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Abstract

Background: Probabilistic reaction norms (PRNs) are an extension of the concept of reaction norms, developed to account
for stochasticity in ontogenetic transitions. However, logistic regression based PRNs are restricted to discrete time intervals,
whereas previously proposed models for continuous transitions are demanding in terms of modelling effort and data
needed.

Methodology/Principal Findings: Here we introduce two alternative approaches for the probabilistic modelling of
continuous ontogenetic transitions. The models are simplified in their description of forces underlying transitions, thus
being empirical rather than mechanistic by their nature, but therefore applicable to situations where data and prior
knowledge of transitions are limited. The models provide continuous time description of the transition pattern, insights into
how it is affected by covariates, at the same time allowing for fine scale transition probability predictions. Performance of
the models is demonstrated using empirical data on metamorphosis in common frogs (Rana temporaria) reared in a
common garden experiment.

Conclusions/Significance: As being user-friendly and methodologically easily accessible, the models introduced in this
study aid the concept of probabilistic reaction norms becoming as general and applicable tool in the studies of life-history
variation as the deterministic reaction norms are today.
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Introduction

Reaction norms are a common tool for describing phenotypic

plasticity in quantitative traits [1–2] as well as for understanding

evolutionary processes at the level of life-histories [3]. For

ontogenetic life-history transitions, such as metamorphosis or

maturation, reaction norms have traditionally been formulated

deterministically, so as that an individual’s developmental status is

assumed to change exactly at the time the individual hits the

reaction norm [4–5]. Although this kind of simplified formulation

is undoubtedly useful when assessing how average phenotypes

change in different environments, it lacks of realism in the respect

that no stochasticity is assumed to be involved in the occurrence of

transitions. This feature limits the utility of traditional reaction

norms in applications incorporating demographic stochasticity and

heterogeneity in the dynamics of life-histories and populations.

These applications require realistic predictions for life-history

events such as ontogenies [6].

To overcome this shortcoming, the concept of the probabilistic

reaction norm (PRN) was developed by Heino et al. [7]. The idea

of PRNs is that they characterize an ontogenetic transition process

through transition probabilities, thus allowing randomness in the

timing of individual transition events [7]. The estimation of PRNs

was originally done based on the sizes-at-age of individuals, by

assuming that this trait reflects environmental variation in the life-

history transition process of interest [7–8] but then later on

expanded to encompass information on any relevant covariate [9–

11]. In practice the estimation of the PRN is done through a

logistic regression, so that probabilities for ontogenetic life-history

transitions are estimated separately for discrete time intervals [7]:

logit pið Þ~log pi= 1{pið Þð Þ~aizbT
i xi ð1Þ

where i is an index of time-interval, pi is the transition probability,

ai is an intercept, bi is a vector of free model parameters, and xi is

a vector of explanatory variables. The time-intervals may be

determined either by natural periodicity in data (e.g. annual

reproduction season), or be set artificially by investigators by

grouping continuous time observations into discrete time intervals

[7]. In latter case intervals must be set wide enough to contain

sufficient data to reflect the underlying transition pattern.

Therefore, the logistic regression based PRNs model is not able

to predict ontogenetic transitions in continuous time or within fine

scale time intervals. While this has not been viewed as a problem

in the analyses to which PRNs (the model developed by Heino et

al. [7] or its demographic analogy developed by Barot et al. [8])

have almost exclusively been applied to, i.e. age and size at
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maturation of fish stocks with an annual reproductive cycle (e.g.

[12–13]), in the case of more rapid developmental processes, such

as metamorphoses, obvious limitations arise.

These problems were first addressed by van Dooren et al. [14],

who introduced a survival analyses and path-integration based

approach for making a connection between age and size

dependent continuous time maturation rates and discrete time

PRNs for the age and size at maturation. However, any practical

implementation of this method has proven challenging as full

ontogenetic trajectories should be known (or assumed), but data

for this hardly ever is available from natural populations [9].

Here, we introduce two alternative survival analyses based

modelling approaches for describing ontogenetic transition

processes in continuous time. These models are simplified as

compared to the approach developed by van Dooren et al. [14],

but at the same time less demanding in terms of modelling effort

and data requirements. Therefore, they provide user-friendly and

broadly applicable tools for continuous time analyses for typical

ontogenic transition data sets, as well as for predicting transitions

at very fine time scales. Performance of the models is

demonstrated using empirical data on timing of metamorphosis

in the common frog (Rana temporaria).

Analysis

Survival analysis based approaches for ontogenetic life-
history transitions

Ontogenetic transition processes are of a type where an

individual ages, and at some point in time experiences an event

that can only occur once for each individual. In medicine, this kind

of process is investigated using survival analyses, the name deriving

from the fact that the considered event is often death (e.g. [15]).

The starting point for survival analysis is to assume that the

probability that an event will occur is governed by a rate h(t),

which is usually called the hazard. If the mathematical form for

how this changes with t is known, then the probability that the

event (e.g. maturation or death) will not occur before time t,

denoted as S(t) and called the survivor function, can be calculated by

S tð Þ~P Twtð Þ~e
{
Ðt

0

h uð Þdu

ð2Þ

Or, if time is discrete, the probability that nothing happens before

time t is the product of the probabilities of nothing happening in

each time step before t. Typically, survival analyses use data on the

times to events (T) to ask how the hazard function or, equivalently,

the survivor function is affected by different covariates.

In their continuous time description for maturation process van

Dooren et al. [14] focused on the analytical form of the hazard

function, specifically, how the hazard changes with age (i.e. time)

and size of an individual. In this approach, the age-at-size

trajectory of the individual either have to be known exactly or the

size can be expressed as an analytical function of age. More

generally, the hazard function can depend on any relevant

covariate and, if it changes in time, then the time-path or the value

of the covariate as an analytical function of time must be

incorporated to the model. However, a typical case might be that

most what is known about an ontogenetic transitions process is the

observed pattern of transitions themselves, but little information is

available about the underlying covariates, especially how their

impact changes in time and functions to describe their effects on

the transitions. In such a case formulating the hazard as a function

of all the covariates and further finding analytical formulations for

their time-dependencies can be very challenging and time-

consuming.

In the following, we will propose two alternative modelling

approaches that will relax the effort of composing the exact

analytical form of the hazard, by directly making assumptions

about the survivor function, and how it is affected by the

covariates. The models are qualitatively very similar, but

depending on the particular research question and the data at

hand, one may be more convenient that the other.

1) Parametric Survival Analysis. As shown above, if the

hazard function can be assumed to take a particular mathematical

form, then the survivor function can be calculated (eqn 2). In the

approach formulated by van Dooren et al. [14] the hazard

function was described as depending on the age and size of an

individual, and the size was then described as a deterministic

function of age. The hazard function then takes the form

h(t) = f1(age)+f2(size) = f1(age)+f2(g(age)), where f1 and f2 can be any

analytical functions and g is the deterministic growth function, so

that in the end the hazard function is formulated being a function

of time. Obviously the same also holds for any other time

dependent covariate. In general, different distributions for survival

times and corresponding analytical solutions for survivor functions

are linked to particular time-dependent formulations of the hazard

functions. Thus, instead of explicitly formulating the hazard

function, as suggested by van Dooren et al. [14], one can simply

approximate it with a formulation that directly yields a known

distribution for survival times (a table of distributions and their

underlying hazard functions is given e.g. in [15]). For example, for

Weibull-distributed survival times the hazard is given by

h(t) = cltc21, which, depending of the choice of c can be either

an increasing, decreasing or constant function of time. The

relationship between size (or any other time dependent covariate)

and time may not be deterministic, but this is accounted for by the

random part of the survival curve, yielding a distribution of

survival times. Overall, by not using intermediate measures of time

dependent covariates, this approach looses precision but gains in

applicability (because it does not need intermediate measures).

The modelling effort reduces to a parametric survival regression

in which the distribution of an individual’s survival time T (i.e. the

time it takes until an individual faces the transition event) is

modelled directly by [15–16]

f Tð Þ*azbTxzs e ð3Þ

where a is an intercept parameter, b is a vector of free model

parameters, x is a vector of optional covariates, s is a scale

parameter (also a free model parameter) describing variance in the

data, e is a random variable, following some distribution, and f is a

link function appropriate for the distribution of given e. Several

choices exist for the distribution of e, with those giving a logistic,

Weibull, Gaussian or exponential distribution for T being popular.

In practice, this model estimates the shape of the distribution for T

and then covariates shifts the location of this distribution along the

time axis. The underlying assumption then is that covariates do

not change the shape of the survivor function itself but only its

location, in proportion to the relative effects of the covariates.

Therefore, the estimated parameters of eqn (2) can be used directly

for assessing how much variation is induced to the timing of the

transition event by the covariates.

Once the parameters of the survivor function have been

estimated, the model can be used to predict the occurrence of

transitions. For example, for any two time points T1#T2 the

probability of a transition event within the interval (T1, T2) is

(P(T,T2)2P(T,T1))/(12P(T,T1)), where the probabilities are

Probabilistic Ontogeny Models
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derived from the distribution function of T estimated by the

parametric survival model (eqn 2). Calculated for a time interval,

the transition probability corresponds to the concept of traditional

discrete time PRNs, but the fundamental difference between the

two methods is that the PRN approach only provides predictions

for pre-fixed, not too narrow intervals, whereas the continuous

time survivor function provides estimates for any freely chosen

time interval, allowing for fine-scale predictions.

2) Semi-parametric Survival Analysis. One might not be

directly interested in the survival function (distribution function of

T) itself, but on how it is influenced by the covariates. Cox [17]

developed an elegant method for the analysis of survival data by

splitting the model into two parts: 1) the survival function, which

only depends on time, and 2) a term for the ratio of the hazards

(i.e. rates of the events) for different classes. He showed that under

this model the relative rates of the hazards do not depend on the

actual shape of the hazard function, but the covariates shift the

hazard up or down by the same proportion. Hence, the model is

called the proportional hazards model. This modelling approach is

particularly convenient if interest lies on the proportional effects of

the covariates on T, rather than the distribution of T itself. The

Cox proportional hazards model assumes that the effects of the

covariates are multiplicative, so that the survival probability

S(t) = P(T.t) is given by

{log S tð Þð Þ~P0 tð Þexp {bTx
� �

ð4Þ

where b and x are as above, t is any freely chosen time point, and

P0 (t) is a baseline hazard function that gives the probability P(T#t

| x = 0). Defined in this manner, P0 may seem biologically

meaningless, but this is not the case. In case of categorical

covariates one of the categories can be set represent a baseline,

which is then increased or decreased by the other categories. If a

covariate is continuous, then it can be rescaled so that the variable

value describes the deviation from a baseline value. For example,

the baseline can be set to represent an average individual, or there

may be some physiological thresholds that an individual has to

reach before it can metamorphose or mature [18–19]. Cox

regression is very convenient in the sense that no underlying

distribution for the transition time needs to be assumed. Similarly,

when assessing the proportional effects of the explanatory variables

on S(t), P0 does not have to be known either. It is only required for

estimating the actual survival probability S(t) = P(T.t). From

these, predictions for transition probabilities can be derived for

any time interval similarly as above.

The choice between the parametric (eqn 3) and the semi-

parametric (eqn 4) survival models depends on the study question.

The parametric model may often be preferable over the semi-

parametric one as the former produces a probability distribution

for T. However, interest may sometimes be focused on the amount

of phenotypic variation induced by different variables, or there

may be a biologically meaningful baseline for a developmental

process that is then modified by the environment. In such cases the

semi-parametric model may be preferred. Both the survival

models developed above are easily accessible in most statistical

packages, such as R [20] and SAS [21].

One common problem in survival analysis is that the exact

timing of the event may not be known. In this case the data are

described as censored. For example, if the event has not occurred

before the end of a trial (i.e. the individual survives beyond the

experiment), the datum is described as right censored. Of more

relevance here is interval censoring. This is when the event is

known to occur within an interval (e.g. between two sampling

periods), but the exact time of the event is not known. For

example, in the context of maturation, this would be seen in data

where a large sample of individuals was drawn from a population,

and the numbers of mature and immature individuals were

counted. If the data is interval censored, parametric survival model

(eqn 3) still produces continuous time model for the underlying

transition process. In case of semi-parametric survival model (eqn

4) T would be replaced with an ordered factor indicating the time

interval in which case the survivor function in eqn 4 is replaced

with 12Q(ti), the complement of the transition probability for a

time interval i [22].

Further model extensions
The exact interpretation of reaction norms is that they define

individual phenotypes under specific environments [7]. However,

PRNs and survivor functions are still estimated based on

information from many individuals sampled from one population

(eqn 1, 3 and 4; [7–8]). Still, it is likely that there is variation

between individuals in their own reaction norms, which needs to

be accounted for. This is because interest in reaction norms partly

springs from the fact they would allow separation of genetic and

environmental influences on life history transitions. To this end,

direct estimation of genetic variation in ontogenetic transitions

would be of interest [14] and for the survival models presented

above tools (and also software solutions) for this are readily

available [20,23–24].

Individual random effects can be included into survival analysis,

where they are termed frailties [15]. This is done using a

hierarchical model, i.e. by assuming that the frailties represent

random effects drawn from some distribution. Frailties other than

individual effects can also be added, for example adding a sire

effect can be used to estimate the amount of additive genetic

variance in transition probabilities, which in turn can be used to

predict the trait’s response to selection [25]. Because the model (in

particular equation 3) is linear, several random effects can be

included into the same model in the same way, so for example a

full quantitative genetic model can also be fitted (e.g. [26]).

Model performance
To demonstrate the performance of the survival analysis based

models for ontogenetic life-history transitions developed above

(eqns 3 and 4), we focused on modelling the timing of

metamorphoses of the common frog (Rana temporaria L.). This

was based on the metamorphosis events observed in a laboratory

experiment in which tadpoles were exposed to different, controlled

environmental treatments. The benefit of using this kind of data is

that the sources and magnitude of environmental variation in the

timing of metamorphoses are known, and thus we were able assess

whether the survival models were able to detect and predict them.

In the experiment, individually reared tadpoles from one study

population located in central Sweden (Umeå, 36u499 N, 20u149 E)

were exposed to three temperature treatments (warm: 22u;
medium: 18u; cold: 14u) and two food level treatments (restricted

and ad libitum), and their weight and age at metamorphosis were

recorded ([27]; Fig. 1). As the individuals were obtained from

artificial crosses, their genetic relationships were exactly known,

allowing the estimation of additive genetic variance in transition

probabilities (see below). Details of the experiment and rearing

conditions of the animals can be found from [27–28].

In the analyses, we focused on investigating how the timing of

metamorphosis depends on temperature and food level. These

variables were treated as factors. We did not include body size into

the analyses as its role in determining the timing of metamorphosis

was clearly insignificant: size at metamorphosis varies widely

among individuals exposed to different treatments (Fig. 1),

Probabilistic Ontogeny Models
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suggesting that the treatments affect the process of metamorphosis

rather directly than through body size. In addition, as any

systematic patterns in growth between the treatments is induced by

the treatments themselves, patterns in growth are correlated with

the treatments, and having body size as well as treatments as

explanatory variables could bias the analyses.

To compare model performance with different data types, both

survival models were fitted with time was treated both as

continuous and censored with a 10 day interval (eqn 3 and 4).

In the parametric survival model (eqn 3) survival time was

considered as a logistically distributed variable using an identity

link function [16]. We also tried Gaussian, Weibull and

exponential distributions, but these provided fits very similar to

that of logistic distribution so that we restricted to present results

only for the logistic distribution. In the Cox regression (eqn 4), the

restricted food level and cold temperature were considered as

baseline conditions. To investigate how frailties would change the

picture, we also added normally distributed frailties to the

parametric survival model (eqn 3) as a sire effect. The additive

genetic variance in the timing of metamorphoses could then be

estimated as four times the sire variance [25].

The parametric survival model (eqn 3) turned out being flexible

in describing the effects of environmental treatments on the timing

of metamorphoses. When time was considered as continuous, the

model predicted that 50% of the frogs would metamorphose by

the age of ca. 61 days when being exposed to cold temperature

and restricted food. Ad libitum feeding conditions were predicted to

shift the location of the median to four days earlier, whereas

medium and warm temperatures caused shifts of the location 23 or

32 days earlier, respectively (Table 1). These predictions matched

rather well with the timing of metamorphoses observed in each

treatment group, with largest deviations between model predic-

tions and observed patters being mainly in the beginning and in

the end of each metamorphosis pattern (Fig. 2). Treating time as

interval censored did not change the model parameter estimates

much, although the standard errors increased (Table 1), suggesting

that the parametric survival model (eqn 3) is robust with respect to

the time resolution of observations of the transition events.

Similarly, the Cox regression model (eqn 3) also captured the

environmental variation in the timing of metamorphoses.

Parameter estimates for the continuous time model (Table 2)

clearly show that ad libitum food and medium and warm

temperature levels increase the probability of metamorphosis

relative to that in restricted food level and cold temperature. For

example, if being exposed to medium temperature and ad libitum

feeding conditions, the decrease in the probability of not being

metamorphosed by time t in contrast to the baseline probability

(restricted food level and cold temperature) could be described by

2log (P(T.t)) = P0 (t)62.18638.9 (Table 2). In all, Cox regression

model explained the data well, by incorporating 82.3% of

variation in the timing of metamorphoses (standard R2). When

T was interval censored, the explanatory power of Cox regression

was nearly as good with R2 being 74.4%.

In the parametric survival model the estimated sire variance for

continuous time data was 2.63, giving an estimated additive

genetic variance (VA) of 10.5 over all the treatments. This is

roughly the same order of magnitude as the food effect: a

Figure 1. Timing of metamorphoses of common frog (Rana
temporaria) reared in a common garden experiment. Individuals
are exposed to three temperature and two food level (ad libitum or
restricted) treatments. In both panels, growth temperatures are
indicated with colours (see colour legend), and restricted food is
indicated with open circles/dashed line, and ad libitum feeding with
filled bullets/solid line. Individual observations of ages and weights at
metamorphosis are shown in panel A. Cumulative probabilities for the
timing of metamorphoses calculated from the raw data are shown in
panel B.
doi:10.1371/journal.pone.0003677.g001

Table 1. Model parameters and their standard errors (se) estimated with the parametric survival model (eqn 3) as applied to
common frog data.

Continuous time Time intervals (10 day)

parameter se p-value** parameter se p-value**

a* 60.94 0.227 ,0.01 60.04 0.258 ,0.01

Food ad libitum 23.76 0.223 ,0.01 22.39 0.299 ,0.01

Temp. 18 C 223.14 0.264 ,0.01 223.07 0.333 ,0.01

Temp. 22 C 232.23 0.290 ,0.01 231.94 0.368 ,0.01

s* 2.2 0.025 ,0.01 2.21 0.034 ,0.01

*Symbols a and s are the intercept and scale parameters in eqn 3.
**P-values are derived from z-tests.
doi:10.1371/journal.pone.0003677.t001
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difference of one standard deviation in the genetic quality (i.e. the

breeding value) of an individual is 3.24, only slightly less in

magnitude than the food effect (23.76). The sire effect for the

analysis with the 10 day interval censored time data was 2.79, so

the censoring has little effect on the point estimate.

Discussion

The models for probabilistic description of ontogenetic life-

history transitions presented in this study are convenient in the

sense that they can be readily fitted to an observed pattern of

transition events without tight requirement of information of

ontogenetic trajectories or temporal changes in covariates. In that

sense these models are of empirical type, aiming at describing the

transition pattern and how it is shifted by the covariates, rather

than pursuing (semi-)mechanistic description of causality between

covariates and transition rates as is done in the more sophisticated

model by van Dooren et al. [14]. These features of our models

allow for straightforward modelling of such data that might in

practice be typically available from wild, as well as for predicting

transition patterns relatively easily.

Simplicity of the models obviously does not come without trade-

offs: the lack of causal description of covariate effects on transitions

rates (i.e. the hazard) means that the models also do not provide

very detailed information about the mechanisms underlying the

individual transitions, but rather, describe average effects of

covariates on the entire transition patterns. Therefore, the models

provide a tool to approximate patterns of transitions in a

population and how those change if average environment changes,

but for a detailed description and prediction of unique ontogenic

trajectories and life-history strategies, the models capacity may be

limited. Also, our models can be oversimplified if covariates vary

strongly in time in a manner that cannot be encompassed by any

choice of a parametric survival time distribution (i.e. approximated

by the form of hazard underlying the chosen survival time

distribution), or if the covariate trajectories are very unique for

each individual, so that the stochasticity in the transition pattern

cannot be encompassed by the random part of the model. For

Figure 2. Cumulative probabilities for the timing of metamorphoses predicted by the parametric survival model (eqn. 3). Different
growth temperatures are indicated with different colours, and different food level treatments with different line types (solid line = ad libitum, dashed
line = restricted food). Gray lines beneath the estimated cumulative probabilities are the observed cumulative distributions for the timing of
metamorphosis.
doi:10.1371/journal.pone.0003677.g002

Table 2. Model parameters and their standard errors (se) estimated for the semi-parametric Cox regression survival model (eqn 4)
as applied to common frog data.

Continuous time Time intervals (10 day)

exp(parameter) se p-value* exp(parameter) se p-value*

Food ad libitum 2.18 0.066 ,0.01 1.68 0.063 ,0.01

Temp. 18 C 38.90 0.116 ,0.01 23.88 0.103 ,0.01

Temp. 22 C 641.25 0.156 ,0.01 129.23 0.131 ,0.01

*P-values are derived from z-tests.
doi:10.1371/journal.pone.0003677.t002
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these cases the transition rate based model developed by van

Dooren et al. [14] provides a better solution, but also requires both

more detailed and often individual specific data, and much

modelling effort to construct the analytical hazard function.

Consequently, we find the models suggested in this study and the

model developed by van Dooren et al. [14] to be complementary

rather than competing. First, our models can be utilized as a first

step to model ontogenetic transitions and, if their fit is not

considered sufficient, a more detailed model for the underlying

hazard [14,29] can be constructed based on the information the

simple models provide about the shape of the pattern and how it is

in average affected by covariates. Secondary, sometimes data is

not sufficient to provide detailed information about a process, so

the simplified models described here provide a way to utilize the

information that is available. If so, these models may also help the

assessment of how detailed data has to be to understand and

predict the full process, and to point out the most relevant

mechanisms on which empirical effort can then be focused.

In the comparison with empirical data on the timing of

metamorphoses of common frog, the parametric survival model

was able to describe the pattern of metamorphoses rather well

(Fig. 2), and Cox’s regression model showed its capability in

detecting relative roles of temperature and food in the timing of

metamorphoses (Table 2). Of course, as the experiments were

carried out in controlled laboratory conditions, the data may

include less uncontrolled variation that would be expected in wild.

Furthermore, covariates (temperature and food) were kept

constant over the developmental period, which would hardly be

a natural situation. Therefore, even though performing well in this

study, it would be informative to investigate the model

performance with datasets collected from the wild. Despite its

limitations the data used in this study demonstrates a situation in

which the simple survival models developed here might be

preferred over the traditional discrete time PRNs [7] and the

more sophisticated model by van Dooren et al. [14]. In the case of

discrete time PRNs, time should have been split into intervals wide

enough to encompass that many metamorphoses that the

proportion of metamorphosed individuals would reliably reflect

the underlying probability of metamorphoses. Predictions about

the metamorphoses could have been possible only within the same

fixed intervals and they would simply reflect the proportion of

metamorphoses seen in the data within the same interval, whereas

the parametric survival regression provides a continuous time

model for the underlying metamorphosis process (Fig. 2) and

allows one to derive predictions for any freely chosen interval. In

contrast, the model of van Dooren et al. [14] may be too

complicated way to start to analyse the data: in the absence of

strong prior knowledge of the ways in which covariates affect the

metamorphoses rate, one should integrate the survivor function for

several choices of hazard functions (eqn 2) to compare which of

them would provide best fit to the data. Therefore, the simple

survival models appear to provide a prompt but still fairly realistic

way to illustrate, analyze and predict the observed patterns of

metamorphoses in continuous time.

PRNs for the age and size at maturation have rapidly become

the tool-of-trade in studies of fisheries-induced evolution [9,30–

31]. To date, PRN analyses have been performed for more than a

dozen fish stocks (reviewed in [9]). These studies have looked at

long-term shifts in maturation in fish stocks with naturally periodic

maturation process [7–8], so that the logistic regression based

discrete time PRNs have been adequate in describing maturation.

Yet continuous time models have been developed for the transition

processes before [14] these have not become similarly established

modelling tools. The models presented in this study make the

concept of probabilistic modelling of ontogenetic life-history

transitions in continuous time more easily accessible, by offering

easy-to-use tools for analysing transition data typically available

from wild with little prior knowledge of mechanisms underlying

transitions. Likewise, by allowing easy incorporation of random

effects into the models, the survival analysis based models can be

applied to estimate genetic variability in transition probabilities,

given that the data contains the needed pedigree information.

Such data could be obtained from breeding (e.g. aquaculture)

experiments, or from data collected with aid of genetic markers

(e.g. [32]). These features should make the survival based models

useful e.g. in the studies investigating and predicting patterns of

metamorphosis in insects and amphibians. More generally, they

should aid the concept of probabilistic reaction norm becoming as

general and applicable tool in the studies of life-history variation as

the deterministic reaction norms are today.
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