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Abstract

In allosteric proteins, the binding of a ligand modifies function at a distant active site. Such

allosteric pathways can be used as target for drug design, generating considerable interest

in inferring them from sequence alignment data. Currently, different methods lead to conflict-

ing results, in particular on the existence of long-range evolutionary couplings between dis-

tant amino-acids mediating allostery. Here we propose a resolution of this conundrum, by

studying epistasis and its inference in models where an allosteric material is evolved in silico

to perform a mechanical task. We find in our model the four types of epistasis (Synergistic,

Sign, Antagonistic, Saturation), which can be both short or long-range and have a simple

mechanical interpretation. We perform a Direct Coupling Analysis (DCA) and find that DCA

predicts well the cost of point mutations but is a rather poor generative model. Strikingly, it

can predict short-range epistasis but fails to capture long-range epistasis, in consistence

with empirical findings. We propose that such failure is generic when function requires sub-

parts to work in concert. We illustrate this idea with a simple model, which suggests that

other methods may be better suited to capture long-range effects.

Author summary

Allostery in proteins is the property of highly specific responses to ligand binding at a dis-

tant site. To inform protocols of de novo drug design, it is fundamental to understand the

impact of mutations on allosteric regulation and whether it can be predicted from evolu-

tionary correlations. In this work we consider allosteric architectures artificially evolved to

optimize the cooperativity of binding at allosteric and active site. We first characterize the

emergent pattern of epistasis as well as the underlying mechanical phenomena, finding

the four types of epistasis (Synergistic, Sign, Antagonistic, Saturation), which can be both

short or long-range. The numerical evolution of these allosteric architectures allows us to

benchmark Direct Coupling Analysis, a method which relies on co-evolution in sequence

data to infer direct evolutionary couplings, in connection to allostery. We show that

Direct Coupling Analysis predicts quantitatively point mutation costs but underestimates

strong long-range epistasis. We provide an argument, based on a simplified model, illus-

trating the reasons for this discrepancy. Our analysis suggests neural networks as more

promising tool to measure epistasis.
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Introduction

Allosteric regulation in proteins allows for the control of functional activity by ligand binding

at a distal allosteric site [1] and its detection could guide drug design [2, 3]. Yet, understanding

the principles responsible for allostery remains a challenge. How random mutations dysregu-

late allosteric communication is a valuable information studied experimentally [4] and compu-

tationally [5]. Several analyses have highlighted the non-additivity of mutational effects or

epistasis. This “interaction” between mutations can span long-range positional combinations

[6], results in either beneficial or detrimental effects to fitness [7], and shapes protein evolu-

tionary paths [8]. Given the combinatorial complexity of its characterization, empirical pat-

terns of epistasis are still rather elusive [9–12]. Concomitantly, progress in sequencing has led

to an unprecedented increase of availability of data arranged into Multiple Sequence Align-

ments (MSAs) [13] containing many realizations of the same protein in related species. Differ-

ent methods have been developed to extract information from sequence variability, e.g.

Statistical Coupling Analysis [14, 15] was applied to allostery detection in proteins. It was

argued that the allosteric pathway was encoded in spatially extended and connected sectors,
groups of strongly co-evolving amino-acids, supporting that long-range information on the

allosteric pathway is contained in the MSA. Another approach, Direct Couplings Analysis

(DCA) [16], aims at inferring evolutionary couplihngs between amino-acids. Direct couplings

predict successfully residue contacts [16] so to inform the discovery of new folds [17], allow

one to describe evolutionary fitness landscapes [18–22] and correlate with epistasis [23, 24]. In

the context of allostery, there is no statistical evidence for the existence of long-range direct

couplings that would reveal allosteric channels [25], in apparent contradiction with the exis-

tence of extended sectors reported in [15] and the observation of long-range epistasis [6]. It is

therefore an open question why a pairwise model should be successful at predicting protein

structure, but not long-range functional dependencies. In this work we propose an explanation

for this discrepancy, by benchmarking DCA in models of protein allostery where a material

evolves in silico to achieve an “allosteric” task [26–32]. We consider recent models incorporat-

ing elasticity [27–30, 32], in which long-range co-evolution [29], elongated sectors [29] and

long-range epistasis [32] are present and can be interpreted in terms of the propagation of an

elastic signal [32]. We focus on materials evolved to optimize cooperative binding over large

distances [30], and find that the four types of epistasis (Synergistic, Sign, Antagonistic, Satura-

tion) exist over a wide spatial range. We perform DCA and find that it predicts well the cost of

point mutations but is a rather poor generative model. It can predict short-range epistasis but

fails to capture long-range effects, in agreement with empirical findings [25]. Moreover, we

test this result for one allosteric protein, the PDZ domain, where epistasis was experimentally

measured in [12] along with the inference of DCA energetic couplings, showing support for

our prediction. We illustrate why it may be so via a simple model, which suggests that neural

networks may be better suited than DCA to capture long-range effects.

Model for the evolution of allostery

We follow the scheme of [29, 30] where a protein is described by an elastic network of size L
made of harmonic springs of unit stiffness (here we consider L = 12). Binding events are modeled

as imposed displacements either at the “allosteric” or at the “active” site (each consisting of sev-

eral nodes), as shown in color in Fig 1A. Such imposed displacements elicit an elastic response in

the entire protein and cost some elastic energy, which defines our binding energy (see Sec. 1 in

S1 Text). Following [30], the fitness F measures the cooperativity of binding between allosteric

and active site and is defined as the energy difference F � EAc � ðEAc;Al � EAlÞ where EAc, EAl

and EAc;Al are respectively the elastic energy of binding at the active site only (Ac), at the allosteric
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site only (Al) and at both sites simultaneously (Ac;Al). In the limit of weak elastic coupling

between allosteric and active site, the fitness can be rewritten approximately as (see Sec. 1 in

S1 Text)

F � FAc � RAl!Ac ð1Þ

where FAc is the force field imparted by substrate binding on the nodes of the active site,

and RAl!Ac is the displacement field induced at the active site by ligand binding. The product

FAc � RAl!Ac is an estimate of the change of mechanical work required for binding the substrate

at the active site caused by binding the ligand at the allosteric site. Note that each field in Eq 1 is

of dimension n0 d, where n0 = 4 is the number of nodes in the active site and d = 2 the spatial

dimension.

Such networks are evolved by changing the position of springs according to a Metropolis-

Monte Carlo routine to maximize F . At each step, the fitness difference with respect to the

previous configuration DF is computed and the new configuration is accepted with a proba-

bility p ¼ minð1; exp bDFÞ. β is an evolution inverse temperature controlling the selection

pressure for high fitness F , we choose β = 104 as at this temperature networks probed have the

highest fitness our protocol can reach [30]. We sample every 1000 time steps after an initial

equilibration time of 105 steps. At long times one obtains a cooperative system of typical

F � 0:2, whose architecture depends on the spatial dimension and boundary conditions [30].

Here we consider a network in d = 2 dimensions with periodic boundaries, equivalent to a

cylindrical geometry, where the response to binding evolves towards a shear mode (see Fig

1A). With our scheme we can generate thousands of networks with a similar design. A

sequence σ of 0 and 1, where σi = 1 stands for the presence of a spring at link i and σi = 0 for its

absence, can be associated to any network, leading to a Multiple Sequence Alignment (MSA)

of networks performing the same function (see Fig 1B).

Fig 1. Study of co-evolution in artificial allosteric networks. A: Example of an elastic network made of harmonic

springs (red) evolved in silico to maximize the cooperativity between the allosteric site (purple) and the active site

(blue). The response to binding at the allosteric site is indicated by black arrows, and is found to follow a shear motion.

B: Each network corresponds to a sequence of 0 and 1 coding for the spring absence or presence. Our scheme allows us

to generate a large number M of such sequences, each corresponding to a slightly different shear architecture.

https://doi.org/10.1371/journal.pcbi.1007630.g001
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Results

Nature and classification of epistasis

The cost of a single mutation (i.e. changing the occupancy) at some link i is defined as

DF i ¼ F � F i where F is the original fitness and F i the one of the network after the muta-

tion. Single mutation costs DF i are expected to be positive since the original network has been

selected to have close-to-maximal fitness.

We denote by DF ij ¼ F � F ij the cost of a double mutation at i and j. Epistasis between

loci i and j is then defined as DDF ij � DF ij � DF i � DF j. We find that generically, the domi-

nant effect of mutations is to affect the propagation of the signal RAl!Ac, which depends on the

arrangement of links in the network. In general, mutations do not affect how binding at the

active site locally generates force, as shown in Sec. 1 in S1 Text. Using this observation and fol-

lowing Eq 1, epistasis follows approximately

DDF ij � � F
Ac � ðdRAl!Ac

ij � dRAl!Ac
i � dRAl!Ac

j Þ

where dRAl!Ac
i ¼ RAl!Ac

i � RAl!Ac, and RAl!Ac
i is the allosteric response at the active site of the

protein mutated at link i. dRAl!Ac
j and dRAl!Ac

ij follow analogous definitions. We denote by θ
the angle between dRAl!Ac

i and dRAl!Ac
j .

Consider the case where the cost of a double mutation is dominated by the strongest point

mutation, i.e. DF ij � maxðDF i;DF jÞ. It leads to:

DDF ij � � minðDF i;DF jÞ: ð2Þ

Interestingly, this situation does capture the main trend of epistasis in our data, especially

when it is strong, as shown in Fig 2A (see dashed line). This observation suggests to

classify pairs of loci in terms of their epistasis and the minimal associated mutation cost

minðDF i;DF jÞ as performed in Fig 2A. First of all, no epistasis corresponds to purely additive

mutations, i.e. DDF ij ¼ 0, see dotted line in Fig 2A. Next, we observe the following regimes

Saturation: We define mutations with DF > 0:1 as “lethal”. This somewhat arbitrary defini-

tion corresponds to 50% of loss of fitness. Pairs of such lethal mutations (which represent

* 0.1% of all pairs, a sparsity in line with experimental findings [24]) have the strongest

epistasis in absolute value, and follow closely Eq 2, as visible in Fig 2A. Physically,

these mutations essentially shut down signal propagation by themselves with

RAl!Ac
i � RAl!Ac

j � 0, in such a way that the double mutation has the effect of a single one

with RAl!Ac
ij � 0. This view is confirmed in Fig 2B by the observation that cos(θ)� 1, as fol-

lows from dRAl!Ac
i � dRAl!Ac

j � � RAl!Ac. Saturation is then a form of very high “diminish-

ing-returns” epistasis, for which evidence from data and support from theoretical models

are accumulating [33, 34].

Antagonistic. Further up along the diagonal of Eq. 2 in Fig 2A, this saturation effect becomes

milder. It is more akin to “antagonistic” epistasis [7, 35], whereby, after a first mutation,

making a second one results only in a weak additional change. Antagonistic epistasis is also

known as positive magnitude epistasis (where positivity indicates that the double mutant is

fitter than expected from the additive case).

Sign. In the intermediate range of mutation costs with minðDF i;DF jÞ < 0:1, more compensa-

tory epistatic interactions can take place, where the fitness cost of a deleterious mutation is

diminished by the second mutation (i.e. DF ij < maxðDF i;DF jÞ). Thus some mutations
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can become beneficial (i.e. increase the fitness) in presence of another mutation, and this

resembles the “sign” epistasis empirically detected [7, 36]. Geometrically, it corresponds to

situations where the two mutations deform the signal in opposite directions, so the second

one can partially re-establish fitness. In support of this, Fig 2B shows that for sign epistasis

cos(θ) tends to be negative.

Synergistic. Positive-sign values of DDF ij indicate “synergistic” epistasis. It occurs if two muta-

tions perturb the elastic signal in the same direction, causing more damage than expected if

they were purely additive. As clear from Fig 2B, cos(θ) tends to be positive in this case.

Direct coupling analysis

We evolve numerically M configurations maximizing cooperativity F , each yielding a realiza-

tion of a (variable) shear design. We sample a configuration for every initial condition to avoid

introducing a bias in the sampling due to their high similarity. (We thus eliminate the possibil-

ity of our sequences to display “phylogenetic” effects, i.e. correlations due to a common evolu-

tionary history, known to complicate the inference from sequence data and to require ad hoc
corrections, see e.g. [37]). We find that the average Hamming distance among the obtained

sequences is * 20% of their length. Our set of sequences is analogous to a protein MSA—

importantly, in this analogy the role of an amino-acid is played by a link, which can be stiff

(σi = 1) or not (σi = 0, no springs). In practice we take M = 135000, much larger than the

Fig 2. Classification and mechanical characterization of epistasis in our model of allosteric cooperativity. A: Phase

diagram of epistasis in our allosteric material. All quantities are averages over 50 configurations obtained in a single

run. The shaded area is taken with arbitrary width and a -1 slope as a guide to the eye. We show the lines DDF ij ¼ 0

(dotted style), which corresponds to no epistasis (and divides synergistic from antagonistic/sign epistasis), DDF ij ¼

maxðDF i;DF jÞ (dashed style), separating sign and antagonistic epistasis, and minðDF i;DF jÞ ¼ 0:1 (dash-dotted

style), the threshold set to distinguish lethal mutations (corresponding to the saturation region). Points in grey

correspond to epistasis< 5 × 10−4 and are excluded from our analysis. B: Histograms of cos(θ) for synergistic, sign and

saturation epistasis.

https://doi.org/10.1371/journal.pcbi.1007630.g002
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sequence length Nc = (3L2 − 2L) = 408. Working in such an over-sampling regime (which is

generally not the case for real proteins) ensures that the limitations of the inference we find

below are not due to sampling, but to the model underlying DCA.

Next, for a statistical analysis of these sequences, we use DCA, which is based on the idea of

fitting the observed single-site hsii ¼ 1=M
P

ms
m
i and pairwise hsisji ¼ 1=M

P
ms

m
i s

m
j fre-

quencies of links by the probability distribution P(σ) with maximal entropy (as this ensures the

least biased fit of data under such empirical constraints). In our setup this approach leads to

PðsÞ ¼
1

Z
exp ð� EðsÞÞ ð3Þ

EðsÞ ¼ �
X

i<j

Jijsisj �
X

i

hisi ð4Þ

which is equivalent to an Ising model where σi = 0, 1 would denote the two states (down,

up) of spins. In this setting, E is an estimation of bF , β being the inverse evolution tempera-

ture. In all the comparisons (e.g. Fig 3) we omit β as we are only interested in testing the

Fig 3. Prediction of mutation costs by DCA. Maps of true DF (A) and DCA-inferred DE (B) single mutation costs,

averaged over 1.5 × 103 configurations randomly chosen from the MSA. Their patterns are very similar, revealing high costs

near the allosteric and active sites and in the shear path connecting them. C: Scatter plot showing the strong correlation

between DF and DE for all links (averaged over 1.5 × 103 configurations). The estimation of mutation costs based on an

independent-site model (i.e. on conservation) correlates poorly with the true cost (inset), proving the need for incorporating

correlations for proper prediction of mutation costs. The correlation is quantified via the Pearson correlation coefficient, ρ.

https://doi.org/10.1371/journal.pcbi.1007630.g003
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proportionality between E and F . The “fields” hi and “couplings” Jij are inferred to match hσii
and hσi σji. The inference of these parameters can be performed with several algorithms, we

focus on ACE (Adaptive Cluster Expansion) [38, 39], an approximate technique developed

from statistical physics ideas, combined with maximum likelihood, an exact technique. This

approach is extremely accurate and we compare it to a method more approximate, but much

faster computationally, as mean field Direct Coupling Analysis (mfDCA) [16], see Methods

for details on the implementation.

In this way we can benchmark DCA in the context of allosteric materials and test if it: (i)

reproduces accurately the cost of single mutations; (ii) is a good generative model, i.e. if it can

generate new sequences with high fitness and (iii) can predict epistasis.

Inferring mutation costs. Fig 3A shows the map of true mutation costs, indicating a large

cost near the allosteric and active sites as well as in the central region where the allosteric

response displays high shear (as documented in [30]). DCA enables one to infer this map by

computing the estimated mutation cost DE i ¼ E i � E for a mutation at a generic link i, Fig 3B.

The comparison is excellent, as evident also from the high correlation revealed by the scatter

plot Fig 3C. Importantly, including pairwise couplings is key for inferring mutation costs, as a

model based on conservation alone (a standard measure of mutation costs, see Methods) per-

forms poorly in this case, see inset of Fig 3C.

Generative power of DCA. Once the model of Eqs 3 and 4 is inferred, can it be used to

generate new sequences with a high fitness, as previously shown for models of protein folding

[40]? To answer this question, we generate new sequences by Monte Carlo sampling from the

probability distribution Eq 3. Fig 4 shows the fitness of the obtained sequences vs their distance

Fig 4. Generative performance of DCA. Fitness vs distance to consensus of configurations generated by the inferred model, following

the representation of [40]. The sampling is done from P(σ) of Eq 4 (a Boltzmann-Gibbs probability distribution), whose parameters

have been inferred via ACE + maximum likelihood (red cloud) or mfDCA (green cloud). Original high fitness configurations (black

cloud) and random ones (blue) are added as a reference. Each cloud consists of 104 sequences and the drawn ellipse gives one standard

deviation around the mean in both horizontal and vertical directions. Distances to consensus of ACE + maximum likelihood, mfDCA

and random sequences are shifted by respectively +0.7, −0.7 and −1.3 for better visibility.

https://doi.org/10.1371/journal.pcbi.1007630.g004
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to “consensus”—the consensus being the most representative sequence of the MSA, i.e. where

springs occupy the positions with largest mean occupancy. We find that (i) the variability of

the MSA, quantified by the distance to consensus, is well reproduced (ii) the fitness is much

more variable than for random sequences, with a few sequences that do perform as well as

evolved ones (which never occurs for random sequences) but (iii) the mean obtained fitness is

rather low, although larger, in a statistically significant way, than the one of random configura-

tions (which is zero). As shown in Fig 4, these results deteriorate further if a more approximate

algorithm as mfDCA is used to infer parameters. We have checked that the generative perfor-

mance is not improved by lowering the temperature of the Monte Carlo sampling. Overall,

these results suggest that the generative power of DCA is limited in the context of allostery, in

contrast with results for models of protein folding [40]. Thus an Ising model, a quadratic

model accounting for conservation and correlations in the MSA (first and second order statis-

tics), although it can capture some features of the shear design (e.g. the inhomogeneous distri-

bution of coordination, as shown in Fig. B in S1 Text), is a rather drastic approximation for

the actual allosteric fitness. Indeed we have tested that higher orders as the third moment are

not well reproduced (see Fig. A in S1 Text), suggesting that the longer-range correlations

induced by allostery are not well captured by a pairwise model. On the other hand, for protein

structure predictions, several works as [41] suggest that local correlations between residues in

spatial contact are well-captured by a pairwise model, even beyond pairwise correlations. To

test our findings, it would be interesting to condition the analysis of e.g. [41] on the distance

between residues considered and see if the 3-body correlations are still captured when the resi-

dues are further apart. It would also be relevant to restrict the study to allosteric proteins only,

to check whether statistical properties are changed, in such a way as to gauge the effect of allo-

steric vs folding constraints in proteins.

In what follows we shall emphasize in particular the failure of DCA to infer long-range

epistasis.

Inferring epistasis with DCA

From Eq 4 one readily has that the DCA prediction for epistasis follows

DDE ij ¼ � Jijð2si � 1Þð2sj � 1Þ, implying jDDE ijj ¼ jJijj. Hence, within DCA, the epistasis

magnitude is simply the one of evolutionary couplings. In the inset of Fig 5A we show the spa-

tial location of the top 400 pairs of links with highest coupling magnitude, illustrating that

long-range couplings are rare. Yet, as implied jointly by Fig 2A (showing that pairs of sites

with large mutation cost systematically display strong epistasis) and Fig 3A (showing that sites

with a large mutation cost can be distant), long range epistasis is present in our model, mean-

ing that DCA fails to capture it. This fact is demonstrated quantitatively in Fig 5A showing the

mean epistasis jDDF ijj and mean DCA prediction jDDE ijj as a function of distances. The

DCA-predicted trend reproduces the original one at small distances but strongly underesti-

mates long-range epistasis. This is further evidenced in Fig 5B showing that the average frac-

tion of long-range pairs (range > 7) with the largest epistasis which falls in the list of the 400

pairs with largest couplings is much smaller than for short-distance pairs (< 7). However, even

at short distance the prediction by |Jij| is not excellent but it is remarkably improved if, as done

in [12, 24], one considers epistasis averaged over several configurations (see Sec. 2 in S1 Text).

(This result is in contrast to the remarkable performance of DCA in residue contact prediction,

which guided the discovery of novel protein structures [17]. We recall that couplings inferred

by the most accurate DCA algorithms exhibit maximal precision (i.e. number of true predicted

contacts divided by the total number of predictions equal to 1) up to a number of contacts
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comparable with the protein size [42, 43]). Our finding is consistent with the lack of empirical

evidence for long-range inferred couplings in allosteric proteins [25].

To better investigate the reasons for this phenomenon in our in silico model, we report evo-

lutionary correlations as a function of distance in Fig 6. We find that, although strong long

range epistasis occurs, large long-range correlations are absent (a fact in some sense more sur-

prising that not finding long-range couplings, since in principle short-range couplings alone

could result in long-range correlations). The absence of long-range correlations suggests that it

Fig 5. Prediction of epistasis by DCA. A: Running average of the absolute value of epistasis DDF ij and of DCA

prediction DDE ij for 1.5 × 103 configurations as a function of the distance between link i and j. The trends are nearly

identical at short distances but at long distance DCA underestimates epistasis. Inset: Top 400 inferred couplings. They

are mostly short range with only a few long-range couplings connecting the allosteric and the active site. Next we assess

the prediction of epistasis in single configurations by these top 400 couplings. We consider separately long-range (> 7)

and short-range (< 7) pairs of links, and rank them respectively in terms of the epistasis magnitude jDDF ijj. B shows

which fraction of these pairs—averaged over 100 configurations randomly chosen—belongs to the 400 largest

couplings, as a function of the number of pairs with maximal epistasis considered. Clearly coupling magnitude has less

predictive power at large distances than at short ones. The random expectations for these mean predicted fractions are

0.0041 for short-range pairs and 0.0009 for long-range ones (they are both significantly lower than the values reported

here). This feature stays robust also if we increase, e.g. up to 1000, the number of top couplings for prediction (see

Panel A in Fig. D, S1 Text).

https://doi.org/10.1371/journal.pcbi.1007630.g005

PLOS COMPUTATIONAL BIOLOGY Direct coupling analysis of epistasis in allosteric materials

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007630 March 2, 2020 9 / 19

https://doi.org/10.1371/journal.pcbi.1007630.g005
https://doi.org/10.1371/journal.pcbi.1007630


will be particularly challenging to capture long-range functional dependencies from low order

statistics of the MSA alone. Consistently with this observation, statistical approaches based on

principal components of the MSA covariance such as Sectors [44, 45] or Inverse Covariance

Off-Diagonal (ICOD) [46] do not lead overall to better predictions of epistasis in our context,

as we show in S1 Text, Sec. 2.2. Among these approaches, we find that the best predictor of

long-range epistasis is ICOD, a result that would be interesting to benchmark also in other

systems.

A proposed explanation for the failure of DCA at long-distances. We propose that the

failure of DCA at long-range stems from its inability to describe a function that requires many

subparts of the system to work in concert, when each subpart can be of different type. For

example, in allosteric proteins on short length scales soft regions must exist where shear propa-

gates [30, 47], giving rise to local constraints. Yet, the exact location of these soft regions can

vary in space. On a larger length scale, these regions must assemble to create an extended soft

elastic mode [30, 48, 49], which generates global constraints: for the shear architectures it

implies the presence of a soft path between the allosteric and active site, whose position how-

ever can fluctuate.

We argue that when applied to systems whose function is organized in such a hierarchical

way, DCA underestimates long-range constraints. To illustrate this point, we introduce a Bool-

ean model, shown in Fig 7. A generic “function” is achieved by two subparts that must work in

concert (AND gate) and that can be of two different types (OR gate) but each must be func-

tional (AND gate). This model comprises 8 units, taking the value 0 or 1, decomposed into 4

groups: 2 groups are the possible types of subpart 1 (left in Fig 7) and the other 2 the possible

types of subpart 2 (right). A configuration is “functional” if 2 units of the same group are

Fig 6. Running average of the absolute value of connected correlations Cij = hσi σji − hσiihσji and of epistasis DDF ij for the same 1.5 × 103

configurations of Fig 5A as a function of the distance between link i and j.

https://doi.org/10.1371/journal.pcbi.1007630.g006
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simultaneously in state 1 for each subpart. There are 49 functional configurations, whose fitness

is fixed to F , all other configurations have fitness 0. We assume that F is large in such a way

that the sequences in the MSA are only the 49 functional ones, with a uniform distribution. It is

straightforward to calculate epistasis in this model, as well as single-site and pairwise frequen-

cies from which couplings Jij and fields hi can be inferred. In particular we can compare DDF ij

and DDE ij for units i and j either in the same group (or in the same subpart), so locally con-

strained by function (at “short distance”, e.g. i = 1 and j = 2), or in the two different subparts,

thus globally constrained (at “long distance” e.g. i = 1 and j = 5). We obtain (see Sec. 2.1 in S1

Text) that jDDF 12j=jDDF 15j � 2:3: global and local constraints lead to relatively similar short

range and long-range epistasis. Yet we find that epistasis between subparts is noticeably under-

estimated by DCA in contrast to epistasis within subparts. To show this, we look at the DCA

prediction for the ratio of epistasis between two pairs of sites divided by the true ratio of epista-

sis. For pairs of sites belonging to the same subpart, DCA predicts equally well epistasis. For

example, considering the pair of sites (1,2) and the pair (1,3), one finds jDDE13j=jDDE12j �

jDDF 12j=jDDF 13j � 0:86 which is close to unity. However if sites belong to different subparts,

DCA strongly underestimates epistasis with jDDE15j=jDDE12j � jDDF 12j=jDDF 15j � 0:33, i.e.

by 3 fold. In this model as well we find that long-range correlations are essentially absent (they

are smaller than 1%), despite long-range epistasis being present. Hence, a functional constraint

on the cooperation between subparts potentially far away in the structure, as allosteric and

active site, implies strong long-range epistasis, but does not imply strong long-range correla-

tions, which is then reflected in small couplings. To summarize these facts, numerical values for

correlation, epistasis and inferred couplings are listed in Table 1. Overall, this situation is

Table 1. Table summarizing true and predicted epistasis magnitude, jDDF ijj and jDDEijj, connected correlations

Cij and inferred couplings Jij in the simple model for sites i and j in the same group, in the same subpart and in dif-

ferent subparts. For i and j in different subparts (third row) the sizeable magnitude of epistasis is not reflected in the

values of correlations, thus of the inferred couplings, in such a way that it is then underestimated by the DCA model.

In section Sec. 2.1 in S1 Text, we derive jDDF ijj ¼ 21=49 F for i and j in the same group: since we do not predict the

prefactor F , we can fix 21=49 F ¼ 1 and other numbers in the first column follow from this choice.

jDDF ijj Cij jDDEijj Jij
Same group 1 0.061 0.51 1.18

Same subpart 0.33 −0.08 0.14 -1.01

Different subpart 0.43 0.00 0.07 0.40

https://doi.org/10.1371/journal.pcbi.1007630.t001

Fig 7. Sketch of a simple model for protein function. A system is arranged into 2 subparts which must work jointly

to accomplish a given function (AND gate). Each subpart is composed of 2 groups, i.e. can be of 2 types (OR gate), to

work each type must satisfy some constraints (AND gate between single units).

https://doi.org/10.1371/journal.pcbi.1007630.g007
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precisely that of the in silico allosteric material (Figs 5 and 6), supporting that the present toy

model captures the essence of the DCA limitations in more realistic settings.

Empirical evidence. Recently epistasis was measured in an empirical setting by Salinas

and Ranganathan [12] with the aid of deep mutational scan techniques applied to the PDZ

domain α2-helix (9 residues), which is part of an allosteric regulatory mechanism controlling

ligand binding. Five homologs of PDZ domain were considered in the study. There, epistasis is

DDGxy
ij ¼ ðDGx

i þ DGy
j Þ � DGxy

ij ð5Þ

where G is the binding free energy and x, y correspond to mutations happening at positions i,
j, respectively. DCA inference in [12] was performed on an alignment of 1656 eukaryotic PDZ

domains (Poole alignment, see [12]), from where the DCA epistasis prediction jDDExy
ij j could

be directly estimated. The authors then considered averages over mutations x, y and the 5

homologs (we denote them simply as DDE ij and DDGij); in Fig 8A we show how well jDDE ijj

predict the experimental energetic couplings jDDGijj for pairs of residues (i, j) at distance > 8Å
and< 8Å, where distances are measured on the known three-dimensional crystal structure of

the PDZ α2-helix and averaged over the 5 homologs. We find a stronger correlation between

jDDGj and jDDEj for short range pairs (Pearson correlation ρ = 0.69), than for long range pairs

(ρ = 0.48), as the long-range strong epistatic interaction between residues 1 and 8 is not cap-

tured by the DCA-inferred energetic couplings, see discussions in [12]. jDDG18j in Fig 8A is

the point at largest jDDGj in the long-range set. This observation is consistent with our model

prediction, shown in Figs 5 and 8B, on the limits of DCA in capturing strong long-range

epistasis.

It would be important to test more broadly this predicted effect, which may be possible

thanks to the advances of deep mutational scans.

Fig 8. Prediction of experimentally measured epistasis by DCA from [12]. A: Scatter plot of average epistasis magnitude

jDDGj vs DCA-inferred energetic couplings jDDEj, where the color code distinguishes short and long distance pairs of residues

on the PDZ α2-helix three-dimensional structure. ρ, the Pearson correlation coefficient, indicates a better performance at short

range. As a comparison, in B we show the scatter plot of average epistasis magnitude jDDF j vs DCA-inferred energetic

couplings jDDEj in our in silico evolved networks: similarly to A, the prediction at long distance is poorer than at short distance.

https://doi.org/10.1371/journal.pcbi.1007630.g008
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Discussion

We have benchmarked DCA in a model of protein allostery where a mechanical task must be

achieved over long distances. Such models display a rich pattern of epistasis, which can be

both short and long-range and vary in sign. DCA predicts well mutation costs but is not a

good generative model. This failure echoes with the drastic underestimation of long-range

epistasis by the pairwise couplings inferred by DCA from evolutionary correlations. This find-

ing rationalizes why there is no statistical evidence for long-range couplings in allosteric pro-

teins analyzed by DCA [25], where long-range epistasis and functional effects are however

found [6, 12, 15], as tested here with the data from [12].

Yet, as we show in S1 Text (see Sec. 2), we expect that DCA can capture some aspects of the

long-range epistasis pattern in allosteric proteins. Indeed, high-cost mutations exhibit stronger

epistasis than low-cost ones (as also seen in RNA sequences [36, 50], in the enzyme TEM-1 β-

lactamase [11] and in previous in silico evolution work [32]), and are well-predicted by DCA.

Specifically, the scaling of epistasis of Eq 2 suggests as approximation jDDF ijj / minðDE i;DE jÞ

where DE are inferred by DCA. Testing this prediction for epistasis patterns empirically could

be made possible by the increasing availability of deep mutational scans [12, 51].

Moreover, we have provided the more general argument, illustrated by a simple model, that

a co-evolution based maximum-entropy approach as DCA is not the appropriate inference

framework when function requires several, variable parts to work in concert. Can one find bet-

ter generative models than DCA for such complex functions? Several ways have been proposed

to go beyond pairwise models by including nonlinearities, which implicitly take into account

correlations at all orders, as nonlinear potentials in Restricted Boltzmann Machines [52], max-

imum-entropy probability measures with a nonlinear function of the energy [53], maximum-

likelihood inference procedures based on nonlinear functions [54] and, finally, deeper archi-

tectures [55, 56]. As a first test, we have trained a 3-layers feedforward neural network with

nonlinear (sigmoid) activation functions to learn the values of fitness in the simple model of

Fig 7 and we have obtained that mutation costs and epistasis can be correctly captured by this

method (see Sec. 2.1.1 in S1 Text). This observation raises the possibility that neural networks

may lead to better generative models in proteins, a hypothesis that could also be benchmarked

in silico.

Finally, as a future direction it would be interesting to extend our model by considering the

constraint that the protein must fold to operate, in addition to the allosteric constraint consid-

ered here. It could be done for example in the spirit of [40] by considering that nodes are

amino-acids, and that the stiffness of the spring between two adjacent amino-acids as well as

their contribution to the total folding energy depend on the identity of that pair. Although we

believe that such a model will lead to similar results as presented here for long-range coupling,

it will presumably differ significantly in the statistics of short range ones. In particular, it may

capture why 3-body correlations are well described by 2-body correlations in real proteins,

and lead to stronger conservation overall [55].

Methods

Direct coupling analysis: Inference procedure

In a maximum-entropy approach, extracting information from MSAs can be cast as an inverse

problem, i.e. inferring the set of parameters which enable the model (an Ising model in our

setup) to reproduce certain observed statistical properties [57, 58]. The exact solution of this

problem is found by Maximum Likelihood algorithms, which search for the set of couplings Jij
and fields hi maximizing the likelihood that the model specified by such parameters produced
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data with the given statistics (single-site and pairwise frequencies in our case). This exact maxi-

mization might often be infeasible, therefore to tackle the inverse problem approximate tech-

niques have been developed: for instance, we resort to the Adaptive Cluster Expansion (ACE),

an expansion of the entropy (which indeed corresponds to the likelihood) into contributions

from clusters of spins [38, 39, 42]. We use the package made available by Barton https://github.

com/johnbarton/ACE. The implementation consists of first a run of ACE followed by a proper

maximum likelihood refinement (QLS routine), which takes as starting set of fields and cou-

plings the ACE-inferred ones. Different parameters for the ACE and QLS routines can be set

by the user, e.g. γ2, the L2–norm regularization strength for couplings which penalizes spurious

large absolute values induced by undersampling and for which a natural value is γ2 = 1/M (M
being the size of the sample). To help convergence, we have chosen for ACE a higher value

γ2 = 10−2 and θ = 10−5 (this is the threshold at which the algorithm will run then exit, see [39]).

In the further refinement by QLS, we have set mcb, the number of Monte Carlo steps used to

estimate the inference error, to 200000 and γ2 = 1/M. Having full control of the numerical evo-

lution, we have tried to avoid undersampling issues by generating a large number of configura-

tions M = 135000, which leads to γ2� 0.7 × 10−5. For the inference we remove from sequences

the 6 links at the active and allosteric sites as they are always associated to the symbol 1 (always

occupied by a spring), so the number of parameters to infer is N 0c þ N 0cðN
0
c � 1Þ=2 � 81000

with N 0c ¼ Nc � 6 ¼ 402. We have verified that low values of the L2-regularization allow us to

obtain the maximal generative performance compatible with the model (in comparison to

higher regularization). By default the L2 regularization of fields is 0.01 × γ2. In Panel A in

Fig. A of S1 Text, it is shown that the result of the inference is a model perfectly able to repro-

duce the first and second order statistics (as it should by construction) but that fails at repro-

ducing higher order statistics.

For a comparison, we have considered also mean field Direct Coupling Analysis (mfDCA)

[16], derived from a mean-field factorized ansatz for the Boltzmann-Gibbs distribution Eq 3.

Couplings in mfDCA are given by Jij = −(C−1)ij, where Cij = hσi σji − hσiihσji is the covariance

of the MSA (we recall that in each sequence σi = 1 stands for the presence of a spring at link i
and σi = 0 for its absence). Typically C is not invertible due to undersampling, making it neces-

sary to add a pseudocount λ (see [37]). As shown in [59], a pseudocount also helps correct for

the systematic biases introduced by the mean field approximation: for this reason, we have

used a pseudocount λ and chosen its value as λ = 0.5, which allows the best comparison to the

ACE and maximum likelihood results, see Panel B in Fig. A of S1 Text. It is noteworthy that in

this way a computationally cheap technique as mfDCA yields a pattern of top Jij strikingly sim-

ilar to the one of a very accurate inference achieved by the combination of ACE and maximum

likelihood. Therefore mfDCA, while extremely poor as a generative model, exhibits a good

performance at reconstructing the distribution of relevant couplings, as shown in Panel C,

Fig. A in S1 Text.

Mutation costs and generative performance in the inferred Ising model

Costs of double mutations, i.e. joint mutations affecting links i and j, can be computed in the

original model via fitness changes DF ij ¼ F � F ij, where F ij is the fitness after springs in i
and j have been mutated. A double mutation can correspond either to (i) adding two springs

at links i and j (i.e. σi = σj = 1) or removing them (i.e. σi = σj = 0) or to (ii) moving a spring

from link i to link j or viceversa (i.e. σi = 0, σj = 1 or σi = 1, σj = 0). Let us call the former “non-

swap” mutations and the latter “swap” mutations. Swap mutations conserve the total amount

of springs (360), thus the overall average coordination hzi = 5, and are the ones performed in

the in silico evolution. As optimal allosteric configurations maximize fitness with respect to
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this type of mutations, we stick to them also when we compare mutation costs in terms of fit-

ness and inferred energy (see Fig 3C): we define “effective” single mutation costs DF i and DE i

by taking, for each link, the swap with a link in the external region (more rigid, as visible in e.g.

Fig. B of S1 Text), where mutations are completely neutral, thus whose cost would be roughly

zero.

For the generative step, we implement a Monte Carlo sampling which relocates springs

from an occupied to an unoccupied link, i.e. which follows swap-type dynamics as for the

original numerical evolution. This allows us to select, from the inferred model, sequences that

are structurally as close as possible to the initial data, i.e. with the same average coordination

hzi = 5, to make a consistent comparison with them. We have verified that even relaxing this

constraint in the sampling leads to sequences endowed with higher internal variability yet

lying in the same range on fitness (hence the inferred model incorporates rather well the infor-

mation on the fixed amount of springs). The parameters of the Ising model are inferred in

such a way as to match single-site occupancy, which reflects the spatial pattern of coordination

in the allosteric networks. In Fig. B of S1 Text we show that generated sequences, despite hav-

ing lower fitness, reproduce successfully this property as they should.

Comparison with conservation. Single-site frequency in protein alignments, informative

about local conservation, is a standard measure of mutation costs at a certain position [60] and

can be fit by an independent-site Ising model. Energy (Eq 4) in this case contains only field

terms and, once these are inferred from link occupancies hσii, one can compute energy

changes DE i upon point mutations. The energy cost of a mutation in an independent-site

model is then DE i ¼ ð2si � 1Þhi, where hi ¼ logðhsiið1 � �sÞ=�sð1 � hsiiÞÞ describes how

the observed occupancy of a link i, hσii, is biased away from the average occupancy

�s ¼ 360=408 ¼ 0:88. In average DE i gives also a measure of conservation of link i as it is 0

when hsii ¼ �s and it increases the more link i tends to be either occupied or vacant. The

improvement achieved by the pairwise model over this conservation-based measure of muta-

tion costs is extremely significant (see inset of Fig 3C). On the one hand, conservation is a

purely local measure—it takes into account how a particular position is crucial to the propaga-

tion of the allosteric response. Including pairwise couplings proves to be crucial to capture the

context-dependence of mutation costs, and thus must be included for their quantitative pre-

diction. On the other hand, the degree itself of structural conservation is rather low due to the

heterogeneity of the shear-design MSA: the conformation, precise location and size of the

shear path, hence the role of each link, can vary from architecture to architecture, leading to

low structural conservation (with peaks only around the active and allosteric site). Conserva-

tion is found much higher within one set of dynamically related solutions (as for Fig 2A), cor-

responding to one realization of the shear design among the many included in the MSA (see in

particular Fig. 4G in [30]).

Supporting information

S1 Text. Supporting information for “Direct coupling analysis of epistasis in allosteric

materials”.

(PDF)
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