis and poor 

prognoses. Cullin2 (Cul2), as a tumor suppressor protein, is a 

principal part of the multiple cullin-RING-based ECS (Elongin 

B/C-Cul2/5-SOCS-box protein) E3 ubiquitin-protein ligase 

complexes engaging in cell cycle control and  vasculogenesis30. 

Twist, a vital EMT-TF, combines with the promoter of Cul2 to 

increase the expression of circCul2 (hsa_circ_10720), which 

binds to a set of miRNAs to increase vimentin expression in 

hepatocellular carcinoma (HCC)31 (Figure 2A). In addition to 

Twist, the EMT is also initiated by Snail, which is a conservative 

protein of the zinc finger transcription factor family, containing 

zinc finger domains to bind DNA at the C-terminus, and con-

taining the SNAG domain to interact with epigenetic remode-

ling complexes at the N-terminus32,33. In urothelial carcinoma 

of the bladder (UCB), circPRMT5 (has_circRNA_101320) 

generated from PRMT5 on chromosome 14q11.2, promotes 

the EMT and aggressiveness through the circPRMT5/miR-30c/

SNAIL1/E-cadherin pathway34 (Figure 2B). In melanomas, cir-

cRNA_0084043 contributes to cell metastasis and growth via 

the miR-153-3p/snail axis35 (Figure 2C). In cervical cancer, cir-

cRNA_000284 induces cell invasion and proliferation via the 

circRNA-000284/miR-506/Snail-2 axis36. Apart from Twist and 

Snail, ZEB2 has been associated with epithelial polarities and 

diverse malignancies. Li et al.37 found that circNUP214 (hsa_ 

circ_0089153), as an oncogenic molecule, sponged miR-145 

to upregulate the expression of ZEB2 and thereby promote 

cell proliferation, migration, and invasion in papillary thy-

roid cancer (PTC). Taken together, the results have shown that 

 circRNAs can bind the classic EMT-TFs to modulate the EMT 

process and cancer development.

The circRNA link to EMT-related signaling 
pathways

In addition to the EMT-TFs, EMT-related signaling pathways 

had been reported to be linked to cancer-associated circ RNAs. 

In triple-negative breast cancer (TNBC), circANKS1B (hsa_

circ_0007294), derived from exons 5–8 of the ANKS1B gene, 

is an independent risk factor of the overall survival of patients 

with TNBC, because of the promotion of tumor metastasis 

and invasion. Mechanistically, circANKS1B segregates miR-

152-3p and miR-148a-3p, and upregulates the expression of 

transcription factor, USF1, which increases the expression 



414 Jiang et al. EMT-related circRNAs in lung carcinoma

of TGF-β1 by binding with the TGF-β1 promoter, and then 

initiating TGF-β1/Smad signaling to stimulate the EMT. In 

addition, there is a positive feedback loop where USF1 upreg-

ulates circANKS1B expression by regulating the splicing factor 

ESRP138 (Figure 2D). In the oral squamous cell carcinoma 

(OSCC), circUHRF1 (hsa_circ_0002185) is in excess and pro-

motes migration, invasion, proliferation, and the EMT in vitro 

and in vivo via a positive feedback loop pathway of  circUHRF1/

miR-526b-5p/c-Myc/TGF-β 1/ESRP1/c i rcUHRF1 39 

(Figure 2E). In colorectal cancer (CRC), circRNA_100290 

acts as an oncogene to increase metastasis and the EMT by 

sponging  miR-516b, upregulating FZD4 expression, and 

then initiating the FZD4-induced  Wnt/β-catenin signaling 

pathway40 (Figure 2F). Other than pro-oncogenic circRNAs, 

investigators have also discovered some EMT suppressive circ-

RNAs. For example, in clear cell renal cell carcinoma (ccRCC), 

overexpression of circAKT3 decreases the EMT and metas-

tasis via the circAKT3/miR-296-3p/E-cadherin pathway41 

(Figure 2G). In diffuse large B-cell lymphoma (DLBCL), 

circAPC (hsa_circ_0127621), derived from the APC exon 7 

to exon 14, decreases cell proliferation. CircAPC binds the 

DNA demethylase, TET1, and binds to the APC promoter to 

enhance the expression of APC, which decreases the Wnt/β-

catenin signaling pathway in the nucleus. In addition, circAPC 

Table 1 CircRNAs modulating the epithelial-mesenchymal transition (EMT) in various carcinomas

Cancer type   CircRNA   Function   Mechanism   Reference

HCC   circCul2 (hsa_circ_10720)   Promoted EMT   Twist1 promoted vimentin expression and 
EMT by increasing levels of circCul2, which can 
absorb miRNAs that target vimentin

  31

UCB   circPRMT5 (circRNA_101320)   Promoted EMT and 
aggressiveness

  By circPRMT5/miR-30c/SNAIL1/E-cadherin 
pathway

  34

Melanoma   circRNA_0084043   Promoted growth and 
metastasis

  By circRNA_0084043/miR-153-3p/Snail axis   35

Cervical 
cancer

  circRNA_000284   Promoted proliferation 
and cell invasion

  By circRNA_000284/miR-506/Snail 2 axis   36

PTC   circNUP214 (hsa_ circ_0089153)  Promoted proliferation, 
migration and invasion

  By circNUP214/miR-145/ZEB2 axis   37

TNBC   circANKS1B (hsa_circ_0007294)   Promoted EMT and 
metastasis

  By circANKS1B/miR-152-3p, miR-148a-3p/
USF1/TGF-β1/Smad signaling and a positive 
feedback loop of USF1/circANKS1B

  38

OSCC   circUHRF1 (hsa_circ_0002185)   Promoted proliferation, 
metastasis, invasion and 
EMT

  By a positive feedback loop of circUHRF1/miR-
526b-5p/c-Myc/TGF-β1/ESRP1/circUHRF1

  39

CRC   circRNA_100290   Promoted metastasis and 
EMT

  By circRNA_100290/miR-516b/FZD4/Wnt/ 
β-catenin signaling pathway

  40

ccRCC   circAKT3   Inhibited metastasis and 
EMT

  By circAKT3/miR-296-3p/E-cadherin pathway   41

DLBCL   circAPC (hsa_circ_0127621)   Hindered cell proliferation  By circAPC/APC/TET1/Wnt/β-catenin signaling 
pathway 

  42

CRC   hsa_circ_0026344   Functioned as anti-tumor 
molecule

  By hsa_circ_0026344/miR-183/Wnt/β-catenin 
signaling pathway

  43

Bladder 
cancer

  circPTK2 (hsa_circ_0003221)   Enhanced migration   Unknown   59

CRC   circPTK2 (hsa_circ_0005273)   Stimulated EMT   Attaching to vimentin protein at sites Ser38, 
Ser55, Ser82

  60

HCC, hepatocellular carcinoma; UCB, urothelial carcinoma of the bladder; PTC, papillary thyroid cancer; TNBC, triple-negative breast cancer; 
OSCC, oral squamous cell carcinoma; CRC, colorectal cancer; ccRCC, clear cell renal cell carcinoma; DLBCL, diffuse large B-cell lymphoma.
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acts as a sponge of miR-888 to upregulate APC expression in 

the cytoplasm42 (Figure 2H). Notably, the EMT and metasta-

sis induced by CCL20 and CXCL8 treatment are decreased by 

overexpression of anti-tumor hsa_circ_0026344, which binds 

to miR-183 and inhibits the Wnt/-catenin pathway43. In gen-

eral, circRNAs modulate EMT and migration mainly through 

two signaling pathways: the TGF-β1 signaling and Wnt/ 

β-catenin signaling pathways.

The influence of EMT-related 
circRNAs on lung carcinoma

The EMT phenotype is commonly expressed in primary 

squamous cell carcinomas (SCCs) and lung adenocarcino-

mas (LUADs), and occurs early in the pathogenesis of SCC, 

suggesting a potential target for lung cancer chemoprevention 

and treatment44. In addition, the overexpression of forkhead 

box Q1 (FoxQ1) influences the poor prognosis in NSCLC and 

is associated with the EMT45. Further studies showed that the 

cancer stemness marker was associated with the EMT and 

predicted poor prognoses in patients with LUAD46. Thus, 

lung carcinoma has been shown to be linked to the EMT and 

metastasis47, and the EMT-related circRNAs have an effect on 

lung carcinomas (Table 2). Overall, the EMT-inducing and 

EMT-suppressive circRNAs play very important roles in the 

occurrence and development of lung carcinomas.

The EMT-inducing circRNAs in NSCLC

Among the most common histological subtypes of lung car-

cinoma, LUAD is responsible for a majority of cancer-related 
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mortalities worldwide. Zhou et al.12 reported that circENO1 

and its host gene, ENO1 were both amplified in LUAD cells 

to augment glycolysis and tumor growth, and silenced  

circENO1 impeded glycolysis, migration and the EMT, and 

induced cell apoptosis via the circENO1/miR-223p/ENO1 

axis. Similarly, circAGFG1 increased the EMT of NSCLC cells 

via invasion and migration by acting as a sponge for miR-203, 

which targeted ZNF28148. In addition, Wang et al.49 reported 

that circP4HB was higher in NSCLC tissues than in healthy 

paired samples, and that circP4HB promoted higher vimentin 

expression and the EMT in vivo and in vitro via the circP4HB/

miR-133a-5p/vimentin axis (Figure 2I). Qi et al.50 found that 

EMT-inducing circDDX42 (hsa_circ_0007534), a transcrip-

tion product of DEAD-box helicase 42, decreased E-cadherin 

and increased the levels of Snail, N-cadherin, and vimentin. 

CircTwist1 (hsa_circ_0079530), which is 664 nt in length, was 

found to be upregulated in NSCLC. Knockdown of CircTwist1 

resulted in the downregulation of mesenchymal marker pro-

teins and the upregulation of epithelial marker proteins in 

A549 and H1299 cells51. Similarly, hsa_circ_0067934 led to an 

identical trend of changes of N-cadherin and vimentin, and 

an opposite effect for E-cadherin52. In LUAD, it was found that 

circCCDC66 and SUMO-activating enzyme subunit 2 (SAE2) 

were both highly expressed and associated with the EMT, lung 

cancer metastasis, and EGFR drug resistance. Hepatocyte 

growth factor (HGF) and c-Met upregulate SAE2 and 

circCCDC66 to enhance EMT and drug resistance; however, 

nicotinic acetylcholine receptor alpha 7 (nAChRα7) negatively 

modulates circCCDC66 expression53. LIM domain kinase 1 

(LIMK1) is a serine-threonine protein kinase, which affects 

Table 2 The epithelial-mesenchymal transition (EMT)-related circRNAs in lung carcinoma

Type   CircRNA   Target/pathway

EMT-inducing circRNAs in NSCLC   circ-ENO1   circ-ENO1/miR-223p/ENO1 axis

  circAGFG1   circAGFG1/miR-203/ZNF281 axis

  circP4HB   circP4HB/miR-133a-5p/vimentin pathway

  hsa_circ_0007534   Unknown

  hsa_circ_0079530   Unknown

  circ_0067934   Unknown

  circRNA CCDC66   HGF and c-Met upregulate circRNA CCDC66, nAchRα7 
downregulates circRNA CCDDC 66

  circ_0012673   circ_0012673/miR-320A/LIMK1 axis

  hsa_circ_000984   Wnt/β-catenin pathway

  circ_001569   transcription factor 4 and Wnt/β-catenin pathway

  circ-SOX4 (hsa_circ_0131457)  circ-SOX4/miR-1270/PLAGL2/Wnt signaling pathway

EMT-suppressive circRNAs in 
NSCLC

  circPTK2 (hsa_circ_0008305)   circPTK2/miR-429/miR-200b-3p/Snail axis

  circPTPRA (hsa_circ_102984)   circPTPRA/miR-96-5p/RASSF8/E-cadherin

  hsa_circ_0007059   hsa_circ_0007059/miR-378/Wnt/β-catenin pathway and ERK1/2 
pathway

  circ_0006427   circ_0006427/miR-6783e3p/DKK1/Wnt/β-catenin pathway

EMT-suppressive circRNAs in 
SCLC

  cESRP1   cESRP1/miR-93-5p/Smad7/p21(CDKN1A) axis

ENO1, enolase 1; AGFG1, ArfGAP with FG repeats 1; ZNF281, zinc finger protein 281; P4HB, prolyl 4-hydroxylase subunit beta; CCDC66, 
coiled-coil domain containing 66; HGF, hepatocyte growth factor; nAchRα7, nicotinic acetylcholine receptor Alpha 7; LIMK1, LIM domain 
kinase 1; SOX4, SRY-box transcription factor 4; PTK2, protein tyrosine kinase 2; PTPRA, protein tyrosine phosphatase receptor type A; 
RASSF8, Ras association domain family member 8; DKK1, Dickkopf WNT signaling pathway inhibitor 1; EMT, epithelial mesenchymal 
transition; NSCLC, non-small cell lung cancer.
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the actin cytoskeleton and participates in the EMT. Qin et al.54 

showed that hsa_circ_0012673 upregulated LIMK1 via bind-

ing to miR-320a to manipulate migration, invasion, prolifer-

ation, apoptosis, and the EMT in lung cancer cells. Because 

the EMT is closely correlated with the Wnt-associated path-

ways, many studies have focused on the effects of circRNAs on 

the expression levels of cyclin D1, β-catenin, and c-myc in the 

Wnt/β-catenin signaling pathway. Li et al.55 reported that hsa_

circ_000984 was highly expressed in NSCLC tissues and cells, 

and correlated with shorter disease-free survival and overall 

survival. Functionally, hsa_circ_000984 promoted EMT to a 

pro-oncogenic role via upregulating the expression of cyclin 

D1, β-catenin, and c-myc in the Wnt/β-catenin pathway. It was 

also reported that hsa_circ_001569 predicted a poor prognosis 

and enhanced the expressions of crucial members of the Wnt/

β-catenin pathway, including Wnt1, β-catenin, and transcrip-

tion factor 4 (TF4)56. In the same manner, upregulated circ-

SOX4 (hsa_circ_0131457) activates the Wnt signaling pathway 

and promotes the EMT via the circSOX4/miR-1270/ PLAGL2 

axis in LUAD57 (Figure 2J). Taken together, it is clear that the 

EMT-inducing circRNAs promote EMT-mediated metastasis, 

mainly by affecting the major members of the EMT-related 

signaling pathways in NSCLC.

The EMT-suppressive circRNAs in NSCLC

In contrast to EMT-inducing circRNAs, EMT-suppressive cir-

cRNAs usually negatively modulate EMT and inhibit certain 

cell programs such as migration, metastasis, and invasion. 

As mentioned above, Snail is one of the classical EMT-TFs. 

In NSCLC, circPTK2 (hsa_circ_0008305) binds to miR-429/

miR-200b-3p to enhance transcriptional intermediary fac-

tor 1γ (TIF1γ), which suppresses the function of Snail in the 

nucleus58 (Figure 2K). Notably, circPTK2 (hsa_circ_0003221), 

derived from the PTK2, enhances migration in bladder can-

cer cells59. Recently, Yang et al.60 reported that circPTK2 

(hsa_circ_0005273), unlike hsa_circ_0008305 in NSCLC, 

stimulated the EMT via binding to vimentin protein at  

Ser38, Ser55, and Ser82 in CRC (Figure 2L). Ras association 

domain-containing protein 8 (RASSF8) is an acknowledged 

tumor suppressor of lung cancer61. Wei et al.62 showed that 

circPTPRA (hsa_circ_102984) derived from protein tyrosine 

phosphatase receptor type A gene (PTPRA) inhibited tumor 

metastasis and the EMT by sponging miR-96-5p and releasing 

RASSF8 and E-cadherin. In A549 and H1975 cells, overexpres-

sion of hsa_circ_0007059 restrains cell proliferation, decreases 

the EMT, and hinders the Wnt/β-catenin and ERK1/2 sign-

aling pathways via suppressing miR-37863 (Figure 2M). In 

addition, Yao et al.64 have shown that the cytoplasmic-located 

has_circ_0006427 sponges miR-6783-3p to release Dickkopf 

WNT Signaling Pathway Inhibitor 1 (DKK1) and inhibit the 

Wnt/β-catenin pathway, and thereby repress cell proliferation, 

migration, invasion and EMT in LUAD cells (Figure 2N). In 

summary, the EMT-suppressive circRNAs play important 

roles in suppressing EMT-mediated metastasis in NSCLC via 

acting as sponges of miRNAs to influence EMT-TFs, EMT-

related signaling, and EMT markers.

The EMT-suppressive circRNAs in SCLC

The effects of EMT-related circRNAs on SCLC presently 

remain largely unknown. Huang et al.65 showed that cESRP1 

(circular RNA epithelial splicing regulatory protein 1) located 

in the cytoplasm sequestered miR-93-5p to free Smad7/

p21(CDKN1A) and further regulate the TGF-β-induced EMT 

(Figure 2O). Moreover, the inhibition of the TGF-β pathway 

and cESRP1 overexpression improved the responsiveness to 

chemotherapy in a patient-derived xenograft model suffering 

acquired chemoresistance.

Conclusions

Although numerous studies have verified that circRNAs are 

more stable than their cognate mRNAs, the effectiveness of back 

splicing is lower than canonical splicing from certain expression 

vectors66. Recent advances have shown that circ RNAs can act 

as minimally-invasive or noninvasive biomarkers for various 

diseases including cancers, although the  detection techniques 

in blood and other body fluids still need to be improved15,67. 

More importantly, circRNAs may work together as a group, 

with complicated crosstalk with other regulators68. The EMT is 

a chief element of the metastatic cascade, which is important 

in tumor deterioration. Additionally, the EMT is responsible 

for chemoresistance and immune resistance69,70. Although the 

correlations between miRNAs and EMT-TFs have been well- 

established71, as sponges for miRNAs, the roles of circRNAs in 

the EMT remain to be discovered. The levels of certain circRNAs 

could be distinctly changed during the EMT due to splicing pro-

grams stimulated by a set of splicing factors such as RBFOX2, 

SRSF2, and QKI8. CircRNAs function as parts of a noncod-

ing RNA adjustment net by separating proteins and miRNAs 

during the EMT. A quantitative EMT scoring system based on 
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gene expression profiles has recently been established to grade 

the status of the EMT47. This system has been used to empha-

size the developmental lineage of each cancer subtype from 

microscopic and macroscopic EMT gradients, and each cancer 

subtype has a unique tendency to exhibit different EMT states. 

Lung carcinoma displays higher EMT scores, which always fore-

cast a poor prognosis47. Investigators of EMT-related circRNAs 

can therefore provide novel therapeutic approaches and tactics 

for patients with lung carcinoma. Specifically, a large range of 

small molecule agents for targeting characteristics with EMT 

in lung carcinoma have been developed in preclinical phases72. 

For example, bufalin, a Chinese medicine, impedes the migra-

tory activity of A549 human lung cancer cells and the TGF-β-

induced EMT73. However, there is controversy concerning the 

oligonucleotide chemistry that targets circRNAs, but further 

studies may bring new hope to patients with drug resistance.
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