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Abstract 

Physiological roles of Cl−, a major anion in the body, are not well known compared with those of cations. This review 
article introduces: (1) roles of Cl− in bodily and cellular functions; (2) the range of cytosolic Cl− concentration ([Cl−]c); 
(3) whether [Cl−]c could change with cell volume change under an isosmotic condition; (4) whether [Cl−]c could 
change under conditions where multiple Cl− transporters and channels contribute to Cl− influx and efflux in an isos-
motic state; (5) whether the change in [Cl−]c could be large enough to act as signals; (6) effects of Cl− on cytoskel-
etal tubulin polymerization through inhibition of GTPase activity and tubulin polymerization-dependent biological 
activity; (7) roles of cytosolic Cl− in cell proliferation; (8) Cl−-regulatory mechanisms of ciliary motility; (9) roles of Cl− 
in sweet/umami taste receptors; (10) Cl−-regulatory mechanisms of with-no-lysine kinase (WNK); (11) roles of Cl− 
in regulation of epithelial Na+ transport; (12) relationship between roles of Cl− and H+ in body functions.
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Introduction
The ionic environment in the body plays an important 
role in bodily and cellular function [1–10]. The physio-
logical role of cations has been studied in detail; i.e., Na+, 
K+, Ca2+, Mg2+ and H+ are well known to contribute to 
cellular functions such as generation of action potential, 
maintenance of resting membrane potential and control 
of enzyme activity. On the one hand, the most well-rec-
ognized role of Cl−, the major anion in the body, is as a 
counter ion to the cation for maintenance of electroneu-
trality, but other physiological significance of Cl− is cur-
rently only marginally recognized.

Active Cl− transport such as Na+-K+-2Cl− transporter 
(NKCC) and K+-Cl− transporter (KCC) is involved in the 
maintenance of the membrane potential [1–5]. NKCC 
contributes to water secretion into the luminal side of 
epithelial tissues driven by elevating luminal osmolarity 
via active transcellular Cl− secretion in concert with Cl− 
channels followed by the paracellular Na+ secretion [11, 
12]. One of the most famous diseases based on impaired 
water secretion due to dysfunction of Cl− channels is 
cystic fibrosis (CF) in the lung, the liver, sinus, small and 
large intestines, pancreatic and hepatobiliary ducts, and 
male reproductive tracts [13–18]. CF is a genetic disease 
caused by mutations in cystic fibrosis transmembrane 
conductance regulator (CFTR), the cloning of which was 
performed in 1989 [19]. The main cause of death in CF 
patients is pulmonary infection due to drying of the lung 
cavity as a result from insufficient water secretion caused 
by dysfunction of certain Cl− channels. A Cl− channel 
was cloned as cystic fibrosis transmembrane conductance 
regulator (CFTR) [19], and CFTR has been characterized 
by many researchers [20]. Furthermore, the recently pro-
posed role of CFTR as a modulator of immune tolerance 
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may explain the presence of persistent portal vein inflam-
mation leading to fibrosis, and the enterohepatic axis 
would also be involved in the presentation and progres-
sion of the disease [18]. In addition, Cl− also plays physi-
ological roles in regulation of activities of enzymes, gene 
expression, ion channels, ion transporters, ion pumps, 
ion environments, infection prevention, etc.; e.g., GTPase 
activity [21], neurite elongation [22], resistance against 
anticancer drugs [23–25], cell death [26, 27], regulation 
of cell volume [28], autophagy [29, 30], cell prolifera-
tion [31], ciliary movements [32–34], sweet/umami taste 
sensing at sweet/umami taste receptors [35, 36], WNK 
activity [37], epithelial Na+ transport [38, 39], mRNA 
expression of epithelial Na+ channel (ENaC) [40–43], the 
Na+,K+-pump activity [44], and pH homeostasis cooper-
ating with bicarbonate [45–47].

This review will introduce physiological roles of Cl−, 
molecular mechanisms of Cl− actions on a variety of 
physiological phenomena, and possibilities that cytosolic 
Cl− may act as intracellular signals.

Requirements for cytosolic Cl− to function 
as intracellular signals
For cytosolic Cl− to function as intracellular signals, Cl− 
must cause conformational changes in proteins, such 
as enzymes, which regulate intracellular functions. For 
this to happen, the cytosolic Cl− concentration ([Cl−]c) 
must change or the binding affinity of Cl− to these pro-
teins must change. Since only a limited number of studies 
have been conducted so far to precisely investigate how 
the binding affinity of Cl− to various proteins is altered 
by any factors, this review article will primarily address 
whether [Cl−]c can in fact be altered and, if so, to what 
extent [Cl−]c must be altered for cytosolic Cl− to act as 
intracellular signals.

How much is [Cl−]c?
The [Cl−]c in gastric and respiratory epithelial cells is 
reported to be about 50  mM [48–50]. Several studies 
have also reported that [Cl−]c in the paranasal olfactory 
system (plough nose) cells are very variable, 5 ~ 80  mM 
[51–60]. [Cl−]c is known to be higher in the dendrites of 
neurons than in the cell bodies [51, 61]. Further, Engels 
et  al. [60] has reported that under both control and 
chemical ischemia conditions, [Cl−]c values markedly 
differ in various subcellular regions and cell types. Their 
study [60] also indicates that the [Cl−]c in astrocytes of 
the hippocampal cornu ammonis region 1 is 21  mM, 
which is lower than that (28 mM) in dentate gyrus, but 
higher than that (14  mM) in neocortical astrocytes. In 
addition, the [Cl−]c in radial glia-like cells (20  mM) is 
comparable to the value (21  mM) of astrocytes in the 
hippocampal cornu ammonis region 1 [60]. These [Cl−]c 

values (14 ~ 28  mM) [60] are considerably much lower 
than 35  mM [Cl−]c determined in cerebellar Bergmann 
glia cells [59]. The studies [48, 49, 51–61] indicate that 
[Cl−]c values are very valuable depending on types and 
regions of cells. One of the most important points is 
whether [Cl−]c changes under an isosmotic condition; i.e., 
it should be considered whether [Cl−]c changes under an 
isosmotic condition due to the following reason. As Cl− 
moves, cations such as Na+ and K+ also move in the same 
direction as Cl− to maintain electrical neutrality, causing 
osmolarity elevation. This osmolarity elevation causes 
water movement in the same direction. Therefore, the 
increase in [Cl−]c due to Cl− movement is attenuated by 
the water movement. Thus, the change in [Cl−]c due to 
Cl− movement under an isosmotic condition should be 
carefully evaluated.

Does [Cl−]c change with cell volume change 
under an isosmotic condition?
Changes in [Cl−]c are discussed based on the relation-
ship between water movement and cell volume associ-
ated with Cl− movement. One of the requirements for 
cytosolic Cl− to act as an intracellular signal is a change 
in [Cl−]c. It is recognized that unlike cytosolic Ca2+ 
concentration ([Ca2+]c), [Cl−]c may not change much. 
Furthermore, it is easy to imagine that changes in the 
extracellular fluid osmolarity would induce water move-
ment in and out of the cell, which would change [Cl−]c. 
On the other hand, can the [Cl−]c change under an isos-
motic condition of extracellular fluids? Cytosolic K+ 
concentration ([K+]c) generally does not change regard-
less of the amount of K+ efflux (or influx) in a state in the 
isosmotic state. This is due to the efflux (influx) of ani-
ons (generally Cl−) with an equivalent negative charge to 
maintain cytosolic electroneutrality at cationic K+ move-
ment, followed by water movement to compensate for 
osmotic changes caused by these ion (K+ and Cl−) move-
ments (Fig. 1). As a result, no change in [K+]c occurs. On 
the other hand, [Cl−]c changes under these circumstances 
unlike [K+]c (Fig. 1). In the case of anions, [Cl−]c is kept 
lower than [K+]c due to the presence of many anions 
(various proteins) in the cell that cannot pass through 
the plasma membrane (membrane-impermeable anions 
such as big molecule proteins: so-called fixed charges) 
(Fig.  1). The presence of many membrane-impermeable 
anions (proteins) causes [Cl−]c to change in response to 
K+ efflux (or influx) [1] (Fig.  1). This is because even if 
[Cl−]c is lower than [K+]c, Cl− efflux (or influx) occurs 
in the same amount as the K+ efflux (or influx) in order 
to maintain cytosolic electroneutrality, since Cl− is the 
major membrane-permeable anion in the cytosolic space 
under the condition that large amounts of membrane-
impermeable anions (fixed charges) are present (Fig. 1).
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Does [Cl−]c changes under the condition 
that multiple Cl− transporters and channels 
contribute to Cl− influx and efflux in an isosmotic 
state?
Cl− transport across the plasma membrane by Cl− 
transporters and channels participates in changes of 
[Cl−]c. Cl− transport can be broadly divided into active 
and passive transport systems. The most well-known 
active Cl− transporters are Na+-K+-2Cl− cotransporter 
(NKCC), Na+-Cl− transporter (NCC), Na+-driven Cl−/

HCO3
− exchanger (NDCBE) and K+-Cl− cotransporter 

(KCC) [62–65]. NKCC and NCC contribute to Cl− 
uptake into cells using electrochemical potential of Na+ 
generated by the Na+,K+-pump (ATPase), while NDCBE 
and KCC, respectively, participate in Cl− extrusion from 
cells using electrochemical potential of Na+ and K+ gen-
erated by the Na+,K+-pump (ATPase).

An increase in NKCC-mediated Cl− influx elevates 
[Cl−]c. The elevated [Cl−]c induces an increase in the 
chemical potential of cytosolic Cl−, which elevates 

Fig. 1  A simple model of correlation between changes in cytosolic Cl− concentration ([Cl−]c) and cell volume under isosmotic conditions. This 
simple model shows contents and concentrations of K+, Cl− and membrane-impermeable fixed negative charges such as proteins, although other 
ions including Na+ and HCO3

− significantly exist in cell. A Cell volume = 100%. Cell contains 150 mmoles/L K+ (150 mM), 45 mmoles/L Cl− 
and 105 mEq/L fixed negative charges. B Cell volume = 80%. When the cell volume reduces to 80% under an isosmotic condition, 20% K+ (30 
mmoles/L) is released from the cytosolic space to the extracellular space; K+ remaining in the cytosolic space is 120 mmoles/L and the cytosolic 
K+ concentration (150 mM) is same as before the cell volume change occurs. On the one hand, when cell volume decreases by 20%, the same 
amount of Cl− (30 mmoles/L) as K+ must be released from the cytosolic space to the extracellular space to keep electroneutrality. This means 
that the cytosolic Cl− is reduced to 15 mmoles/L from 45 mmoles/L after the occurrence of 20% cell volume decrease, and the cytosolic 
Cl− concentration is reduced to 19 mM (15 mmoles/0.8 L) from 45 mM before the cell volume decrease occurs. This is because even 
though the cytoplasmic Cl− content (45 mmoles/L) is much lower than the cytoplasmic K+ content (150 mmoles/L), the same amount of Cl− as K+ 
must be released from the cytosolic space due to the presence of a large amount of membrane-impermeable fixed negative charge
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Cl− efflux through Cl− channels. The [Cl−]c increases 
until the elevation of Cl− efflux through Cl− channels 
is equal to the increase in Cl− influx via NKCC. At this 
point, the [Cl−]c change reaches equilibrium. The oppo-
site phenomenon occurs when NKCC-mediated Cl− 
influx is reduced; [Cl−]c decreases, causing reduction of 
Cl− efflux through Cl− channels. Then, the reduction in 
[Cl−]c reaches equilibrium at a point when the decrease 
in Cl− efflux through Cl− channels is equal to the reduc-
tion of Cl− influx via NKCC. Further, when activities of 
KCC change, similar phenomena occur, resulting in alter-
nation of [Cl−]c. In addition, altering Cl− channel activity 
causes the same thing in [Cl−]c. An increase in Cl− chan-
nel activity induces elevation of Cl− flux (influx or efflux 
depending on the electrochemical potential of cytosolic 
Cl−), which changes [Cl−]c. This change in [Cl−]c alters 
the chemical potential of cytosolic Cl−, which changes 
the Cl− flux through Cl− channels and settles at the same 
point as the original Cl− flux through Cl− channels. Thus, 
even though multiple Cl− transporters and channels 
contribute to Cl− influx and efflux, [Cl−]c changes when 
activities of Cl− transporters and/or channels are altered. 
An interesting point in terms of Cl− flux is that changes 
in [Cl−]c due to changes in Cl− channel activity are tran-
sient, whereas changes in Cl− flux due to changes in Cl− 
transporter activity are persistent.

Is the change in [Cl−]c large enough to act 
as an intracellular signal?
Consideration should be given whether the change in 
[Cl−]c is large enough to act as an intracellular signal. 
[Ca2+]c increases about tenfold compared to the resting 
state, while [Cl−]c usually changes only about twofold (or 
0.5-fold) [66]. Is it possible that Cl−, which fluctuates only 
over such a small range of change, could play an intracel-
lular signaling role? The binding number of Cl− to target 
substances such as channel proteins and enzymes should 
be also considered. If the number of Cl− binding sites on 
a protein with enzyme activity is 3, a twofold change in 
Cl− concentration ([Cl−]) has the same effect on enzyme 
activity as an eightfold change (23 = 8: 2, twofold change 
in [Cl−]; 3, the number of binding sites). When the num-
ber of Cl− binding sites is 4, a twofold change in [Cl−] has 
the same effect as a 16-fold change in [Cl−] (24 = 16: 2, 
twofold change in [Cl−]; 4, the number of binding sites). 
The theoretical simulation suggests that a small [Cl−]c 
change such as twofold would be large enough to act as 
an intracellular signal.

Effects of Cl− on cytoskeletal tubulin 
polymerization through inhibition of GTPase 
activity and tubulin polymerization‑dependent 
biological phenomena
Because [Cl−]c in GABAergic neurons is generally lower 
than that estimated when the membrane potential is set 
to the equilibrium potential of Cl−, the GABA-induced 
increase in the conductance of Cl− channel causes Cl− 
influx, resulting in membrane hyperpolarization, which 
develops during maturation [67–69]. The lower [Cl−]c 
in GABAergic neurons is maintained by KCC. However, 
in some cases of GABAergic neurons, GABA causes 
membrane depolarization by inducing an Cl− efflux via 
an increase in the Cl− channel conductance. The GABA-
induced Cl− efflux is attributed to an actual [Cl−]c higher 
than that predicted when the membrane potential is 
taken as the equilibrium potential for Cl− and this higher 
[Cl−]c is maintained by NKCC. For example, in ’juvenile’ 
neurons, GABA induces Cl− efflux from the cytosolic 
space to the extracellular one, and causes membrane 
depolarization [62, 69–73]. Over the course of devel-
opment, the GABA-induced change in Cl− flux shows 
transition from efflux to influx [71]: GABA induces Cl− 
efflux due to a high [Cl−]c causing membrane depolariza-
tion in immature stages, while GABA induces Cl− influx 
due to a low [Cl−]c leading to membrane hyperpolariza-
tion in mature stages [71, 74]. The maturation-induced 
decrease in [Cl−]c is due to a change in functional expres-
sion of Cl− transporters contributing to Cl− uptake such 
as NKCC to KCC participating in Cl− extrusion. Here, 
significance of high [Cl−]c in immature stages should be 
considered [67–69, 75–83]. Of course, excitatory signals 
of GABAergic stimulation cause depolarization of the 
plasma membrane and an increase in [Ca2+]c via activa-
tion of voltage-gated Ca2+ channels. In addition, high 
[Cl−]c in immature stages would be required for the for-
mation of neural networks via tubulin polymerization 
and its stability [84–87] as described below.

Cl− has the ability to attenuate GTPase activity [21, 
48, 66, 88–90] (Fig. 2A). Inhibition of GTPase promotes 
polymerization of tubulin, a type of cytoskeleton [21, 91–
93] (Fig.  2A). Tubulin monomers are subclassified into 
three categories: i.e., α, ß, and γ subtypes [85, 94–97]. 
Polymerization of tubulin is formed by the binding of α- 
and ß-tubulin subtypes: the α/ß-tubulin heterodimer has 
two GTP-binding sites; one located on ß-tubulin (the E 
site) and the other on α-tubulin (the N site) [85, 98–102]. 
ß-tubulin has GTPase activity that hydrolyzes GTP dur-
ing polymerization, and then produces GDP [85–87, 103] 
(Fig. 2A). This GDP is still bound to ß-tubulin, which is 
part of the tubulin polymer [85–87]. The GDP bound to 
ß-tubulin at depolymerization is exchanged to GTP, and 
GTP-bound ß-tubulin can polymerize once more [85–87, 
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103] (Fig. 2B). In contrast, the GTP bound to the N site 
in α-tubulin is neither hydrolyzed to GDP nor exchange-
able to GDP during tubulin polymerizing/depolymeriz-
ing dynamics [85, 98, 103] (Fig. 2A and B). Moreover, the 
amino acid residues, Asp 251 and Glu 254, in α-tubulin 
stimulate the GTPase activity of ß-tubulin [84, 85, 87, 
104]. The microtubule dynamic is achieved when the 
GTP molecule in the E site of ß-tubulin is hydrolyzed [85, 
86]: Growth and stability in microtubule are facilitated by 
the presence of a “GTP cap” at its ( +), which is required 
in order for α and ß tubulin to stably bind to each other 
and promote polymerization [84, 85] (Fig.  2B-a). Like 
β-tubulin, actin subunits also have intrinsic GTPase 
activity related to microfilament stability [84]. Cl− has the 
ability diminishing GTPase activity [21, 48, 66, 88–90] 
(Fig.  2A). Therefore, Cl− at high concentrations inhibits 
the intrinsic GTPase activity of tubulin, thus preventing 
GTP degradation and promoting tubulin polymeriza-
tion by stably binding GTP to tubulin [66, 88] (Fig. 2B-b). 
This suggests that cytosolic Cl− plays key roles in cellular 
functions by modulating tubulin-polymerization states 
such as formation of neuronal connectivity and network 

in immature stages [76, 81, 87] cancer aggressiveness, 
cell death, cell migration, invasion, and sensitivity to 
chemotherapy [107], meiosis [108], triggering of dynamic 
improvement in cell plasticity, regulation of energy trans-
fer [86], and cardiac mechanics [109]. Thus, Cl−-induced 
promotion of the tubulin polymerization [21] serves as a 
plasma membrane lining structure in neurite outgrowth, 
and promotes plasma membrane elongation, which is 
essential for neurite outgrowth, resulting in neurite out-
growth [21, 110]. In fact, it has been reported that neu-
rites lengthen as [Cl−] increases [110]. Activation of 
Cl− uptake into the cytosolic space in neurons enhances 
elongation of neurite [112, 113], while elevation of Cl− 
release from the cytosolic space in neurons negatively 
regulates elongation of neurite [113].

In the early stage of cell division, microtubules com-
posed of tubulin elongate from the centrosome (micro-
tubule forming center), leading to cell division [115, 116]. 
The process of tubulin depolymerization (Fig.  2B-c) is 
then required for the ‘correct’ cell division at the end of 
cell division [115, 116]. Taxanes exert their anticancer 
effects by blocking tubulin depolymerization, thereby 

Fig. 2  Action of Cl− on dynamics of tubulin polymerization and depolymerization. A Cl− suppresses conversion of GTP-ß-tubulin to GDP-ß-tubulin 
by inhibiting GTPase. B a In most cells, tubulin is present in concentrations of 10–20 μM, favoring the assembly of microtubules at the plus end. 
In filaments with slower growth rates, there is less lateral interaction between protofilaments. The inherent curvature of the GDP-tubulin dimer 
surface gives the appearance of fraying at this end. b High [Cl−]c stabilizes GTP-ß-tubulin by blocking GTPase activity [21], and leads to a condition 
of a higher concentrations of GTP-tubulin dimers. Thus, tubulin polymerization is promoted at the plus end by forming a rigid GTP-cap. c GTPase 
increases at low [Cl−]c. This leads to concerted GTP hydrolysis, weakening the tubulin dimer interactions, and rapidly disassembling tubulin 
polymerization. This figure is produced using the result obtained in a report by Nakajima et al. [21] combining information shown in ‘What 
is microtubule dynamic instability?’ by MBINFO DEFINING MECHANOBIOLOGY (see the information shown in “https://​www.​mecha​nobio.​info/​cytos​
kelet​on-​dynam​ics/​what-​is-​the-​cytos​kelet​on/​what-​are-​micro​tubul​es/​what-​micro​tubule-​dynam​ic-​insta​bilit​y/#​what-​is-​micro​tubule-​dynam​ic-​insta​
bility”) under a Creative Commons Attribution-NonCommercial 4.0 International License

https://www.mechanobio.info/cytoskeleton-dynamics/what-is-the-cytoskeleton/what-are-microtubules/what-microtubule-dynamic-instability/#what-is-microtubule-dynamic-instability
https://www.mechanobio.info/cytoskeleton-dynamics/what-is-the-cytoskeleton/what-are-microtubules/what-microtubule-dynamic-instability/#what-is-microtubule-dynamic-instability
https://www.mechanobio.info/cytoskeleton-dynamics/what-is-the-cytoskeleton/what-are-microtubules/what-microtubule-dynamic-instability/#what-is-microtubule-dynamic-instability
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preventing cell division and arresting cancer cell divi-
sion and proliferation [107, 117–120]. Cytosolic Cl− 
plays an important role in the action of taxanes [48]. 
When [Cl−]c decreases, endogenous GTPase activity in 
ß-tubulin increases, leading to enhancement of the deg-
radation of GTP to GDP and the depolymerization of 
tubulin (Fig. 2B-c). Therefore, at low [Cl−]c, taxanes can-
not inhibit tubulin depolymerization, thus taxanes can-
not show their action as anticancer drugs [48], although 
low [Cl−]c slows the cell proliferation rate [31, 121–124].

Further, it has been reported that Cl− channels partici-
pate in resistance against anticancer drugs [23–25]. For 
instance, impaired activity of volume-sensitive Cl− chan-
nel (volume-sensitive, outwardly rectifying (VSOR) Cl− 
channel or volume-regulated anion channel (VRAC)) 
is involved in resistant potentials against an anticancer 
agent, cisplatin [23, 25]. Further, it has been reported that 
an increase in expression of ClC-3 Cl− channel would 
activate the NF-κB, leading to expression of P-glycopro-
tein, a type of ATP-binding cassette [24, 25]. P-glycopro-
tein plays an important role in the formation of so-called 
multidrug resistance by extruding anticancer drugs such 
as paclitaxel belonging to the taxanes [24, 25]. Thus, the 
ClC-3 Cl− channel would play an important role in the 
mechanism generating multidrug resistance [24, 25]. 
Another study [124] has also elucidated that ClC-3 Cl− 
channels generate paclitaxel resistance in ovarian cancer. 
In paclitaxel-resistant ovarian cancer cells (A2780/PTX 
cells), ClC-3 Cl− channels are found to be upregulated 
in both their protein expression and function compared 
with their parental A2780 cells [124]. The diminution of 
ClC-3 Cl− channel expression by siRNA in A2780/PTX 
cells has partly recovered the sensitivity to paclitaxel by 
causing the G2/M arrest via diminution of ClC-3 Cl− 
channel function and elevation of tubulin polymeriza-
tion [124]. Paclitaxel also shows its blocking action on the 
current through ClC-3 Cl− channels in A2780 cells, but 
not in A2780/PTX cells [124]. These observations suggest 
us that the Cl− current (flux) through ClC-3 Cl− channel 
influences paclitaxel potential on tubulin polymeriza-
tion by regulating [Cl−]c which participates in the sensi-
tivity to paclitaxel. Furthermore, paclitaxel is known to 
cause damage of plasma membrane, leading to cell death 
in ovarian A2780 cancer cells [125]. Of interest, pacli-
taxel also induces cell swelling in ovarian A2780 cancer 
cells, causing pyroptosis [126, 127], which is one of cell 
death types, apoptosis, pyroptosis, and necrosis [128, 
129]. Pyroptosis has been first reported in macrophages 
infected with Salmonella typhimurium [126]. The molec-
ular mechanism producing pyroptosis is investigated 
from a biochemical viewpoint regarding gasdermins, a 
family of pore-forming proteins in humans [130, 131]. 
Cytosolic Cl− should be also considered to be a key player 

in pyroptosis via control of WNK (see Sect.  "Cl--regula-
tory mechanisms of with-no-lysine kinase (WNK) and 
its physiological role") [132, 133]. Induction of apopto-
sis by activation of Cl− channels has been demonstrated 
by Shimizu et al. [133] (also refer to [27, 135]). Lee et al. 
[23] have reported that downregulation of VRAC is 
involved in multidrug resistance (also refer to [27, 135]). 
Further, VRAC contributes to lipopolysaccharide plus 
nigericin-induced pyroptosis in bone marrow-derived 
macrophages [135–137]. Thus, cytosolic Cl− and various 
types of Cl− channels including ClC-3 Cl− channel and 
VRAC are suggested to be key players involved in cell 
death and drug resistance.

Roles of cytosolic Cl− in cell proliferation
In gastric cancer cells, G0/G1 arrest is induced by 
decreased [Cl−]c [31, 121–124, 139–152]. G0/G1 arrest 
induced by decreased [Cl−]c is regulated via retinoblas-
toma protein (Rb) by a p53-independent, p21-dependent 
mechanism [120]: lowering [Cl−]c upregulates expression 
of p21, resulting in a decrease in CDK2 expression, which 
diminishes Rb phosphorylation, thus G0/G1 arrest occurs 
[120] (see a review article [152] regarding cell prolifera-
tion via p53-p21 dependent regulation).

Chloride intracellular channel 1 (CLIC1) is also 
reported to be a key factor in cell proliferation of esoph-
ageal squamous cell carcinoma [153–155]. Further, a 
cohort study [156] reports that genetic polymorphism 
in methylenetetrahydrofolate reductase Cl− transport 
protein 6 (MTHFR CLCN6) gene is associated with 
keratinocyte skin cancer, suggesting a role of Cl− in pro-
liferation of human skin cancer. Thus, Cl− is one of key 
factors controlling cell proliferation.

Cl−‑regulatory mechanisms of ciliary motility
Ciliary movement in the airways is essential for the func-
tion of the body’s defense system by expelling foreign 
substances that enter the airways from the body through 
dynein-driven mechanisms [157] via cAMP-mediated 
pathways [158–163], protein kinase C-mediated path-
ways [164] and cytosolic Ca2+-mediated pathways [166, 
167] in addition to water secretion from airway epithelia 
driven by Cl− secretion [88]. Cilia also play an important 
role in cerebrospinal flow [167]. The activity of ciliary 
movement is evaluated by two indices: (1) the ampli-
tude (angle) of ciliary movement and (2) the frequency 
of ciliary movement (the number of ciliary movements 
per unit time) [32, 34, 169–171]. The amplitude and fre-
quency of the ciliary movement are, respectively, con-
trolled by the inner dynein arm (IDA) and outer dynein 
arm (ODA) [33, 169, 172, 173] (Fig. 3). Cytosolic Cl− has 
been reported to suppress both amplitude and frequency 
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of ciliary movement, with the inhibitory action of Cl− 
on amplitude reaching the maximum level at low [Cl−]c 
and on frequency at high [Cl−]c [32–34]. Beta-agonist-
induced cell shrinkage activates ciliary movements via a 
decrease in [Cl−]c (Fig. 1) [174]. Elevation of [Ca2+]c also 
enhances ciliary movements [176, 177]. These phenom-
ena suggest that the Cl− sensors in IDA controlling the 
amplitude of ciliary movement are more sensitive to Cl− 
than Cl− sensors in ODA controlling the frequency of 
ciliary movement [168] (Fig. 3).

In sperm, mitochondrion forms a complex with rat sar-
coma (Ras)-associated binding (Rab) protein 10 (RAB10) 
of active form (GTP bound form of RAB10; GTP-RAB10) 
via TOMM20 (a subunit protein of translocase in the 
outer membrane of mitochondria) [177–179]. GTP-
RAB10 binds to dynein, which transports mitochondrion 
by forming a complex of DNAH7, a tubulin-related pro-
tein [179]. GTPase-activating protein (GAP) and guanine 
nucleotide exchange factor (GEF) are well known as the 
main factors regulating the activity of small GTP-bind-
ing proteins [181, 182]. GEF facilitates the dissociation 
of GDP-binding in small GTP-binding proteins, which 
is subsequently replaced by GTP [181, 182]. On the one 
hand, GAP activates the GTPase of small GTP-binding 

proteins, enhancing the conversion of GTP to GDP, 
leading to inactivation of small GTP-binding proteins 
[179–181]. ADP-ribosylation factor 6 (ARF6) is a GTPase 
[182]. GTP-locked mutant ARF6QL of ARF6 binds to 
dynein, enhancing autophagic vesicles transport in neu-
rons, while GDP-locked mutant ARF6T27N of ARF6 
impairs retrograde transport of autophagic vesicles along 
the axon [183, 184]. Taken together, when the GTP-
bound form of dynein-binding protein binds to dynein, it 
promotes the transport capacity of dynein.

Cl− attenuates GTPase activity [21, 48, 66, 88–90], 
therefore high Cl− stabilizes GTP-bound form of dynein-
binding protein. On the one and, cytosolic Cl− inhibits 
the amplitude of ciliary movement at low [Cl−]c, and the 
frequency of the ciliary movement at high [Cl−]c [32, 169] 
(Fig. 3). These observations indicate that Cl− of high con-
centration inhibits ciliary movements despite enhanced 
dynein transport activity by stabilizing active GTP-bound 
form of dynein-binding protein. From these observations, 
it is speculated that, unlike the unidirectional transport 
by dynein, the periodic appearance of GTP- and GDP-
bound forms of dynein-binding proteins regulates ciliary 
reciprocal movement, although further direct evidence is 
needed to conclude the speculation.

Fig. 3  Cl−-regulation of ciliary beating in cultured human nasal epithelial cells. Outer dynein arms (ODAs) control the frequency of ciliary 
movement, and inner dynein arms (IDAs) control waveform including the amplitude (angle) of ciliary movement. Cytosolic Cl− inhibits, 
respectively, the function of ODAs and IDAs via binding to Cl− biding sites in the axonemal structures of ODAs and IDAs reducing the frequency 
and the amplitude (angle) of ciliary movement. The sensitivity of ODAs to cytosolic Cl− is less than that of IDA. Cytosolic Cl− at basal levels 
has no inhibitory effect on ODA function, but inhibits IDA function to some extent, but not completely. When [Cl−]c becomes lower than the basal 
level, ODA, which is not inhibited by basal levels of Cl−, maintains its activity, and IDA, which is partially inhibited by basal levels of Cl−, is no longer 
inhibited by Cl− and its activity is increased. Conversely, as [Cl−]c increases, the activity of both ODA and IDA decreases. This figure is modified 
from Fig. 8 reported in a study [168] under a Creative Commons Attribution-NonCommercial 4.0 International License
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Roles of Cl− in sweet/umami taste sensing at sweet/
umami taste receptors
Taste is a chemical sensation perceived on the tongue 
and proved by chemicals in foods and beverages, and 
plays a very important role in the ingestion of foods and 
other substances, as well as in sustaining life [184–187]. 
Cl− is considered to participate in taste sensing, how-
ever details of molecular mechanisms of Cl− involve-
ment are unknown [35]. Recently, a Cl− binding site has 
been reported in taste receptor type 1 (T1r), a member of 
the sweet and umami receptors on the tongue [35]. The 
T1r2a/T1r3 heterodimer found in medaka fish, the only 
T1r currently available for structural analysis, has a Cl− 
specific binding site near the amino acid binding site in 
the ligand binding domain (LBD) of T1r3, which is likely 
conserved among species including human T1r3. This 
Cl− binding at sub-millimolar to low millimolar concen-
trations induces a conformational change in the ligand-
binding domain of the T1r2a/T1r3LBD [35]. Further, a 
small amount of Cl− bound to the sweet and umami taste 
receptors stimulates the neuron connected to the recep-
tor cells, suggesting a small amount (low concentration) 
of Cl− enhances sweet and umami taste [35]. This find-
ing strongly supports what has been said so far that small 
amounts (low concentrations) of NaCl promote sweet 
sensitivity [36].

Cl−‑regulatory mechanisms of with‑no‑lysine 
kinase (WNK) and its physiological role
WNK is named for the fact that it, a serine/threonine 
kinase, lacks a catalytic lysine in subdomain II, which 
serves an important role as an ATP binding site [188]. 
WNK regulates the activity of stress-related serine-threo-
nine kinases, STE20 (sterile 20)/SPS1-related proline/ala-
nine-rich kinase (SPAK) and oxidative stress-responsive 
kinase 1 (OSR1), which are targets of WNK signaling, 
and consequently regulates cellular functions by modu-
lating activities of PI3K-AKT, TGF-ß, and NF-κB [189]. 
WNK also regulates cation-coupled Cl− cotransport-
ers via SPAK/OSR1 activation in renal epithelia, such as 
NKCC (NKCC1 and NKCC2) and KCC (KCC1—KCC4) 
[65, 191–198], which play crucial roles in regulation of 
the body fluid contents and blood pressure. NKCC and 
KCC are also regulated by various factors including fla-
vonoids like quercetin and myricetin [40, 66, 88, 111, 
199–205], which also show various actions including 
anti-diabetic and anti-hypertensive ones [66, 203, 206]. 
Activity of WNK is controlled by Cl− [206]. Low [Cl−]c 
activates WNKs, which phosphorylate the paralogous 
Ste20 kinases, SPAK/OSR1, on a T-loop threonine (Thr 
233 in SPAK, Thr 185 in OSR1) to activate the kinases, 
SPAK/OSR1 [207]. The activated SPAK/OSR1 phospho-
rylate NKCC1, NKCC2 and NCC on serine/threonine 

conserved in N-termini of the transporters [207]. Acti-
vated SPAK/OSR1 phosphorylate serine/threonine con-
served at the N-terminus of NKCC1, NKCC2 and NCC, 
increasing the transporting activity of the transport-
ers [207]. WNK has two domains, a smaller N-terminal 
domain and a larger C-terminal domain, which form an 
inactive, asymmetric dimer [207]. Cl− binds to its bind-
ing site in the subunit of unphosphorylated dimeric 
WNK, stabilizing the inactive dimer of WNK [207], thus 
Cl− inhibits WNK activity [207, 208]. The physiological 
meaning of Cl−-induced stabilization of inactive dimer 
of WNK is that a decrease in [Cl−]c activates NKCC and 
NCC that participate in Cl− uptake into the intracellular 
space via enhancement of WNK phosphorylation (activa-
tion), contributing to the homeostasis of [Cl−]c.

When cells migrate, cells need to change cell shape. 
WNK activated by lowered [Cl−]c induces phosphoryla-
tion (activation) of SPAK/OSR1, which increases activity 
of NKCC1 by phosphorylating NKCC1, then activated 
WNK participates in cell migration as follows [208]. 
NKCC1 is expressed on the front line side of cell migra-
tion and is involved in the uptake of Cl− into the cytosolic 
space along with Na+ and K+ (Fig. 4) [197, 209–212]. The 
uptake of these ions results in the water influx via aqua-
porin (AQP) into the cytosolic space by increasing cyto-
solic osmolarity [196]; i.e., the movement of Cl−, Na+, K+ 
and water results in cell expansion (an increase in cell 
volume) with elevation of [Cl−]c (Fig.  1), which stimu-
lates polymerization (elongation) of tubulin in high [Cl−]c 
areas (Fig.  4) [212] by inhibiting GTPase activity (see 
Fig. 2A and B-b). Through these processes, cells migrate 
toward the front. On the one hand, KCC, volume-regu-
lated anion channel (VRAC), Ca2+-activated K+ channel 
(K+

Ca 3.1) and AQP are expressed at the tail end of cell 
migration and excretes Cl− along with K+ to the extra-
cellular space [197, 212]. Water efflux to the extracel-
lular space via AQP is caused by a decrease in cytosolic 
osmolarity due to excretion of these ions; the movement 
of Cl−, K+ and water results in a decrease in cell volume 
with diminution of [Cl−]c (Fig.  1), which leads to depo-
lymerization (shortening) of tubulin in low [Cl−]c areas 
(Fig. 4) [212] by activating GTPase (see Fig. 2A and B-c).

Roles of Cl− in regulation of epithelial Na+ 
transport
Dinudom and Cook et  al. [38, 39] have reported that 
as [Cl−]c rises from 5 to 150  mM, the amplitude of the 
inward Na+ current declines via G protein Gi and Go sub-
classes-mediated pathways by applying whole-cell patch-
clamp techniques to the cells of the intralobular ducts 
of the mandibular glands of mice. Tohda et al. [49] have 
also reported that reduction in [Cl−]c caused by activa-
tion of Ca2+-activated K+ channels and cAMP-activated 
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Cl− channels (see Fig.  1) increases the open probability 
(Po) of amiloride-sensitive Na+-permeable channels in 
lung epithelial cells treated with ß2 agonist by using patch 
clamp single channel recording and single cell imaging 
techniques. Further, the reduction in [Cl−]c caused by ß2 
agonist has been reported to play an essentially important 
role in activation of amiloride-sensitive Na+-permeable 
channels in lung epithelial cells treated with ß2 agonist 
[213], suggesting that the cytosolic Cl− decreases the 
activity of amiloride-sensitive Na+-permeable channels 
in lung epithelial cells treated with ß2 agonist. A molec-
ular model of the cytosolic Cl−-induced inhibition on 
amiloride-sensitive Na+ channels in ß2-agonist-treated 
lung epithelial cells has been proposed [214]. These 
reports [49, 214, 215] indicate that Cl− has physiologi-
cally important roles in epithelial Na+ transport. On the 
one hand, using single channel recording techniques, 
Yamada et  al. [215] have reported that lowering pipette 
(extracellular) Cl− concentration decreases the Po of sin-
gle ENaC expressed on the apical membrane of renal cells 
treated with arginine vasotocin (AVT) to 0.23 ± 0.02 from 
0.30 ± 0.02 associated with a significant decrease in the 
open time from 0.78 ± 0.03 to 0.61 ± 0.02  s without any 
significant change in the closed time. Further, the activ-
ity of the Na+-K+ pump has been reported to depend 

on the Cl− conductance of the membrane on which the 
Na+-K+ pump is expressed [44], and this Cl− conduct-
ance-dependent Na+-K+ pump activity is regulated via 
PTK activity [44].

Expression of ENaC mRNA is also regulated by cyto-
solic Cl− [40–43]. Activation of Na+-K+-2Cl− cotrans-
porter (NKCC) by flavonoids such as apigenin and 
quercetin or diminution of Cl− efflux by Cl− channel 
blockers such as (5-Nitro-2-(3-phenylpropylamino)ben-
zoic acid (NPPB) diminishes mRNA expression of ENaC 
in renal epithelial cells via elevation of [Cl−]c. [40–49]. 
Further, hypotonicity applied to ENaC-expressed renal 
cells elevates mRNA expression of ENaC in renal epithe-
lial cells via diminution of [Cl−]c by activating p38 MAPK 
and inducing MKP-1-mediated suppression of ERK [42, 
43]. The hypotonicity-induced activation of p38 MAPK 
and suppression of ERK via MKP-1 would be mediated 
at least partially by the hypotonicity-induced decrease in 
[Cl−]c [66, 88, 203].

Relationship between roles of Cl− and H+ in body 
functions
pH is lowered by H+ and CO2 produced in metabolic 
cells such as myocytes, neurons, etc., H+ is produced via 
glycolysis, and also from CO2 (CO2 ↔ H+  + HCO3

−) via 

Fig. 4  Roles of cytosolic Cl−, ion transporters and ion/water channels in cell migration. When cells migrate, cells need to change cell shape. 
Na+-K+-2Cl− cotransporter 1 (NKCC1) and aquaporin (AQP) are expressed on the migrating side membrane. NKCC1 is involved in Cl− uptake 
into the cytosolic space with Na+ and K+ [197, 209–212]. The uptake of these ions results in an influx of water into the cytosolic space via AQP 
through an increase in cytosolic osmolarity [196]. The movement of Cl−, Na+, K+ and water causes an increase in cell volume accompanied 
with [Cl−]c elevation, which promotes tubulin polymerization (elongation) [212] by inhibiting GTPase activity (see Fig. 2B). Similar to tubulin 
polymerization, actin monomers are enhanced to be polymerized. Then, cells migrate via these processes. On the one hand, K+-Cl− cotransporter 
(KCC), volume-regulated anion channel (VRAC), Ca2+-activated K+ channel (K+

Ca3.1) and AQP are expressed on the tail end membrane of cell 
migration and excretes Cl− with K+ to the extracellular space via KCC, VRAC and K+

Ca3.1 [197, 212]. Water efflux to the extracellular space via AQP 
is caused by a decrease in cytosolic osmolarity due to excretion of these ions. The movement of Cl−, K+ and water results in a decrease in cell 
volume accompanied with [Cl−]c diminution, which leads to tubulin depolymerization (shortening) at the tail end of the cell migration [212] 
by activating GTPase (see Fig. 2C). WNK activated by lowered [Cl−]c induces phosphorylation (activation) of OSR1/SPACK, which increases activity 
of NKCC1 by phosphorylating NKCC1 [208]. Thus, WNK is importantly involved in cell migration [208]
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TCA cycle in mitochondria: the produced H+ plays vari-
ous important roles in cellular functions [201, 217–237]. 
Lowered pH disturbs various body functions such as 
appearance of insulin resistance, enhancement of cancer 
metastasis and elevation of amyloid-ß production [201, 
217–235]. In peripheral tissues, CO2 produced by meta-
bolic cells moves to capillary erythrocytes, where CO2 
is converted to H+ and HCO3

− via a carbonic anhydrase 
(CA)-facilitated process. H+ binds to Hb in erythro-
cytes, while HCO3

− is exchanged for blood extracellu-
lar Cl− (outside erythrocytes) by anion exchanger (AE; 
Cl−/HCO3

− exchanger), and is excreted out of eryth-
rocytes; this Cl− movement is the so-called ‘Cl− shift’ 
(Fig. 5). Thus, the extracellular Cl− concentration in veins 
is lower than that in arteries. These phenomena mean 
that the serum Cl− concentration in veins would be an 

indicator of metabolic status and mitochondrial function. 
Although the serum HCO3

− concentration is a more 
direct indicator than the serum Cl− concentration, the 
process of accurately measuring the serum HCO3

− con-
centration is clinically cumbersome and it is not practi-
cal to easily measure the serum HCO3

− concentration in 
many humans. In fact, the venous serum Cl− concentra-
tion has been reported to be an indicator of metabolic 
status and mitochondrial function in analysis of over 
100,000 healthy humans [237]. It is interesting to note 
that in ‘healthy’ individuals, the venous Cl− concentra-
tion increases with age, whereas the venous serum Cl− 
concentration decreases with increasing fasting blood 
glucose (sugar: FBS) and HbA1c [237]. These phenom-
ena suggest that in ‘healthy’ individuals aging diminishes 
mitochondrial function (lowering CO2 production, and 
leading to lower the venous serum HCO3

− concentra-
tion coupled with a higher venous serum Cl− concentra-
tion [237] (Fig. 5A-a for younger persons and Fig. 5A-b 
for older persons); furthermore, ‘healthy’ individuals with 
high FBS and HbA1c levels may have higher intracellular 
glucose concentrations and consequently higher mito-
chondrial CO2 production, leading to elevate the venous 
serum HCO3

− concentration coupled with a lower 
venous serum Cl− concentration [237] (Fig. 5B). Measur-
ing changes in the venous serum Cl− concentration may 
provide a simple way to identify the aerobic metabolism 
status and mitochondrial function, although more direct 
evidence is needed to conclude this.

Fig. 5  Aging- and FBS-dependent regulatory mechanisms of body 
fluid pH via transporting systems of Cl− and HCO3

−. A Age effects 
on venous serum Cl− concentration ([Cl−]s). a Younger persons 
with normal mitochondrial function. Glucose is metabolized 
into pyruvic acid, and then CO2 is produced from the pyruvic 
acid in mitochondria with normal function. The produced CO2 
moves into erythrocytes, and is converted into H+ and HCO3

− 
via a CA-facilitated process. The HCO3

− is exchanged with serum 
Cl− via a Cl−/HCO3 anion exchanger (AE). These processes lead 
to low [Cl−]s. b Older persons with low mitochondrial function. 
The amount of CO2 produced in mitochondria becomes low due 
to low mitochondrial function. Thus, the amount of H+ and HCO3

− 
produced from CO2 becomes low. These processes keep high [Cl−]s. 
B FBS/HbA1c effects on [Cl−]s. with normal mitochondrial function. 
Glucose is metabolized into pyruvic acid, and then CO2 is produced 
from the pyruvic acid in mitochondria with normal function. The 
produced CO2 moves into erythrocytes, and is converted into H+ 
and HCO3

− via a CA-facilitated process. The HCO3
− is exchanged 

with serum Cl− via a Cl−/HCO3 anion exchanger (AE). In cases of high 
FBS/HBA1c with normal mitochondrial function, large amounts 
of CO2 are produced, resulting in production of large amounts 
of HCO3

−. These processes lead to low [Cl−]s. Figure 5 has been 
originally published in Marunaka et. al. (2021) Int J Mol Sci 22:11111 
[237] under a Creative Commons Attribution-NonCommercial 4.0 
International License

◂
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Cl− is also responsible for acidification of the lumen of 
endosomes and lysosomes through the function of the Cl−/
H+ exchange system [238–240]. The acidity of endosomal 
and lysosomal lumens is involved in a cellular recycling 
process called autophagy in various cell types [29, 30, 241]. 
For example, defects in microglial lysosomal acidification 
lead to impaired autophagy and phagocytosis, causing pro-
gressive neurodegeneration and persistent neuroinflam-
mation [241]. Furthermore, autophagy has been reported 
to decrease with age, and this decrease plays an impor-
tant role in both the development of age-related diseases 
and physiological aging [242]. Thus, Cl− plays a key role in 
autophagy, degeneration, inflammation and aging via acidi-
fication of endosomal and lysosomal lumens [242].

Conclusion
Cl− plays an important role in maintaining electrical neu-
trality by being transported as counter ions when cati-
ons such as Na+ and K+ are transported. However, little 
is known about the physiological roles of Cl− other than 
maintaining electroneutrality. As described in this review 
article, cytosolic Cl− is an important factor in the regu-
lation of biological functions, possessing various physio-
logical activities. I would like to conclude this review with 
my sincere hope that the recognition that Cl− itself is an 
important regulator of various enzymatic activities will 
spread beyond its significance in maintaining the elec-
troneutrality during cations movements, and that further 
research on the physiological roles of Cl− will progress.
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