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ABSTRACT
Objectives There is a need in clinical genomics for 
systems that assist in clinical diagnosis, analysis of 
genomic information and periodic reanalysis of results, 
and can use information from the electronic health record 
to do so. Such systems should be built using the concepts 
of human- centred design, fit within clinical workflows and 
provide solutions to priority problems.
Methods We adapted a commercially available diagnostic 
decision support system (DDSS) to use extracted 
findings from a patient record and combine them with 
genomic variant information in the DDSS interface. Three 
representative patient cases were created in a simulated 
clinical environment for user testing. A semistructured 
interview guide was created to illuminate factors relevant 
to human factors in CDS design and organisational 
implementation.
Results Six individuals completed the user testing 
process. Tester responses were positive and noted good fit 
with real- world clinical genetics workflow. Technical issues 
related to interface, interaction and design were minor 
and fixable. Testers suggested solving issues related to 
terminology and usability through training and infobuttons. 
Time savings was estimated at 30%–50% and additional 
uses such as in- house clinical variant analysis were 
suggested for increase fit with workflow and to further 
address priority problems.
Conclusion This study provides preliminary evidence for 
usability, workflow fit, acceptability and implementation 
potential of a modified DDSS that includes machine- 
assisted chart review. Continued development and 
testing using principles from human- centred design 
and implementation science are necessary to improve 
technical functionality and acceptability for multiple 
stakeholders and organisational implementation potential 
to improve the genomic diagnosis process.

INTRODUCTION
Clinical decision support (CDS) integrated 
into electronic health records (EHRs) has 
long been considered a promising way to 
improve patient outcomes and decrease inef-
ficiencies.1–4 It is also recognised that CDS 

must be designed with the user in mind, 
fitting the concepts of human- centred design 
with computer interfaces at the individual 
clinician level.1 5 Design alone, however, is 
insufficient to facilitate implementation. For 
CDS to impact care and patient outcomes, it 
must fit within clinician workflow and provide 
a solution to a priority problem for the clini-
cian and the healthcare system.4 6–8

Diagnostic decision support systems 
(DDSSs) are a key type of CDS needed in 
genomics to supplement a shortage of 

Summary

What is already known?
 ► There is a need in clinical genomics for tools that 
assist in analysis of genomic information and can 
do so using information from the electronic health 
record.

 ► Such tools should be easy to use, fit within clinical 
workflows, and provide solutions to priority prob-
lems as defined by clinician end- users.

 ► Natural language processing (NLP) is a useful tool to 
read patient records and extract findings.

What does this paper add?
 ► We demonstrated the use of Human- centred design 
and implementation science principles in a sim-
ulated environment for assessment of a new ver-
sion of a decision support tool prior to large- scale 
implementation.

 ► This study provides preliminary evidence that a 
clinical decision support tool with machine- assisted 
chart review is acceptable to clinical end- users, fits 
within the clinical workflow, and addresses per-
ceived needs within the differential diagnosis pro-
cess across all Mendelian genetic disorders.

 ► Terminology codes for diagnostic decision support 
systems should have levels of granularity tuned 
to the sensitivity and specificity appropriate to its 
various functions, for example, NLP versus chart 
documentation.
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trained clinicians and address the inherent complexity 
of genomic diagnosis.9 10 This complexity arises from 
the heterogeneous nature of genetic diseases, the vari-
able expression in patients and the degree of overlap 
in findings (ie, signs, symptoms and test results) among 
genetic conditions, sometimes differentiated only by 
onset age of individual findings.11 Position statements 
and a systematic review note two new functions needed 
for DDSSs in genomics: (1) a cost- effective, regular 
approach to re- evaluation of patient cases in light of 
new findings or genetic knowledge, when testing does 
not immediately yield a diagnosis; and (2) developing 
machine- assisted chart review.12 13 Most genomic patient 
records are extensive with input from by multiple clini-
cians, such that manual review is prohibitively time- 
consuming; resulting in added costs from repeated or 
unnecessary tests and increased risk of missed informa-
tion that could have facilitated timely diagnosis. Because 
most of the relevant information is in unstructured 
clinical notes, approaches such as natural language 
processing (NLP) are needed to automate and assist 
this manual process.

To address both re- evaluation and automation, we 
adapted a commercially available DDSS already capable 
of incorporating genomic sequencing data to perform 
automated chart review and present the information 
to a clinician in the form of findings obtained through 
structured data mining and NLP of an EHR. We then 
created clinical case vignettes to simulate the real- 
world clinical diagnostic workflow for user testing. The 
goal was to provide preliminary evidence of usability, 
perceived fit with clinical need and workflow, and 
potential for implementation into the real- world clin-
ical environment.

METHODS
Setting
Development of the clinical case vignettes, simulated 
EHR environment, and user testing were conducted at 
Geisinger, a healthcare system in rural Pennsylvania.

Adapting a DDSS for machine-assisted chart review of clinical 
findings
We adapted SimulConsult’s Genome- Phenome Analyzer, 
as it is the one DDSS that allows for detailed analysis of 
clinical information, including pertinent negatives, find-
ings onset information and frequency and treatability of 
diseases. It has also been shown to be accurate and helpful 
in clinical diagnosis, including interpreting genomic 
results.14–16 Described in detail elsewhere,11 14 15 Simul-
Consult correlates annotated variant call files (VCFs) with 
patient- specific clinical and family history information; 
and the underlying algorithms include age- dependent 
Bayesian pattern- matching and computational metrics 
of usefulness and pertinence. SimulConsult also gener-
ates a Patient Summary for saving interim patient find-
ings and a customisable genomic return of results (RoR) 
report shown in previous research to be effective for 
facilitating standardised communication for patients and 
referring clinicians.17–20 When clinicians enter findings, 
the DDSS returns a ranked list of candidate diseases and 
suggestions of other findings to check, ranked by useful-
ness in narrowing the differential diagnosis in a way that 
accounts for cost and treatability; thus facilitating the iter-
ative approach of information gathering in diagnosis.21 22 
For each finding, th presence (with onset age) or absence 
can be specified (figure 1).

We used the Logica platform to create a simulated EHR 
and the cTAKES tool with the Unified Medical Language 

Figure 1 SimulConsult main interface showing ranked list of candidate diseases and guidance for entering finding presence 
(or absence) with onset age.
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System (UMLS) module23 for NLP of patient notes. 
Steps in adaption included (1) mapping DDSS find-
ings to Human Phenotype Ontology (HPO) and UMLS 
codes, including creation of hundreds of new HPO terms 
resulting in creation of new UMLS concepts, (2) using 
results from NLP analysis of EHR notes to flag ‘Mentions’ 
of the findings used by the DDSS and (3) augmenting 
the DDSS’s interface to present the flagged findings with 
contextual information needed to clinically assess the 
information (table 1).

The architecture of the resulting prototype, called the 
Genotype- Phenotype Archiving and Communication 
System with SimulConsult (GPACSS), is shown in figure 2.

Clinician review of the flagged findings created from 
the automated findings search using NLP is facilitated 
through flag icons (figure 3). Through this ‘machine- 
assisted’ chart review, the clinician reviews flagged find-
ings and decides whether and how to specify presence 
(with a particular onset) or absence (or omit) as shown 
in figure 1. The mapping of DDSS findings to multiple 

Table 1 Adaptations made to existing DDSS to create GPACSS

Adaptation Component Approach

Overall design SMART- on- FHIR enabled 
EHR

 ► Logica platform (https://www.logicahalth.org/; formerly Health Services 
Platform Consortium)

Archive  ► Custom archive stores key files
 ► RESTful interface.

Coordination and 
communication

User interface  ► SMART- on- FHIR application (GPACSS FHIR app client, figure 2).
 ► Interface allows user access to DDSS directly from patient record.
 ► Choice to launch with no findings or with findings previously saved.

Coordination  ► GPACSS ‘Coordinator’ application programming interface (API) saves the NLP 
output

 ► Matching of UMLS codes in NLP output to DDSS findings
 ► Send the matched flagged findings to the DDSS at launch (figure 2)

Natural language 
processing

Extraction of findings  ► NLP: open source Apache cTAKES V.4.0.23

 ► cTAKES default modules to handle sentence boundary detection, tokenisation, 
normalisation, tagging parts of speech, recognising named entities and 
negation.

 ► cTAKES pretrained module to recognise UMLS concepts in text.

Mapping in DDSS  ► DDSS findings mapped within the DDSS to one or more UMLS and Human 
Phenotype Ontology codes.

 ► Mapping strategy minimises false negatives in term capture while tolerating 
false positives (identifying information unrelated or irrelevant to the diagnostic 
process).

Display in DDSS  ► Findings identified by NLP display a flag icon.
 ► Clicking the flag enables viewing of metadata.

DDSS, diagnostic decision support system; EHR, electronic health record; GPACSS, Genotype- Phenotype Archiving and 
Communication System with SimulConsult; UMLS, Unified Medical Language System.

Figure 2 Architecture of the Genotype- Phenotype Archiving and Communication System with SimulConsult (GPACSS). The 
key components are the coordination/archiving system, the DDSS and the NLP. DDSS, diagnostic decision support system; 
EHR, electronic health record; NLP, natural language processing.

https://www.logicahalth.org/
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UMLS concepts was chosen to minimise false negatives 
in concept identification; relying on the user decisions 
about findings and the limited set of UMLS concepts to 
minimise false positives (table 2).

Creating simulated cases
Three cases of increasing complexity were created using 
real but deidentified clinical phenotypic and time course 
data from medical notes of Geisinger patients with known 
genetic diagnoses (online supplemental table 1). Cases 
were selected for conditions of varying complexity yet 
relatively common in the context of rare disease and 

where diagnosis might be difficult using phenotype 
alone. Simulated cases were created by research assis-
tants trained in capturing information from the EHR, 
supervised by a practicing Geisinger clinician certified 
in genetics and informatics. The three final cases were 
reviewed by a second Geisinger physician certified in 
genetics and informatics prior to user testing.

Case vignettes for the test scenarios assumed that some 
patient characterisation was previously noted by the clini-
cian and genomic results were now available and could 
be interpreted with clinical information available in the 

Figure 3 Flagged findings with EHR text display for DDSS. A finding having a flag icon indicates that information was found in 
the EHR. Clicking the flag shows the various mentions of the flagged finding. DDSS, diagnostic decision support system; EHR, 
electronic health record.

Table 2 Solutions for mnimising false positives and negatives identified through NLP and DDSS by clinician review

False negative/positive problem Solution included in GPACSS

Minimising false negatives on NLP flagging of 
findings

 ► Include parent and child codes (eg, finding of intellectual disability in DDSS 
includes codes for developmental delay and particular types of intellectual 
disability).

Minimising false positives through the DDSS 
Usefulness metric

 ► Use DDSS usefulness algorithm30 to display flagged findings; thus 
prioritising data of greater relevance and de- prioritising data of low 
relevance for clinician review.

Minimising false positives through clinician 
verification

 ► Use flag icon to indicate findings identified through NLP (figure 3).
 ► Clinician clicks the flag icon to display information needed to assess 
reliability, presence or absence, and onset.

 ► Information displayed from the EHR includes date of chart note, observer 
identity and three sentences of chart note (sentence with finding plus 
preceding and subsequent sentence).

DDSS, diagnostic decision support system; EHR, electronic health record; GPACSS, Genotype- Phenotype Archiving and Communication 
System with SimulConsult; NLP, natural language processing.

https://dx.doi.org/10.1136/bmjhci-2021-100331
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EHR (online supplemental figure A). For the three cases, 
a total of five findings were used as initial information 
before the genomic results, with three (one per case) 
being flagged findings identified through NLP. This 
created a ‘near live’24 experience within the simulated 
EHR for user testing while limiting the expense and time 
of EHR integration during this preliminary phase.

User testing methods
Participants
GPACSS is both a DDSS and communication tool to facil-
itate utilisation of genomic and phenotypic information 
available in the EHR by all clinicians to improve patient 
care within a healthcare system. Therefore, we purpo-
sively selected primary testers from Geisinger staff repre-
sentative of current end users of the genome- phenome 
analyzer. Because a limited number of individuals at 
Geisinger regularly engage in using genomic information 
for differential diagnosis, we followed guidance recom-
mending 3–5 evaluators for preliminary usability testing.25 
A group of secondary testers (inclusive of a pilot tester) 
with other roles in the genetic testing and interpretation 
process were purposively selected for potential broader 
utilisation in the healthcare system.

Testing sessions
At the beginning of each session, testers viewed a 4 min 
training video (https:// simulconsult. com/ videogpacss) 
beginning from saved patient findings, then importing a 
VCF, and review of flagged findings to make a diagnosis 
and create a customisable patient- friendly RoR report.

A semistructured interview guide (online supplemental 
file 3) was created to elucidate factors relevant to human 
factors in CDS design (information, interaction, inter-
face)1 5 26 and organisational implementation (accept-
ability, perceived need, feasibility, workflow fit).27 We 
used a think aloud24 approach where testers were asked 
to verbalise thoughts while using the GPACSS prototype 
with the interviewer asking questions as needed and at 
key points in the testing to create a cognitive walkthrough 
with heuristic evaluation.25 28 Testers were invited via 
direct contact from study staff and provided a description 
of the study. At the beginning of each session, study staff 
reviewed a study information sheet and obtained verbal 
consent to participate. Test sessions lasted 2 hours and 
testers received a US$100 gift card.

An experienced interviewer (AKR) and observer (MAW) 
from Geisinger worked with each tester to imagine using 
GPACSS for each test scenario. The interview and process 
were piloted with a cancer genetic counsellor reviewing 
one test vignette. At the end of the session, testers were 
asked a series of study- specific questions using a 0–10 
rating scale (hard to easy) to rate the overall usefulness, 
satisfaction, and navigation. Transcripts were created 
from the audio portion of each session and the computer 
screen was video recorded to capture tester movement 
through GPACSS.

Analysis
Two Geisinger coders (MAW and JCR) viewed each user 
test session recording, read transcripts and created a 
codebook of themes identified across sessions. Tran-
scripts were coded and the corresponding quotes were 
organised into a matrix using the three categories of CDS 
components (information, interface and interaction) 
identified by Miller et al,1 and categories of acceptability, 
perceived need, feasibility and workflow fit according 
to Rogers’ Diffusion of Innovations in organisations 
constructs.27 Coders analysed transcripts independently 
and reviewed for agreement with discrepancies resolved 
by the primary author.

RESULTS
Three clinicians currently using genomic information 
to diagnose patients participated as primary testers: a 
paediatric geneticist (orders exomes daily), internal 
medicine physician (orders 4–5 exomes per month) 
and a paediatric genetic counsellor. Three additional 
clinicians participated as secondary testers; representing 
broader usability within the healthcare system: the pilot 
tester (cancer genetic counsellor), a laboratory director 
(conducts variant interpretation) and a laboratory 
genetic counsellor (conducts variant analysis).

GPACSS usability: human factors of CDS design
Overall impression of the prototype was positive. Testers 
raised general issues relevant to human factors in CDS 
design.1 5

Interface
Testers liked the flagged findings (figure 3), the contex-
tual information for each mention in the EHR, and the 
rank ordering of flagged findings by usefulness. The visu-
alisation of the evolving differential diagnosis and the 
automated RoR report for sharing with patients and refer-
ring clinicians, including the ability to save and access this 
report from the EHR were also appreciated.

The interface was noted to be complex, but testers 
stated this was expected due to the inherent complexity 
of genetic diagnosis and that they anticipated a learning 
curve to develop proficiency. Placement, positioning and 
the multiple presentation layers (text and graphics in the 
interface)1 were well liked. In particular, the ‘Assess diag-
nosis’ display was noted as valuable because it made trans-
parent the logic used by the DDSS in comparing patient 
findings to information about the disease. Of note, each 
tester interpreted differently the meaning of the graph-
ical bars and shading, however, this did not hinder their 
ability to make the diagnosis, and the bar itself was appre-
ciated as a design feature. To help with interpretation, 
more labelling was suggested (table 3).

Interaction
Testers were thoughtful and purposeful using GPACSS. 
Notably, in case 3 (the most complex case), one primary 

https://dx.doi.org/10.1136/bmjhci-2021-100331
https://simulconsult.com/videogpacss
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Table 3 GPACSS usability: human factors of CDS design and Organisational implementation factors through tester 
Experiences*

Human factors of 
CDS design

Interface ‘More training would be good… unless I was doing it all the time for all of my patients, every 
step, I might not realise that some of the features are available…’(Tester 3)

‘These bars are different lengths, so I assume it’s having something to do with 
frequencies… so I'm not sure why this part is purple…if there were something [on the 
assess diagnosis tab] that said this is 100% over here and this is 0% over here, that would 
kind of help, if I knew that that was the case… I'm not sure what these other colors are 
referring to.’(Tester 5)

Interaction ‘To me, the green bar in it shows me they are confident that this genetic variant aligns with 
the phenotypic markers that we have identified. I don't necessarily know how far the bars 
will tell me they're confidence in pathogenic vs VUS.’(Tester 3)

‘It’s going to take a lot to learn. A lot of clicking back and forth and it’s not super intuitive 
but I get it. So, the report gets generated and that becomes part of the record. I can see 
how that can be helpful because it has now particular phenotypical diagnosis and even 
genetic finding’(Tester 2)

Information ‘The term pertinent gene zygosity is not something I would normally make part of my 
lexicon…I have a general sense of the term zygosity but I can't remember the last ten years 
using that term in any of my discussions in clinical care or genetics in some of the cases I 
found what’s their zygosity’ (Tester 2)

‘But the variant severity score doesn't mean anything to me personally. To me it’s easier 
to know, if you verify know the true classification they are giving it… Pathogenic, likely 
pathogenic VUS benign.’ (Tester 3)

‘I think this one is nice [the ‘Mention’ displayed in a flagged finding]. Whenever someone 
says it had been noticed earlier by, it’s nice when someone is talking about their niece or 
nephew, or like a proband cousin, they are saying they had myopia and I remember them 
having glasses before they were 5 years old.’ (Tester 3)

Organisational 
Implementation 
Factors

Acceptability ‘I would use it most of the time. To me, this is the frontier of genomic medicine and I look at 
my role as not only taking care of a patient but figuring out how we make genomics part of 
everyday medical practice. The useful things in the chart, genetics people can now get to 
right away’.(Tester 2)

‘…Typing them up, writing the summary [of all the patient findings in the chart]. If I could 
see what’s been flagged in the chart, see what has not actively been flagged and decide do 
I need to go back and look at it or not. It would save my time’ (Tester 3)

‘I think the interface is really good, in that you have that ability to explore those variants that 
may or may not make it on the reports that we get now, so you can drill deeper if you want.
(Tester 5)

Perceived 
Need

‘…The report is a great idea for highlighting why you think it’s [the care instructions] 
important, [in] a standard format… The average primary care physician that gets the genetic 
testing reports, says I don't know what this means at all. I think this [the Prognosis Table] is 
a step towards making it more understandable.’ (Tester 2)

‘Everything’s there [in the chart] and the question is how easy is it to find. I'm sure if you're 
a malpractice lawyer you get very good at pulling stuff out of these charts and asking why 
didn't you see that. Yet I can't look at everything.’ (Tester 2)

‘This is stuff that you are doing anyway… you could make your note a lot shorter and just 
refer to that document [the automated Summary] … I like the idea that you can explore. 
Clinical genetics now is limited on time.’ (Tester 5)

Workflow Fit ‘It’s nice because it helps guide me… it’s very easier for me to realize that Prader–Willi is 
associated with narcolepsy…’(Tester 3)

‘I think the nice part is I don't have to go searching myself to find all the signs and 
symptoms associated with it and potentially miss something, that I may not know is a less 
common finding or feature of the condition. That actually could be beneficial for a provider 
or for us to give to the testing lab, to say these are all symptoms that we see, and then 
analyzing the data’ (Tester 3)

*Comments from primary user- testers only (testers experienced with differential diagnosis of genetic conditions through sequencing): n=3; 
paediatric genetic counsellor, paediatric geneticist, internist ordering 4–5 exomes in the past month.
CDS, clinical decision support; GPACSS, Genotype- Phenotype Archiving and Communication System with SimulConsult.
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tester did not immediately choose the top diagnosis 
offered by GPACSS. Supported by the data displayed, the 
tester indicated that to make a definitive diagnosis they 
would next evaluate for the second- ranked disease—as 
that condition had a test that was easy and accurate and 
the condition was also more treatable—indicating utilisa-
tion of the DDSS as intended and consistent with clinical 
diagnostic decision making.

Testers initially expressed concern around ‘too many 
clicks’ and ‘click fatigue’ but noted as they progressed 
through the cases that the clicking was unavoidable and 
necessary. For example, they saw value in taking the time 
to correctly specify onset information (which requires 
clicking and cognitive load in the DDSS), as this is part of 
the genetic diagnostic process. ‘Cognitive Load’ in DDSS 
testing refers to additional thinking required to interact 
with the tool, and the general recommendation is to 
minimise this in CDS design.1 Testers who commented on 
the cognitive load required to review flagged findings and 
choose age of onset noted the cognitive load as similar to 
completing this task without GPACSS.

Information
Testers appreciated resources such as the hover feature 
that revealed synonyms to findings and requested even 
more hovers and infobuttons. Confusion over some 
terminology occurred, notably ‘zygosity’ and ‘severity 
score,’ when reviewing the genomic variants; as only some 
testers located the explanatory resource for these terms.

The fact that the EHR ‘Mentions’ displayed in flagged 
findings were sometimes triggered by parent or by child 
concepts was noticed by all testers, and some stated 
the findings used in the DDSS were not as granular as 
they were expecting. Regardless, testers recognised and 
emphasised the importance of being able to review the 
‘Mention’ information from the EHR and manually 
adjust for any false positives and false negatives from the 
NLP process.

GPACSS usability: organisational implementation factors
Acceptability
For the primary testers, satisfaction averaged 8.5 out of 
10 (range 8–9.5) and navigation ease averaged 8 out of 
10 (range 7.5–9). All three felt GPACSS would save time 
throughout the clinical process, with one primary tester 
estimating it at 30%–50%. Specific value in time saved was 
noted for chart review by all testers.

Perceived need
The RoR report and detailed prognosis table20 generated 
in each scenario was highly valued for being standardised 
and for its ability to communicate complex genetic infor-
mation to patients and other clinicians (table 3). The RoR 
report was also noted as an improvement over current 
laboratory reports; with one tester stating it was ‘where 
the most utility would be’(Tester 4).

Testers exhibited learning and familiarity with 
GPACSS as they progressed through the testing session; 

appreciating the DDSS assistance as each vignette 
increased in complexity; noting ‘It takes it [clinical diag-
nosis and diagnostic thinking] to a higher level’. [Tester 
2]. Primary testers expressed readiness to adopt the 
tool in clinical practice; and one (paediatric geneticist) 
suggested GPACSS could also serve as a differential diag-
nosis training tool for medical students and residents in 
their clinic.

Two secondary testers (lab director and variant analyst) 
expressed enthusiasm that GPACSS could fill a need for 
in- house sequencing laboratories because full EHR data 
would be available during sequence interpretation. These 
testers also hypothesised that the ability to periodically 
re- analyse an existing VCF in minutes using GPACSS 
would improve the diagnosis rate over time.

Workflow fit
The three primary testers noted that the GPACSS process 
as tested fit with their clinical workflow diagnosing 
genetic conditions. As an added benefit, they described 
how using GPACSS also helped them learn about diseases 
and associated findings with which they were less familiar 
(table 3).

The three secondary testers questioned GPACSS fit 
with a clinical genetic testing workflow in which only a 
report with variants labelled as to pathogenicity and asso-
ciation with a condition (implying a clinical diagnosis) is 
received from an external lab. However, they did iden-
tify value and possible workflow fit for situations with 
uncertainty as to the diagnosis after sequencing or where 
flagged findings and the usefulness ranking would allow 
clinicians to review the EHR with flagged findings in light 
of the genomic information to make the diagnosis.

DISCUSSION
We provide preliminary evidence through user testing in 
a simulated real- world clinical workflow that the combi-
nation of NLP with a CDS tool optimised to support the 
clinical process of differential diagnosis may address the 
needs of those involved in this complex task. Such assess-
ment of fit is critical if CDS is to fulfil the promise of stan-
dardising and improving care.1 4 5 8

Technical issues related to the interface and interac-
tion of CDS design were minor and fixable; as were issues 
with design layout. Despite initial remarks on the number 
of clicks and cognitive load, testers acknowledged these 
as necessary to the genetic diagnosis process and no 
different than without the DDSS. Other issues related 
to terminology and usability could be solved and evalu-
ated in future usability studies through a combination 
of training, added infobuttons and experience using 
GPACSS. Some of the technical gaps noted and addi-
tions requested by testers are addressed within GPACSS, 
however, the 4 min training video was created to provide 
enough instruction only to facilitate user testing. These 
results, therefore, provide direction for training and 
ongoing reference materials for future implementation.
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For CDS to be acceptable and implemented by clini-
cians and organisations, it must fit with the real- world 
workflow and must present a solution to a perceived 
need.5 27 All primary testers identified ways GPACSS 
added such value and fit and noted ways GPACSS filled 
multiple needs in their diagnostic workflow. Workflow 
fit was highest among primary testers but opportunities 
for workflow fit were described by all testers. GPACSS was 
also noted as acceptable for implementation by all testers 
regardless of individual issues identified and suggestions 
for technical improvements.

LIMITATIONS
To facilitate user testing of GPACSS in the context of clin-
ical workflow prior to full integration and implementa-
tion, simulations of the real- world were required. Because 
this study used the Logica EHR simulation, benefits or 
drawbacks of GPACSS in a production EHR could not 
be directly observed. Also, full annotations for the causal 
variants were not included in the variant table for the 
simulated patients limiting full assessment of the value 
of the DDSS in variant interpretation. This impacted the 
understanding of the ‘severity score’ by all testers, as the 
annotation information that would have been provided 
for a real patient was not included for the simulated 
cases. Finally, the generic cTAKES NLP using the UMLS 
concepts found only 20 of the 30 (67%) pertinent posi-
tive concepts within the test cases that a paediatric neurol-
ogist (MMS) identified manually. This was sufficient for 
GPACSS to generate the correct differential diagnosis for 
user testing, as further enrichment of the generic NLP 
to improve detection and avoid false positives was out of 
scope for this preliminary user testing.29 Subsequent auto-
mated search for UMLS terms for flagging and addition 
of a separate stage of text search enrichment for terms 
missed by the NLP such as ‘tall’ improved NLP yield to 30 
of 30 (100%).

This simulated EHR and user testing were a necessary 
first step and provide data to guide implementation of 
GPACSS. NLP improvements and additional beta testing 
within an actual EHR, in real- world clinical workflows, 
with real patient results and in real- world clinical work-
flows will be necessary to fully assess individual user- level 
and organisational- level facilitators and barriers to use, 
implementation and impact on clinical care. Such studies 
are currently in progress.

CONCLUSIONS
This study provides preliminary evidence for the usability, 
workflow fit, acceptability and implementation potential 
of a DDSS that includes machine- assisted chart review. 
Overall, responses suggest the GPACSS prototype is 
usable based on technical CDS and human- centred 
design criteria, addresses perceived clinical need, and has 
good fit within the real- world clinical workflow of genetic 
testing and diagnosis. Further development is needed to 

improve usability for multiple clinical stakeholders and 
organisational implementation.
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