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The post-translational modification of proteins with ubiquitin plays a central

role in nearly all aspects of eukaryotic biology. Historically, studies have focused

on the conjugation of ubiquitin to lysine residues in substrates, but it is nowclear

that ubiquitylation can also occur on cysteine, serine, and threonine residues, as

well as on the N-terminal amino group of proteins. Paradigm-shifting reports of

non-proteinaceous substrates have further extended the reach of

ubiquitylation beyond the proteome to include intracellular lipids and sugars.

Additionally, results from bacteria have revealed novel ways to ubiquitylate (and

deubiquitylate) substrates without the need for any of the enzymatic

components of the canonical ubiquitylation cascade. Focusing mainly upon

recent findings, this review aims to outline the current understanding of non-

lysine ubiquitylation and speculate upon the molecular mechanisms and

physiological importance of this non-canonical modification.
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Introduction

The post-translational modification of proteins is a method used throughout nature to

dramatically expand the complexity and plasticity of the encoded proteome (Walsh et al.,

2005). Ubiquitylation, the covalent attachment of the small globular protein ubiquitin to

substrate proteins, is an example of one such versatile and highly complex modification.

The process of ubiquitylation is achieved through the orchestrated action of three distinct

classes of enzyme (Figure 1A). In an ATP-dependent first step the C-terminal carboxy

group of ubiquitin is attached to a catalytic cysteine residue in a ubiquitin-activating (E1)

enzyme (Ciechanover et al., 1981; Hershko et al., 1981). This ‘activated’ ubiquitin is then

transferred onto the active-site cysteine of a ubiquitin-conjugating (E2) enzyme via a

transthiolation reaction (Hershko et al., 1983). Finally, the E2 cooperates with a ubiquitin

ligase (E3) enzyme to facilitate the transfer of ubiquitin to the substrate, canonically by the

formation of an amide (isopeptide) bond between the C-terminal carboxy group of

ubiquitin and the ε-amino group of a lysine residue in the target protein (Pickart 2001).

With over 600 members encoded in the human genome (Li et al., 2008) E3 ligases

represent the most numerous enzyme family in the ubiquitylation cascade, but they may

be further divided into several smaller subfamilies based upon protein fold and

mechanism of action (Berndsen and Wolberger 2014). The RING (Really Interesting

New Gene) and U-box ligases stimulate direct transfer of ubiquitin to the substrate
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(Deshaies and Joazeiro 2009) whereas the HECT (Homologous

to E6AP Carboxyl Terminus) and RBR (RING-between-RING)

ligase families contain a catalytic cysteine residue that undergoes

transthiolation to form a thioester-linked intermediate with

ubiquitin prior to ubiquitylation of the substrate (Wenzel

et al., 2011; Lorenz 2018). Additionally, two new classes of

transthiolating E3 have recently been discovered. MYCBP2

(Myc-binding protein 2) represents the first example of an

RCR (RING-Cys-Relay) ligase that contains two catalytic

cysteine residues that relay ubiquitin to the substrate via

thioester intermediates (Pao et al., 2018) while RNF213

(RING Finger Protein 213) utilizes a non-canonical zinc-

binding RZ (RNF213-ZNFX1 finger) domain to conjugate

ubiquitin via an active-site cysteine residue (Ahel et al., 2021;

Otten et al., 2021). Substrate ubiquitylation can take several

different forms, sometimes referred to as the ‘ubiquitin code’

(Komander and Rape 2012). Some substrate proteins are

ubiquitylated at a single lysine with only a single ubiquitin

(monoubiquitylation) while for others this process may be

repeated on multiple lysines to give rise to multi-

monoubiquitylation. Additional complexity comes from

ubiquitin’s ability to self-conjugate to the ε-amines of any of

its seven internal lysines, allowing the formation of polyubiquitin

chains (Komander 2009) (Figures 1B,C). These

conformationally-distinct ubiquitin linkages provide an

information-rich architectural scaffold that may be recognized

by distinct ubiquitin binding domains to produce diverse

biological outcomes (Dikic et al., 2009).

While lysine ubiquitylationmay still be considered canonical,

atypical non-lysine ubiquitylation is establishing itself as yet

another way that this compact 76-amino-acid protein can

surprise us with its versatility. It is now clear that ubiquitin

can modify cystine, serine and threonine residues, as well as the

N-terminal amino group of proteins. Furthermore, recent reports

of non-proteinaceous substrates extend the reach of

ubiquitylation beyond the proteome, while exciting results

from bacteria remove the need for the canonical

ubiquitylation machinery entirely, revealing novel ways to

FIGURE 1
Components of the conventional ubiquitylation cascade. (A) A multicomponent enzyme cascade is used to transfer ubiquitin (Ub) to its
substrates. RING and U-box ligases facilitate the transfer of ubiquitin from E2 directly to substrate lysine whereas the transthiolating classes of ligase
(HECT/RBR/RCR/RZ-finger) first covalently bind ubiquitin at their own active site cysteine before transferring it to substrate. Ubiquitin can be
removed by specialized deubiquitylating enzymes (DUBs). (B) The structure of ubiquitin (PDB: 1UBQ) (Vijay-Kumar et al., 1987) is shown as a
smoothed backbone trace. The position of ubiquitin’s seven lysine residues is indicated. (C) Different ubiquitylation topologies are possible:
monoubiquitylation, multi-monoubiquitylation, and polyubiquitylation (in which ubiquitin can ubiquitylate itself to form amide-linked chains) all
occur.
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couple ubiquitin to substrates. The history of non-lysine

ubiquitylation has been charted by a series of comprehensive

review articles (Wang X. et al., 2012; McDowell and Philpott

2013; McDowell and Philpott 2016; McClellan et al., 2019; Squair

and Virdee 2022) but in view of exciting recent developments it is

timely to revisit and update some examples of non-canonical

ubiquitylation to discuss emerging themes and consider the

future of this burgeoning field.

Beyond the ubiquitylation of lysine

By the mid-to-late 1980s it had become generally accepted

within the ubiquitin community that ubiquitylation involved the

formation of an isopeptide bond between the C-terminus of

ubiquitin and the ε-amino group of a lysine residue in the

substrate protein (Busch 1984; Hershko 1988; Chau et al.,

1989). Despite this, puzzling examples existed—and would

continue to arise—of protein ubiquitylation in the absence of

available lysines (Hershko et al., 1984; Hershko and Heller 1985;

Hodgins et al., 1996; Brandimarti and Roizman 1997; Yu et al.,

1997). In addition, it was recognized early on that the

ubiquitylation machinery was highly promiscuous and capable

of working with non-native substrates (Rose and Warms 1983;

Pickart and Rose 1985a; Pickart and Rose 1985b), a property that

has since been exploited in numerous structural and mechanistic

studies (see, for example, Sung et al., 1991; Burchak et al., 2006;

Eddins et al., 2006;Wenzel et al., 2011; Plechanovova et al., 2012).

Isopeptide bond formation during ubiquitylation is an example

of an acyl transfer reaction, where the electron-deficient carbonyl

carbon of the thioester linkage undergoes nucleophilic attack by

the lone pair of electrons on the ε-amino nitrogen atom of the

substrate lysine (Figure 2A). In principle this mechanism can also

operate with the N-terminal amino group of proteins, as well as

with the nucleophilic amino acid side chains of cysteine, serine,

threonine, and tyrosine (Figures 2B,C). These latter chemical

linkages (thioester and oxyester bonds), though conceptually

possible, were initially considered too labile to be of

FIGURE 2
Canonical and non-canonical ubiquitylation both represent examples of nucleophilic acyl transfer. (A) Conventional ubiquitylation involves the
attack of the electrophilic thioester carbonyl of an E2-ubiquitin (Ub) conjugate by the lone pair electrons of the substrate lysine amine group. This
leads to the formation and then collapse of a tetrahedral intermediate, expelling the E2 leaving group and resulting in lysine ubiquitylation. The same
mechanism may also be employed to ubiquitylate the free amine group of the N-terminus of the polypeptide backbone. (B) Like nitrogen, the
cysteine thiol also possesses a lone pair of electrons and can act as a nucleophile in an acyl transfer reaction. This same mechanism is employed by
E2s themselves when they accept ubiquitin from the E1 enzyme, as well as by the transthiolating E3 ligases. This reaction leads to the formation of a
thioester. (C) The amino acids serine, threonine, and tyrosine possess a nucleophilic hydroxyl group which can be ubiquitylated by means of a
nucleophilic acyl transfer mechanism. The resulting linkage between ubiquitin and the substrate is an oxyester.
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physiological relevance but a substantial body of work

accumulated over the past two decades has challenged this

assertion.

N-terminal ubiquitylation

Met1-linked polyubiquitin

The best characterized example of non-lysine ubiquitylation

involves the formation of a peptide bond between the carboxy-

terminus of an incoming ‘donor’ ubiquitin and the amino-

terminus of the preceding ‘acceptor’ ubiquitin to generate so-

called ‘linear’ or Met1-linked polyubiquitin chains, key players in

immune signaling and cell death regulation (linear ubiquitylation

has been extensively reviewed elsewhere and the reader is

directed towards one of the many excellent reviews on the

subject, such as Elliott 2016, Hrdinka and Gyrd-Hansen 2017,

Rittinger and Ikeda 2017, Dittmar and Winklhofer 2019, Oikawa

et al., 2020, Fuseya and Iwai 2021, or Jahan et al., 2021). Met1-

linked ubiquitin is specifically generated by the linear ubiquitin

chain assembly complex (LUBAC) (Kirisako et al., 2006), the

only E3 ligase capable of producing Met1-linked ubiquitin chains

de novo (Emmerich et al., 2013; Peltzer et al., 2014; Emmerich

et al., 2016) (Figure 3A). LUBAC is composed of three

proteins—HOIL-1 (Haem-oxidised IRP2 ubiquitin ligase-1),

HOIP (HOIL-1-interacting protein), and Sharpin (SHANK-

associated RH domain-interacting protein)—and although

both HOIL-1 and HOIP possess E3 ubiquitin ligase activity, it

is HOIP that represents the enzyme directly responsible for

Met1-linked ubiquitin synthesis (Kirisako et al., 2006; Gerlach

et al., 2011; Ikeda et al., 2011; Tokunaga et al., 2011; Smit et al.,

2012; Stieglitz et al., 2012). HOIP is a member of the

transthiolating RBR class of E3 ubiquitin ligases, and as such

it is HOIP, and not its cognate E2, that determines ubiquitin

chain linkage type (Kirisako et al., 2006; Berndsen andWolberger

2014). A unique domain known as the linear ubiquitin chain-

determining domain (LDD) is located C-terminal to the active-

site cysteine, where it orientates the proximal ‘acceptor’ ubiquitin

such that the α-amino group of its N-terminal methionine is

available for conjugation to the distal ‘donor’ ubiquitin to form a

linear linkage (Smit et al., 2012; Stieglitz et al., 2012; Stieglitz et al.,

2013) (Figure 3B). Additionally, a zinc finger insert within the

HOIP catalytic domain forms part of the acceptor ubiquitin

binding platform and is important for chain synthesis. Like other

E3 ligases, HOIP utilizes a conserved catalytic triad in which a

conserved histidine proximal to the active-site cysteine acts as a

general base to deprotonate the incoming acceptor ubiquitin

nucleophile and mutation of this histidine, while permitting

thioester formation, blocks aminolysis and renders the enzyme

unable to form ubiquitin chains (Stieglitz et al., 2013;

Lechtenberg et al., 2016). Because of its exquisitely specific

catalytic mechanism it is highly likely that HOIP can only

ubiquitylate pre-existing ubiquitin chains, something it has

been shown to do in the context of innate immune signaling,

where it assembles Met1-linked chains on existing Lys63-linked

ubiquitin polymers (Emmerich et al., 2013; Emmerich et al.,

2016).

As with ubiquitin chains assembled via conventional lysine

linkages, Met1-linked ubiquitin chains are recognized by distinct

ubiquitin binding proteins that act to translate the signal into

specific cellular outcomes (Fennell et al., 2018). NEMO (NF-κB
essential modifier) and ABIN1 (A20-binding inhibitor of NF-κB-
1) play essential roles in the NF-κB signaling pathway by binding

FIGURE 3
Met1-linked ubiquitin is synthesized by the Linear Ubiquitin Chain Assembly Complex (LUBAC). (A) LUBAC is a trimeric complex composed of
HOIP, HOIL-1, and Sharpin. HOIP binds its cognate E2 (very likely UBE2L3 (Lewis et al., 2015)) and by means of a transthiolationmechanism that sees
ubiquitin transferred toCys885 in the catalytic RBR domain of the ligase, buildsMet1-linked (‘linear’) ubiquitin chains inwhich peptide bonds between
the C- andN-termini of ubiquitin create a single continuous polypeptide chain of repeating ubiquitin units. (B) Structure of theminimal catalytic
core of HOIP in complexwith acceptor (purple) and donor (dark blue) ubiquitin (PDB: 4LJO) (Stieglitz et al., 2013). The unique LDD (wheat colour) and
zinc-finger (pink) domains of HOIP help ensure that the C-terminus of the donor ubiquitin and N-terminus of the acceptor ubiquitin align for
Met1 linkage formation. Note the proximity of the catalytic cysteine (coloured yellow) to the N-terminus of the acceptor ubiquitin, explaining the
specificity for linear chains.
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to Met1-linked ubiquitin chains via their UBAN domains

(Ubiquitin-binding domain in ABIN and NEMO), a domain

they also share with the autophagy receptor Optineurin (Wagner

et al., 2008; Komander et al., 2009; Lo et al., 2009; Oshima et al.,

2009; Rahighi et al., 2009; Nakazawa et al., 2016). Binding of

Met1-linked ubiquitin chains to NEMO induces a

conformational change in the protein that is necessary for

activation of the IκB protein kinase complex and resulting

downstream inflammatory signaling (Rahighi et al., 2009;

Tokunaga et al., 2009; Kensche et al., 2012; Zhang et al., 2014;

Hauenstein et al., 2017), whereas ABIN1 acts to restrict the

signal, probably by competing with NEMO for ubiquitin chain

binding (reviewed in Cohen and Strickson 2017). Met1-linked

ubiquitin chains thus appear to act as molecular scaffolds to

recruit and bind signaling complexes, as well as conventional

second messengers that can activate the catalytic activity of those

complexes.

Like many other regulatory post-translational modifications

ubiquitylation is reversible, with ubiquitin chains existing in a

dynamic equilibrium that balances E3-mediated assembly

against enzyme-mediated disassembly by a family of

approximately 100 deubiquitylases (DUBs) (Clague et al.,

2019; Lange et al., 2022). Among the DUBs, Otulin (OTU

deubiquitylase with linear linkage specificity) and CYLD

(Cylindromatosis) are capable of hydrolyzing Met1-linked

polyubiquitin selectively (Komander et al., 2009; Keusekotten

et al., 2013; Rivkin et al., 2013; Ritorto et al., 2014; Sato et al.,

2015). Interestingly, these DUBs associate with LUBAC by

binding directly (Otulin) or indirectly (CYLD) to HOIP’s

N-terminal PUB (PNGase/UBA or UBX-containing proteins)

domain in a mutually exclusive manner (Elliott et al., 2014;

Schaeffer et al., 2014; Takiuchi et al., 2014; Draber et al., 2015;

Elliott et al., 2016; Kupka et al., 2016; Schlicher et al., 2016;

Wagner et al., 2016). Mutations in the ‘writers’, ‘readers’, and

‘erasers’ of the Met1-linked ubiquitin signal are associated with

various severe human pathologies, such as cancer, and

inflammatory, autoimmune, and neurodegenerative diseases

(Jahan et al., 2021), dramatically highlighting the importance

of this atypical ubiquitin linkage.

N-terminal ubiquitylation of other
proteins

Well over a decade before the discovery of Met1-linked

polyubiquitin chains, the lab of Alexander Varshavsky

reported the intriguing finding that the N-terminal

ubiquitin moiety of the artificial fusion protein Ubiquitin-

Proline-β-galactosidase served as a degradation signal in yeast,

permitting the formation of a polyubiquitin chain linked to

Lys48 of the fused ubiquitin (Johnson et al., 1992). In this case

the attachment of the ‘priming’ ubiquitin moiety was an

engineered rather than a natural event, but N-terminal

ubiquitylation was subsequently shown to occur naturally at

the N-terminus of the mammalian transcription factor MyoD

(Myoblast determination protein) (Breitschopf et al., 1998). A

lysine-less MyoD mutant was still degraded in vivo and

ubiquitylated forms of lysine-less MyoD accumulated after

proteasomal inhibition. Moreover, selective chemical

modification of the N-terminus or fusion of a Myc tag to

the N-terminal residue of wild-type MyoD prevented

degradation. Since then, similar biochemical approaches

have been used to identify a number of other proteins

degraded through N-terminal ubiquitylation, such as cyclin

G1 (Li et al., 2009) and the cyclin-dependent kinase inhibitors

p21WAF/Cip1 (Bloom et al., 2003; Coulombe et al., 2004), p19ARF

(Kuo et al., 2004), and p16INK4a (Ben-Saadon et al., 2004; Kuo

et al., 2004) amongst others (see McDowell and Philpott 2016

for more examples). While some direct evidence of N-terminal

ubiquitylation was obtained in these early studies by mass

spectrometry (Ben-Saadon et al., 2004; Coulombe et al., 2004),

until recently no quantitative proteomics data was available on

this modification. The global profiling of isopeptide-linked

ubiquitylation sites was revolutionized a decade ago by the

development of an antibody recognizing the diglycine

remnant present on ubiquitylated lysines after tryptic

digestion (Xu et al., 2010), fast becoming the method of

choice for enrichment and identification of ubiquitylated

sites (Kim et al., 2011; Udeshi et al., 2013; Steger et al.,

2022). A major drawback of this technique however is that,

due to the nature of the antibody epitope, it does not enrich for

peptides originating from N-terminally ubiquitylated

proteins. Recently other strategies, including the

development of antibodies that recognize peptides bearing

an N-terminal diglycine motif, have allowed detection of

N-terminal ubiquitylation sites on a global scale (Akimov

et al., 2018a; Akimov et al., 2018b; Davies et al., 2021;

Trulsson et al., 2022). These studies reveal that the relative

abundance of N-terminal ubiquitin linkages is exceedingly low

(to date several hundred sites have been identified), likely due

to the fact that 80–90% of human proteins can be acetylated at

their N-termini, a modification that would preclude

N-terminal ubiquitylation (Arnesen et al., 2009).

Interestingly, no significant accumulation of N-terminal

ubiquitylated proteins was observed upon proteasome

inhibition, suggesting that N-terminal ubiquitylation has

roles beyond that of a degradation signal.

Thus far the ubiquitin conjugating enzyme UBE2W is the

only E2 known to catalyze ubiquitylation of the N-termini of

proteins (Scaglione et al., 2013; Tatham et al., 2013; Davies et al.,

2021). UBE2W strictly monoubiquitylates its substrates, priming

them for polyubiquitylation by other E2/E3 complexes. Unlike

the HOIP subunit of LUBAC, UBE2W does not elongate linear

ubiquitin chains, implying that the N-terminus of the attached

monoubiquitin cannot serve as a UBE2W substrate. This is likely

because ubiquitin’s N-terminus is highly structured and evidence
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suggests that UBE2W recognizes the peptide backbone of

proteins that possess intrinsically disordered N-termini (Vittal

et al., 2015). Comparison of the active site of UBE2W with those

of classical E2s reveals distinct differences that make UBE2W

better suited to accommodate an N-terminal α-amino group

rather than the ε-amino group of a lysine residue side chain.

Canonical E2s are characterized by a conserved His-Pro-Asn

(HPN) motif where the critical asparagine residue (equivalent to

N77 in UBE2D1) is thought to stabilize the oxyanion transition

state intermediate (Wu et al., 2003) and play structural roles that

facilitate transfer of ubiquitin to substrate lysines (Berndsen et al.,

2013). Notably, UBE2W is unique among the ~40 human E2s as

it contains a histidine at this key position (Figure 4). Moreover, a

highly conserved Asp/Ser residue thought to be important in

canonical E2s for placement and deprotonation of the incoming

substrate lysine (Yunus and Lima 2006; Plechanovova et al., 2012;

Valimberti et al., 2015) is absent in UBE2W and replaced instead

by a cluster of basic residues. A partly disordered and highly

flexible C-terminus that can occupy multiple positions in

proximity to the active site cysteine also allows UBE2W to

accommodate a diverse set of disordered N-termini (Vittal

et al., 2015). Despite these unusual features of UBE2W, it has

still been reported to display some activity towards internal lysine

residues in substrates (Scaglione et al., 2013; Fletcher et al., 2015)

and recent proteomic analyses indicate that enzymes other than

UBE2W are responsible for the majority of the N-terminal

ubiquitylation sites reported to date (Davies et al., 2021),

suggesting that other enzymes still await discovery. The

E3 ubiquitin ligase HUWE1 (HECT, UBA and WWE domain

containing 1) has been shown to ubiquitylate lysine-less MyoD

on its N-terminus, but the physiological relevance of this is

unclear as HUWE1 preferentially modifies internal lysines in

FIGURE 4
Novel sequence features of UBE2W and UBE2J2 that may determine non-canonical specificity. (A) A sequence alignment of the residues in
selected human and yeast E2s close to the active site cysteine (highlighted in red) reveals that canonical lysine-directed E2s contain a conserved
upstream arginine residue (normally part of an HPNmotif) and a downstream Asp/Ser residue (both highlighted in yellow). E2s known to ubiquitylate
hydroxylated residues are written in red and notably differ in the amino acids present at these sites. Divergent catalytically-important amino
acids in UBE2W are highlighted in green, including the basic cluster that replaces the conserved D/S residue. The equivalent residues in UBE2J2 and
its yeast homologue UBC6 are highlighted in blue. The names of E2s involved in transthiolation of cysteine residues are written in orange. Sequence
alignments were performed using the Clustal Omega server (Sievers and Higgins 2021) and manually edited where necessary to match known
structural information (Gundogdu and Walden 2019). (B) Phylogenetic tree depicting relationships between the selected E2s shown in (A). The non-
canonical ERAD-related E2 conjugating enzyme UBE2J2 and its yeast homologue UBC6 are highlighted in blue, UBE2W is highlighted in green.
Analysis was performed by aligning the ubiquitin-conjugating UBC fold of selected E2s in Clustal Omega and is displayed using iTOL (Letunic and
Bork 2021).
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MyoD and does not ubiquitylate the N-terminus of the wild-type

protein (Noy et al., 2012).

Most N-terminal protein modifications, such as acetylation

and initiator methionine removal, are irreversible events

(Varland et al., 2015) but N-terminal ubiquitylation appears

to be an exception. A family of enzymes known as the

ubiquitin C-terminal hydrolases (UCHs) were the first class of

DUB to be described (Rose and Warms 1983). Purified UCH

enzymes are inactive against isopeptide- and Met1-linked

ubiquitin dimers in vitro (Komander et al., 2009; Ritorto

et al., 2014) but display deubiquitylase activity against

N-terminally ubiquitylated peptides and various N-terminally

ubiquitylated proteins, such as autoubiquitylated UBE2W (Woo

et al., 1995; Bett et al., 2015). Interestingly, UCH family members

are themselves substrates for UBE2W and ubiquitylation of their

N-termini alters their DUB activity (Davies et al., 2021).

Ubiquitylation of cysteine

Cysteines play a significant role in the ubiquitylation cascade:

the E1 and E2 enzymes, as well as several classes of E3 enzyme, all

bind to ubiquitin via thioester linkage to cysteine. Compared to

amides (peptides/isopeptides), thioesters are significantly more

reactive towards nucleophilic acyl transfer (Figure 5A). This is

because the thioester bond is more strongly polarized than the

amide, in which the partial positive charge on the carbonyl

carbon is stabilized by electron donation from nonbinding

electrons on the adjacent nitrogen, decreasing electrophilicity

(Soderberg 2019) (Figure 5B). This, coupled with the fact that

thiolate (RS–) is a good leaving group, means that the thioester

linkage is more labile and has a lower thermodynamic stability

than the amide bond, but also means that thioesters can be

formed more quickly than amide bonds and are the more

kinetically favoured reaction. Thioesters are therefore well-

suited to processes requiring quick transient modification,

such as the cysteine relays observed in the ubiquitylation

cascade from E1 to E3. Intriguingly, evidence suggests that

protein structure can stabilize biological thioesters, with the

cellular half-life of a thioester-linked model substrate

calculated to be several hours (Song et al., 2009). Therefore, in

a biological context, the linkage is not as labile as might be

imagined and ubiquitylation on cysteines could potentially

provide a fast response to be employed in rapid signaling

events which, coupled with the sensitivity of cysteines to the

redox environment of the cell (Wang Y. et al., 2012) or even small

changes in local pH (Marino and Gladyshev 2012), could provide

a greater range of dynamic signaling behaviour than

ubiquitylation on lysines alone. These concepts are nicely

illustrated by the example of cysteine monoubiquitylation

during protein import into peroxisomes.

Cysteine ubiquitylation regulates
peroxisomal protein import

Peroxisomes are highly versatile and dynamic organelles that

play essential roles in cellular lipid metabolism, redox

homeostasis, and innate immune signaling (Nordgren and

Fransen 2014; Islinger et al., 2018; Di Cara et al., 2019). In

contrast to other organelles, peroxisomes can import completely

folded and even oligomeric or co-factor bound proteins into the

peroxisomal matrix without prior unfolding of the protein

(Glover et al., 1994; McNew and Goodman 1994; Titorenko

et al., 2002). In humans and animals this protein import is

mediated by the soluble cargo receptor PEX5 (Peroxin 5)

(Walter and Erdmann 2019). PEX5 recognizes cytosolic cargo

proteins bearing a peroxisomal targeting signal and transports

them into the peroxisomal matrix via a transiently-formed and

poorly-understood translocation channel (Francisco et al., 2017;

Walter and Erdmann 2019; Skowyra and Rapoport 2022).

Following cargo release into the peroxisomal matrix PEX5 is

then extracted from peroxisomes by a hexameric AAA+ ATPase

and recycled back to the cytosol for further rounds of import

(Miyata and Fujiki 2005; Platta et al., 2005). Unusually, this

recycling step requires PEX5 monoubiquitylation at a conserved

cystine residue (Cys11) within the unstructured N-terminal

region of the protein (Carvalho et al., 2007; Platta et al., 2007;

FIGURE 5
The relative reactivity of ubiquitin conjugating bonds. (A) The
amide group is the least reactive, and therefore the most stable, of
the acyl groups formed during ubiquitylation. The thioester is the
most reactive, and therefore the least stable, whereas the
oxyester is somewhere in between. (B) The stability of the amide
bond is due to stabilization of the partial positive charge on the
carbonyl carbon by electron donation from non-bonding
electrons on the adjacent nitrogen, thus decreasing
electrophilicity. In contrast, thioesters exhibit much weaker
resonance stabilization due to poor overlap between the electron
orbitals in sulfur and carbon.
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Williams et al., 2007; Okumoto et al., 2011) (Figure 6A).

Replacing Cys11 with lysine still permits PEX5 recycling but

results in polyubiquitylation that increases the likelihood of

PEX5 degradation rather than recycling (Grou et al., 2009;

Schwartzkopff et al., 2015). Related proteins in Saccharomyces

cerevisiae and Pichia pastoris are similarly released into the

cytosol by a process that requires cysteine-dependent

monoubiquitylation (El Magraoui et al., 2013; Liu and

Subramani 2013) and loss of functional protein import/export

occurs upon mutation of the corresponding N-terminal cysteine

residues to serine or alanine (Leon and Subramani 2007; Hensel

et al., 2011; Rudowitz et al., 2020).

A complex of three membrane-embedded RING-type

E3 ubiquitin ligases (PEX2, PEX10, and PEX12) functions to

ubiquitylate PEX5 (Williams et al., 2008; Platta et al., 2009; El

Magraoui et al., 2012; Okumoto et al., 2014). The three subunits

form a channel with an open ~10 �A pore in which the RING

domains are positioned on the cytosolic side ready to ubiquitylate

the emerging PEX5 (Feng et al., 2022). In yeast,

Pex5 ubiquitylation is catalyzed by the membrane-tethered

E2 enzyme Pex4 (Wiebel and Kunau 1992; Platta et al., 2007;

Williams et al., 2007; ElMagraoui et al., 2014) whereas in humans

the E2 enzymes UBE2D1, UBE2D2, and UBE2D3 have been

proposed to function with the peroxisomal E3 ligase complex to

catalyze Cys11 monoubiquitylation of PEX5 (Grou et al., 2008).

In addition to its monoubiquitylation on cysteine, PEX5 can also

be mono- and polyubiquitylated on lysine residues by the PEX2/

PEX10/PEX12 ligase complex, as well as other ligases such as

TRIM37 (Tripartite Motif Containing 37) in order to regulate

PEX5 stability (reviewed in Wang and Subramani 2017). In

FIGURE 6
Membrane-spanning E3 ligase complexes facilitate non-lysine ubiquitylation during PEX5 recycling and ER-associated protein degradation. (A)
Cargo proteins destined for peroxisomal import are recognized in the cytosol by PEX5. PEX5 and cargo then translocate from the cytosol into the
lumen of the peroxisome. The unstructured N-terminus of PEX5 inserts into the pore of an E3 ligase complex containing three RING-type E3s and is
monoubiquitylated on a cysteine residue, triggering the extraction of PEX5 from the peroxisome by a hexameric ATPase. This extraction is
accompanied by PEX5 unfolding and cargo release. Once in the cytosol PEX5 refolds and is deubiquitylated, allowing a new round of cargo import to
begin. (B) Misfolded or unfolded glycoproteins in the ER lumen are retrotranslocated into the cytosol by an E3 ligase complex and ubiquitylated by
this complex upon emergence on the cytosolic side. The membrane-bound ubiquitin conjugating enzyme UBE2J2 acts with the ligase complex to
modify a range of amino acid residues (Lys/Cys/Ser/Thr) in the misfolded target protein, triggering its proteasomal degradation.
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contrast to UBE2W discussed earlier, the E2s reported to catalyze

cysteine ubiquitylation of PEX5 are not specifically adapted

(Figure 4A); indeed, as members of the UBE2D family they

represent the very definition of a ‘canonical’ E2, also mediating

the conventional lysine-directed ubiquitylation of PEX5 (Platta

et al., 2004; Wang W. et al., 2017). These E2s are, however,

extremely promiscuous (Stewart et al., 2016) and have been

reported to possess an intrinsic E3-independent reactivity

against both lysine and cysteine residues (Wenzel et al., 2011).

Indeed, the ability to replace Cys11 with lysine and still achieve

ubiquitylation (Grou et al., 2009; Schwartzkopff et al., 2015)

suggests that, from an E2/E3 point-of-view, it is the position of

the ubiquitylation site that is important, not necessarily the

residue. So why is cystine preferred?

As already detailed, the intrinsic lability of thioesters

makes them well-suited to transient responses such as rapid

PEX5 recycling. In addition, the nucleophilicity of the cysteine

residue is sensitive to changes in both redox environment and

local pH (Pace and Weerapana 2013). As suggested by their

name, peroxisomes contain enzymes that both produce and

degrade hydrogen peroxide (De Duve and Baudhuin 1966) as

well as several other reactive oxygen species (Nordgren and

Fransen 2014). Studies from both yeast and mammalian cells

suggest that monoubiquitylation on cysteine serves as a redox-

sensitive switch, allowing cells to sense and cope with redox

stress by regulating PEX5 ubiquitylation and PEX5-mediated

protein import in response (Ma et al., 2013; Apanasets et al.,

2014; Walton et al., 2017). Under oxidizing conditions

PEX5 cannot be monoubiquitylated at Cys11 and is

retained in the translocation machinery (Apanasets et al.,

2014). This prevents the import of the antioxidant enzyme

catalase into peroxisomes, causing its retention in the cytosol

where it can protect the cell against oxidative damage in a

manner that peroxisomally-targeted catalase cannot (Walton

et al., 2017). By contrast, oxidizing conditions only weakly

decrease the monoubiquitylation of a C11K mutant of PEX5

(Apanasets et al., 2014), with the decreased ubiquitylation

likely due to the effects of oxidation on the cysteine-containing

enzymes of the ubiquitylation cascade (Jahngen-Hodge et al.,

1997). Therefore, cysteine ubiquitylation extends the

biological possibilities of ubiquitylation beyond those

afforded by lysine, offering new functions and methods for

regulation.

The PEX5 import cycle is completed by deubiquitylation in

the cytosol (Figure 6A) (El Magraoui et al., 2019). Non-

enzymatic cleavage by the major cytosolic nucleophile

glutathione has been proposed (Grou et al., 2009) but

biochemical studies in yeast and mammals have identified the

PEX5-directed DUBs Ubp15 (Debelyy et al., 2011) and USP9X

(Grou et al., 2012), respectively. It is possible that additional or

redundant DUBs may also be involved in PEX5 deubiquitylation

at Cys11 as many DUBs possess significant cysteine thioesterase

activity (De Cesare et al., 2021) and recently a pool of USP30 has

been reported to localize to peroxisomes in cells (Marcassa et al.,

2018; Riccio et al., 2019).

In addition to PEX5, several other proteins have been

reported to be ubiquitylated on cysteine residues (see

McClellan et al., 2019 for further examples). Of note, studies

on proteins regulating lipid homeostasis have revealed further

examples of redox regulated cysteine ubiquitylation. Reactive

oxygen species generated during lipid-overload-induced

oxidative stress competitively block the cysteine-directed

ubiquitylation of ACAT2 (Acyl-coA:cholesterol acyltransferase

2) and INSIG2 (Insulin-induced gene 2) by competitively

oxidizing the modified cysteine residue, leading to stabilization

of these proteins and a resulting decrease in cellular lipid levels

that can ameliorate lipotoxicity (Wang YJ. et al., 2017; Zhou et al.,

2020). It is possible that competitive oxidation and ubiquitylation

on cysteine may be a common mechanism regulating many

proteins in response to oxidative stress, but since most

experimental samples are prepared in the presence of strong

reducing agents that are not conducive to investigation of thiol-

sensitive ubiquitylation, the true extent of cysteine ubiquitylation

is currently unknown.

Ubiquitin-oxyester linkages

Ubiquitin can also be attached to serines, threonines, and

(theoretically) tyrosines via an oxyester linkage (Figure 2C).

This bond is more stable than a thioester, but less stable than

an amide linkage (Figure 5A), with a reported cellular half-life

of several hours at 37°C (De Cesare et al., 2021). While there

are confirmed reports of serine and threonine forming

ubiquitin-oxyester linkages, there are as yet no reports of

tyrosines being ubiquitylated in this way. Due to the

delocalization of electrons in its aromatic ring, tyrosine is

less reactive than the aliphatic residues serine and threonine,

but given that tyrosines are the target of other post-

translational modifications (Jones et al., 2014) their

ubiquitylation should not be ruled out.

ERAD and UBE2J2

The earliest evidence for non-amide-linked ubiquitylation

came from studies on the viral MARCH (membrane-associated

RING-CH) ligase known as kK3 (Kaposi’s sarcoma-associated

Herpesvirus protein K3), which was shown to promote the

degradation of major histocompatibility complex (MHC) class

1 heavy chain by ubiquitylating it on a conserved cysteine residue

in its cytoplasmic tail (Cadwell and Coscoy 2005). Just as

surprising as this initial discovery of thioester-linked

ubiquitylation was the finding that mK3, a homologue of

kK3 expressed by murine ɣ-herpesvirus-68, promoted MHC-1

HC degradation via ubiquitylation of serine or threonine
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residues, and not cysteine (Wang et al., 2007), leading to the

formation of a base-labile oxyester bond rather than a reductant-

sensitive thioester and providing the first evidence for such a

linkage in a biological system.

In both these examples the viral ligases exploit a cellular

pathway known as endoplasmic reticulum (ER)-associated

degradation (ERAD) to downregulate MHC-1 expression and

evade immune recognition (Byun et al., 2014). A multi-step

pathway involving the chaperone-mediated selection of

misfolded proteins in the ER and their retrotranslocation

through the ER membrane for ubiquitylation and degradation

in the cytosol (Figure 6B) (Lemberg and Strisovsky 2021), to date

ERAD has provided more examples of oxyester-linked

ubiquitylation than any other biological process (see

McClellan et al., 2019). Surprisingly, despite the structural

diversity and sheer quantity of potential ERAD substrates

(estimated to be up to one-third of all eukaryotic proteins

(Huh et al., 2003)), only a handful of E2s and E3s have been

implicated in ERAD (Christianson and Ye 2014), suggesting that

the ERAD ubiquitylation machinery operates more

opportunistically and with less substrate stringency than the

cytoplasmic quality control system. This is consistent with

data that reveals a promiscuous ubiquitylation of lysine,

cysteine, serine, and threonine residues in ERAD substrates

(Ishikura et al., 2010; Shimizu et al., 2010; Burr et al., 2013;

Boban et al., 2015; Weber et al., 2016; Chua et al., 2019).

Yeast ERAD relies mainly on two E2 enzymes one of which,

Ubc6, has been shown to target the hydroxylated amino acids

serine and threonine (Weber et al., 2016). The human orthologue

of Ubc6 is the ER-membrane-associated protein UBE2J2, which

has been shown to preferentially promote ubiquitylation of

hydroxylated amino acids, even when lysine residues are

present on substrates (Wang et al., 2009; De Cesare et al.,

2021). Similar to the situation described earlier for

PEX5 ubiquitylation, there is target residue flexibility in

ERAD—ubiquitylated serine and threonine residues may be

experimentally substituted for lysine or cysteine residues with

little effect on ubiquitylation efficiency and substrate

degradation—suggesting that the essential determinant driving

substrate ubiquitylation may be target residue position rather

than identity (Cadwell and Coscoy 2005; Wang et al., 2007;

Cadwell and Coscoy 2008; Herr et al., 2009; Wang et al., 2009;

Ishikura et al., 2010). And like UBE2W, UBE2J2 lacks the

canonical HPN motif involved in catalysis, as well as the

nearby Asp/Ser residue thought to be involved in suppressing

the pKa of substrate lysine residues during canonical isopeptide

bond formation (Figure 4A) suggesting that the absence of these

motifs might be a common theme in enzymes targeting residues

other than lysine. A further notable parallel between

PEX5 recycling, UBE2W-catalysed ubiquitylation and

UBE2J2 activity is that UBE2J2 is primarily a

monoubiquitylating enzyme (De Cesare et al., 2021) whose

yeast homologue, Ubc6, requires the activity of another E2,

Ubc7 (homologue of human UBE2G2), in order to extend the

initial Ser/Thr ubiquitylation and polyubiquitylate substrate

proteins with K48-linked ubiquitin chains, targeting them for

proteasomal degradation (Weber et al., 2016; Lips et al., 2020;

Schmidt et al., 2020). In an interesting twist Ubc7 itself can be

degraded by polyubiquitylation of its active site cysteine by the

HECT-domain ligase Ufd4 (Ravid and Hochstrasser 2007).

Budding yeast rely upon two non-redundant RING type

E3 ubiquitin ligases, operating in conjunction with E2s

Ubc6 and Ubc7, to modify substrates with K48-linked

polyubiquitin chains (Vashist and Ng 2004; Carvalho et al.,

2006). Both of these ligases, Doa10 and Hrd1, are

evolutionarily conserved, but humans also use an expanded

collection of ERAD-related RING and U-box E3s

(Christianson and Ye 2014). There is currently little evidence

that, beyond HRD1 and MARCH6 (the human

Doa10 homologue), any of these additional ligases partner

with UBE2J2 to catalyze non-lysine ubiquitylation under

normal conditions, but it has been speculated that during

cytomegalovirus infection the ligase TMEM129, which uses

UBE2J2 as its cognate E2 partner, is appropriated by the viral

protein US11 to degrade MHC-1 HC via oxyester-linked

ubiquitylation (van den Boomen et al., 2014; McClellan et al.,

2019). This remains to be directly determined.

HOIL-1

Before it was identified as a component of LUBAC, HOIL-1

was independently cloned and variously described as a binding

partner and E3 ubiquitin ligase for oxidized iron regulatory

protein 2 (IRP2) (Yamanaka et al., 2003), a protein associated

with hepatitis B virus X protein (Cong et al., 1997), a binding

partner of protein kinase C (PKC) (Tokunaga et al., 1998), and a

specific interactor with the ubiquitin conjugating enzyme

UBE2L3 (Martinez-Noel et al., 1999). Early work

characterized HOIL-1 as a K48-specific ubiquitin ligase

(Yamanaka et al., 2003; Bayle et al., 2006; Zenke-Kawasaki

et al., 2007; Zhang et al., 2008; Rana et al., 2013; Queisser

et al., 2014) whereas an in vitro study from 2012 found

HOIL-1 to possess an extremely weak E3 ligase activity that

synthesized purely Met1-linked ubiquitin chains (Stieglitz et al.,

2012). In disagreement with these reports a much overlooked

study from 2008 came to the conclusion that HOIL-1 could

autoubiquitylate in vitro with a strong preference for

monoubiquitylation (Tatematsu et al., 2008) and a further

study reported that HOIP and HOIL-1 were both required for

the polyubiquitylation of NEMO in vitro (Smit et al., 2013).

Recently the characterization of catalytically inactive HOIL-1

knock-in mice combined with biochemical assays that tested for

non-lysine ubiquitylation revealed that HOIL-1 catalyzes the

ubiquitylation of serine and threonine on several physiological

substrates in vivo, including itself, fellow LUBAC component
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Sharpin, the IL-1 receptor associated kinases IRAK1 and IRAK2,

and the Toll-like receptor (TLR) adapter protein MyD88

(Myeloid differentiation factor 88), all of which are

components of, or proteins associated with, a large oligomeric

immune signaling complex known as the Myddosome (Kelsall

et al., 2019). Together with further work by other labs, this study

confirmed that HOIL-1 acts to conjugate monoubiquitin onto its

substrates via an oxyester linkage, permitting subsequent chain

elongation by other ligases, such as the Met1-specific E3 ligase

HOIP (Kelsall et al., 2019; Fuseya et al., 2020; Petrova et al., 2021;

Rodriguez Carvajal et al., 2021). A complex and dynamic

interplay between oxyester-linked and amide-linked

ubiquitylation operates during immune receptor stimulation,

with oxyester-anchored chains apparently acting to limit the

size and number of conventional isopeptide-anchored and

amide-linked chains on substrates (Kelsall et al., 2019; Petrova

et al., 2021). Furthermore, HOIL-1 can monoubiquitylate HOIP,

allowing the conjugation of linear ubiquitin chains to HOIP that

attenuate the Met1-linked ubiquitylation of other LUBAC targets

in cells (Heger et al., 2018; Fuseya et al., 2020). This interplay

between amide-linked and oxyester-linked ubiquitylation is also

highlighted by a recent report that Met1-linked ubiquitin chains

produced by HOIP—and K63-linked ubiquitin chains produced

by ligases such as TRAF6 (TNF receptor-associated factor 6)

(Deng et al., 2000)—allosterically activate HOIL-1 catalytic

activity in vitro (Kelsall et al., 2022). In vivo, ester-linked

ubiquitin tunes the strength of the immune signal and may

therefore promote or inhibit cytokine production in immune

cells depending on the nature of the stimuli and the type of cell

analyzed (Petrova et al., 2021).

Intriguingly, HOIL-1 can form oxyester linkages between

ubiquitin monomers in vitro, with oxyester linkages at Thr12,

Ser20, Thr22 and Thr55 all identified by mass spectrometry

(Kelsall et al., 2019; Rodriguez Carvajal et al., 2021). Indeed,

Rodriguez Carvajal et al. (2021) reconstituted a highly pure

LUBAC holoenzyme by co-expression of the LUBAC

components in insect cells and found that the complex

assembled highly branched linear ubiquitin chains in which

branching was achieved by oxyester bond formation between

ubiquitin molecules. These oxyester linkages within ubiquitin

chains may also act to limit or terminate chain extension,

possibly explaining why the ubiquitin chains that become

attached to IRAK1 and IRAK2 during TLR signaling are

much larger in macrophages from mice expressing an

E3 ligase-inactive mutant of HOIL-1 (Kelsall et al., 2019). To

date, the existence of oxyester-linked ubiquitin dimers has not yet

been directly confirmed by mass spectrometry in vivo, but it is

notable that ubiquitin—which contains seven threonine residues,

three serine residues, and one tyrosine—possesses a greater

number of hydroxylated residues capable of forming oxyester-

linked chains than it does lysine residues (Figure 7A). The

potential therefore exists for a significant expansion of the

existing ubiquitin code.

No high-resolution structure is available for the catalytic

domain of HOIL-1. As a transthiolating RBR ligase HOIL-1 is

thought to determine target specificity (rather than its cognate

E2) and so structural information will be crucial to understand

how HOIL-1 achieves specificity, but crucial also to explain the

inherent flexibility in HOIL-1 activity that permits it to catalyze

both oxyester- and, some degree, isopeptide-linked

ubiquitylation in vitro (Fuseya et al., 2020). In many other

RBR ligases, such as HOIP or HHARI, a conserved histidine

residue close to the catalytic cystine acts as a general base to

deprotonate the incoming acceptor ubiquitin nucleophile

FIGURE 7
HOIL-1 catalyzes serine and threonine ubiquitylation. (A) Structure of ubiquitin (PDB: 1UBQ) (Vijay-Kumar et al., 1987) highlighting the eleven
hydroxylated amino acids (shown in red). HOIL-1 can form ubiquitin dimers in vitro, with oxyester linkages at Thr12, Ser20, Thr22, and Thr55 all
reported. Note that the last three of these residues cluster at a single region on the surface of ubiquitin. (B) Alignment of the human RBR domain
sequences in the catalytic RING2 domain. Conserved zinc coordinating residues that form the RING2 fold are highlighted yellow, the active site
cysteine is highlighted in red, the catalytic histidine residue present in most RBRs is highlighted in gray; in HOIL-1 this is a tryptophan and is
highlighted in blue. Unique inserts exist in HOIL-1, HOIP, and RNF216, and putative or confirmed zinc coordinating residues are highlighted purple.
The identity of the last three zinc binding residues in the HOIL-1 RING domain is currently unknown and consequently these residues are not aligned.
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(Cotton and Lechtenberg 2020). Uniquely amongst the RBR

ligases, HOIL-1 contains a tryptophan residue at this position

(Figure 7B), suggestive of a specifically tailored catalytic

mechanism. It is notable that HOIL-1 also contains an

unusual extension in its catalytic domain consisting of a

number of potential zinc binding residues. The RBR ligases

HOIP and RNF216 both contain zinc-finger insertions in their

catalytic domains that help dictate their distinct chain-type

specificities (Stieglitz et al., 2013; Cotton et al., 2022) and so

the presence of an additional zinc binding site in HOIL-1 raises

the possibility that this may provide the unique functionality

permitting its formation of oxyester linkages. It has also been

suggested, based upon cross-linking mass spectrometry and a

low-resolution 3D reconstruction of the human complex, that

LUBAC contains a single catalytic core made up of the catalytic

domains of both HOIL-1 and HOIP (Rodriguez Carvajal et al.,

2021), raising the possibility that LUBAC may utilize a

coordinated ubiquitin relay mechanism, similar to that

observed in the RCR ligase MYCBP2 (Pao et al., 2018).

MYCBP2

The transient nature of protein-protein interactions,

combined with the lability of the thioester bond, complexity

of the ubiquitylation cascade, and the remarkable speed with

which ubiquitylation reactions can occur (Pierce et al., 2009),

have led to the development of a range of chemical biological

tools to stabilize the fleeting transition states that exist

(Henneberg and Schulman 2021). The use of one such

‘activity-based probe’ unexpectedly identified the E3 ligase

MYCBP2 (Myc-binding protein 2) as a transthiolating enzyme

in possession of an unprecedented 30 kDa enzymatic RCR

(RING-Cys-Relay) module consisting of a RING domain

followed by two downstream catalytic cysteine residues

residing within a unique zinc-binding domain (Pao et al.,

2018). The first of these cysteines receives ubiquitin from the

catalytic cysteine of the RING-bound E2 UBE2D3 and ‘relays’ it

intramolecularly over a distance of approximately 24�A to the

second cysteine (Pao et al., 2018; Mabbitt et al., 2020). This

second site utilizes a canonical catalytic triad of cysteine,

histidine, and glutamic acid to transfer the ubiquitin to

substrates. Strikingly, MYCBP2 has no activity against lysine

and instead targets the hydroxylated residues threonine and

serine, with a strong preference observed for threonine in

model substrates. This threonine selectivity may be

understood from the crystal structure, which reveals that the

esterification site of the enzyme contains a hydrophobic pocket

that engages the side chain methyl group of threonine and

optimally positions the substrate hydroxyl for catalysis (Pao

et al., 2018).

MYCBP2 plays an important role in the programmed

degeneration of nerve fibres following injury (Virdee 2022).

Mutations that disrupt the RING domain of MYCBP2 in

Drosophila stabilize the axon survival factor NMNAT2

(Nicotinamide mononucleotide adenylyltransferase 2), one of

the most likely targets of MYCBP2’s non-lysine E3 activity

(Xiong et al., 2012). MYCBP2 has been shown to ubiquitylate

NMNAT2 by esterification in vitro (Pao et al., 2018) and knock-

in mice in which the catalytic relay of MYCBP2 is disrupted by

mutation display delayed injury-induced axon degeneration

(Mabbitt et al., 2020). These results highlight the important

role that oxyester-linked ubiquitylation may play during

pathological neuropathies and neurodegenerative disorders

such as Parkinson disease, where programmed axon

degeneration plays a prominent role (Adalbert and Coleman

2013).

Deubiquitylases with activity against
oxyester linkages in representative model
substrates

Around two-thirds of known DUBs have been screened for

threonine esterase activity, leading to the surprising discovery

that most DUBs are almost equally capable of cleaving both

isopeptide- and oxyester-linked ubiquitin from substrates (Sun

et al., 2018; De Cesare et al., 2021). Notable exceptions are the

OTU (Ovarian Tumour Domain) family of DUBs that

demonstrate negligible threonine esterase activity against

model substrates, consistent with the specialization of this

class of DUBs for cleavage of specific isopeptide-linked

polyubiquitin chains (Mevissen et al., 2013). Members of the

MJD (Machado-Josephine Disease) family of DUBs, on the other

hand, display a selective esterase activity toward both serine and

threonine that appears to be facilitated by the conspicuously

hydrophobic nature of their catalytic sites (De Cesare et al.,

2021). To date only a small number of arguably non-

physiological substrates have been analyzed, but the ability of

so many DUBs to deubiquitylate oxyester-linked substrates, and

of some DUBs to do so preferentially, suggests that non-lysine

ubiquitylation, far from representing a minor cellular peculiarity,

may in fact occur on a scale not previously imagined.

Non-protein substrates

Until recently only proteins were considered as substrates for

ubiquitylation. This focus on proteins is understandable given

that ubiquitylation was originally discovered as a protein

degradation signal (see Ciechanover 2009 for a historical

perspective) but fails to account for the catalytic pliancy of

the ubiquitylation machinery, which has often proved itself

capable of working with a range of small non-protein

substrates in vitro (Rose and Warms 1983; Pickart and Rose

1985a; Pickart and Rose 1985b; Wenzel et al., 2011; Pao et al.,
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2018; Lips et al., 2020). It has been known for over 2 decades that

a ubiquitin-like conjugation reaction can form an amide bond

between members of the Atg8 family of ubiquitin-like proteins

and membrane lipids such as phosphatidylethanolamine

(Ichimura et al., 2000) but whether such non-proteinaceous

substrates existed for ubiquitin was, until recently, completely

unknown. Now several studies published within the last 5 years

have uncovered a range of non-protein substrates that includes

ADP-ribose, bacterial lipopolysaccharide (LPS), and cellular

sugars.

RNF213 and lipopolysaccharide
ubiquitylation

Ubiquitin plays an important part in the host cell’s defense

against bacterial infection (reviewed in Tripathi-Giesgen et al.,

2021). Invading bacteria are labelled with a coating of ubiquitin

that activates subsequent antibacterial autophagy (Perrin et al.,

2004). The ubiquitylation of several bacterial outer membrane

proteins has been reported (Fiskin et al., 2016) but recently Otten

et al. (2021) made the unexpected discovery that the outer

membrane glycolipid LPS could be ubiquitylated in the Gram-

negative bacteria Salmonella enterica. Using Salmonella mutants

defective in generating portions of LPS, the authors could show

that hydroxyl groups in the Lipid A component of LPS are the

targets of ubiquitylation (Figure 8A). Biochemical fractionation

from cell lysates led to the identification of RNF213 as the

enzyme responsible for this unusual activity (Otten et al.,

2021). This giant, multi-domain E3 ligase is the largest single-

chain E3 identified in the human proteome and mutations in the

gene encoding it are associated with the progressive

cerebrovascular disorder Moyamoya disease (Kamada et al.,

2011; Liu et al., 2011). Surprisingly, the RING domain of

RNF213 is not required for its intrinsic E3 ligase activity

(Ahel et al., 2020), nor its ubiquitylation of LPS (Otten et al.,

2021). Instead, an adjacent zinc-binding domain uses a cysteine-

dependent transthiolation mechanism to conjugate ubiquitin in a

manner reminiscent of the HECT, RBR, and RCR families of

E3 ligases (Ahel et al., 2021; Otten et al., 2021).

A cascade of E3 enzymes generates and shapes the ubiquitin

coat associated with cytosolic bacteria (Tripathi-Giesgen et al.,

2021). Of these, LUBAC requires pre-existing ubiquitylation of

invading bacteria for its own recruitment (Noad et al., 2017; van

FIGURE 8
Non-proteinaceous substrates of ubiquitylation. (A) The Lipid A component of bacterial lipopolysaccharide represents theminimal substrate for
RNF213-mediated ubiquitylation of LPS. The precise site of attachment is not yet known. (B)Glycogen is a highly branched polymer of glucose. Most
glucose units are linked together by α(1,4)-glycosidic bonds with branches formed by the introduction of glycosidic bonds at the C6 hydroxy position
every 8–12 glucose units. This C6 hydroxy group is also the target of HOIL-1-catalysed ubiquitylation of glycogen and related sugars. (C) The
Deltex family E3 ligases can catalyze the conjugation of ubiquitin to ADP-ribose by means of an oxyester linkage between the 1′-hydroxy group of
ribose and ubiquitin’s C-terminus. This reaction requires all the components of the ubiquitylation cascade and involves no recognized ADP-
ribosyltransferase.
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Wijk et al., 2017). Otten et al. (2021) found that cells lacking

RNF213, or containing mutations in RNF213s catalytic zinc-

binding domain, failed to recruit LUBAC and to accumulate

Met1-linked ubiquitin chains on the bacterial cell surface,

indicating that RNF213-mediated LPS ubiquitylation functions

to initiate LUBAC-mediated immune signaling. Intriguingly,

RNF213 has also been reported to counteract infection with

the Gram-positive bacterium Listeria monocytogenes, which lacks

LPS (Thery et al., 2021), implying that other targets of

RNF213 activity exist. It is notable too that mutations in

RNF213 that predispose individuals to Moyamoya disease do

not affect LPS ubiquitylation (Otten et al., 2021) suggesting that

bacterial ubiquitylation does not play a role in the disease, which

may instead be caused by other functional defects in RNF213.

Consistent with the promiscuous esterase activity displayed

by many DUBs (De Cesare et al., 2021), the ubiquitylation of LPS

was found to be antagonized by the broad-specificity

deubiquitylase USP2 in vitro (Otten et al., 2021). Whether

further DUBs, either host- or Salmonella-derived, can catalyze

LPS deubiquitylation remains an open question. It is tempting to

speculate that the ubiquitylation of non-proteinaceous substrates

might represent a general mechanism for the detection and

clearance of many different kinds of invading pathogen.

Equally intriguing is the thought that other non-proteinaceous

biomolecules, such as host cell lipids, might serve as targets of

RNF213 ubiquitylation. Studies linking RNF213 to lipid

metabolism (Piccolis et al., 2019) and lipid drop formation

(Sugihara et al., 2019) make this an idea worthy of further

investigation.

HOIL-1 and polysaccharide ubiquitylation

In addition to its ability to ubiquitylate serine and threonine

residues in substrates, the LUBAC component HOIL-1 is also

capable of ubiquitylating non-protein substrates (Kelsall et al.,

2022). Human patients deficient in HOIL-1 accumulate dense

inclusions of insoluble starch-like polysaccharide in a number of

organs including skeletal and cardiac muscle, resulting in

cardiomyopathy and heart failure necessitating cardiac

transplant (Boisson et al., 2012; Nilsson et al., 2013; Wang

et al., 2013; Fanin et al., 2015; Krenn et al., 2018; Phadke

et al., 2020; Chen et al., 2021; AlAnzi et al., 2022; Krishnan

et al., 2022). These precipitates, known as Polyglucosan Bodies,

are also observed in the heart and brain of mice expressing

catalytically inactive HOIL-1, establishing that the E3 ligase

activity of the enzyme is required to prevent polyglucosan

accumulation (Kelsall et al., 2022). Polyglucosan represents an

aberrant poorly-branched form of the normally high-branched

glucose storage polymer glycogen. Tellingly, the HOIL-1

interacting proteins HOIP and Sharpin both bind to

polyglucosan-like polysaccharides in vitro but fail to bind to

healthy glycogen, suggesting that LUBAC may localize to sites of

polyglucosan deposition in cells. In vitro ubiquitylation

experiments have revealed that HOIL-1 can directly

monoubiquitylate glycogen and smaller model

oligosaccharides via an oxyester linkage. Interestingly the site

of this ubiquitylation is the C6-hydroxy moiety of the

hydroxymethyl group of the glucose monomers that make up

glycogen (Kelsall et al., 2022) (Figure 8B), the same hydroxy

group that is used to form a branch point in normal soluble

glycogen (Wolfrom and O’Neill 1949; Cori and Larner 1951).

This has led to speculation that HOIL-1 may act as part of a

quality control mechanism to ubiquitylate and thereby promote

the removal of erroneously formed and insufficiently branched

glycogen prior to its precipitation from cells as polyglucosan

bodies (Kelsall et al., 2022).

While interesting, it should be stressed that these studies

represent in vitro results only and further work is still needed to

establish the link between HOIL-1’s monoubiquitylation of

oligosaccharides in vitro and the essential role played by

HOIL-1’s E3 ligase activity in preventing polyglucosan

deposition in vivo. In particular there is, as yet, no evidence of

glycogen ubiquitylation in vivo. Nor is there any evidence that

LUBAC associates with polyglucosan deposits in cells. Several

inherited diseases of glycogen metabolism are characterized by

polyglucosan body deposition (Hedberg-Oldfors and Oldfors

2015). One of these, Lafora Disease, is reminiscent of HOIL-1

deficiency and is also caused by mutations in genes not encoding

the classical enzymes of glycogen synthesis. Notably, both Lafora

Disease and HOIL-1 deficiency lead to hyperphosphorylation of

glycogen at the C6 hydroxy group, something not observed in

adult polyglucosan body disease caused by mutations in GBE1

(Glycogen Branching Enzyme 1) (Tagliabracci et al., 2008;

Turnbull et al., 2010; DePaoli-Roach et al., 2015; Nitschke

et al., 2017; Sullivan et al., 2019; Nitschke et al., 2022). This

observation reveals an intriguing interplay between glycogen

branching, ubiquitylation, and phosphorylation at the

C6 position while also suggesting that HOIL-1 may operate as

part of a system that intersects or parallels that which

malfunctions to cause Lafora Disease. Approximately 50% of

Lafora Disease patients have mutations in the gene encoding a

RING-family E3 ubiquitin ligase called Malin (Mitra et al., 2022).

Previous studies have assumed the physiological substrates of

Malin to be proteins participating in glycogen synthesis and

regulation (Gentry et al., 2005; Cheng et al., 2007; Vilchez et al.,

2007; Solaz-Fuster et al., 2008; Worby et al., 2008; Moreno et al.,

2010; Rubio-Villena et al., 2013) but in light of the priming role

observed for HOIL-1 in ubiquitylation of the proteins of the

Myddosome an attractive alternative is that Malin may act in

concert with HOIL-1 to extend HOIL-1’s initial priming

monoubiquitin and form polyubiquitin chains on glycogen.

HOIL-1’s ability to ubiquitylate sugars also makes the

involvement of LUBAC in the ubiquitylation of cytosolic

bacteria such as Salmonella an interesting avenue for further

study. Can HOIL-1 ubiquitylate LPS, like RNF213, or are there

Frontiers in Molecular Biosciences frontiersin.org14

Kelsall 10.3389/fmolb.2022.1008175

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1008175


other non-protein bacterial substrates for HOIL-1 activity such

as peptidoglycan? The sequential recruitment of two ligases

capable of ubiquitylating non-protein substrates is a highly

unexpected development in our understanding of cell-

autonomous immunity and one that opens up an exciting

new world of possibilities and opportunities.

Deltex ligases and ADP-ribose

There are now multiple examples of interplay between

ubiquitylation and ADP-ribosylation, a post-translational

modification that reversibly attaches one or multiple

adenosine 5′-diphosphate (ADP)-ribose units onto substrates

(Vivelo et al., 2019). In one such example a complex comprising

the RING E3 ligase DTX3L (Deltex-3-like) and the protein

mono-ADP-ribosyltransferase PARP9 (Poly (ADP-ribose)

polymerase 9) was shown to catalyze the attachment of ADP-

ribose to the C-terminal glycine of ubiquitin (Figure 8C) (Yang

et al., 2017). Initially assumed to be catalyzed by the ADP-

ribosylation activity of PARP9, it was subsequently

demonstrated that the conserved ~230-residue RING-DTC

(Deltex C-terminal) domains from DTX3L and other human

Deltex family members (DTX1-4) were sufficient to catalyze the

reaction themselves (Chatrin et al., 2020). Structural studies

revealed that ubiquitin-loaded E2 (UBE2D2) bound to the

ligase RING domain was brought into close proximity with

NAD+ (nicotinamide adenine dinucleotide) bound to the DTC

domain, facilitating the attachment of ADP-ribose to ubiquitin’s

C-terminus. Therefore the exact mechanistic role of PARP9 in

the DTX3L/PARP9 complex is unclear, but other Deltex ligases

have also been reported to bind PARP enzymes (Ahmed et al.,

2020; Wang et al., 2021), and heteromerization of DTX3L with

PARP9 enhances both its canonical E3 ligase activity and its

ADP-ribosyl transferase-like activity (Yang et al., 2017; Ashok

et al., 2022). In addition to binding NAD+, the DTC domain of

Deltex ligases can also bind to ADP-ribose, and it has been shown

that the conventional ubiquitylation of target proteins by the

Deltex family member DTX2 first requires their PARP1/2-

mediated ADP-ribosylation (Ahmed et al., 2020), suggesting

one possible role for PARP9 in the DTX3L/PARP9 complex.

The attachment of ADP-ribose to the C-terminus of

ubiquitin has been observed in cells (Chatrin et al., 2020) but,

as yet, no functions have been directly linked to this modification.

It has been speculated however that conjugation of ADP-ribose

to ubiquitin prevents conjugation of the ubiquitin to proteins by

the canonical pathway (Chatrin et al., 2020). To date descriptions

of the conjugation of ADP-ribose to ubiquitin have portrayed the

reaction as an atypical form of ADP-ribosylation, but as the

reaction can take place in the absence of recognized ADP-ribosyl

transferases and strictly requires a three-enzyme cascade of

E1 activating enzyme, E2 conjugating enzyme, and

E3 ubiquitin ligase to attach the C-terminus of ubiquitin to an

ADP-ribose substrate it may justifiably be considered as an

example of non-canonical ubiquitylation. The reaction

mechanism of such an unusual form of ubiquitylation would

likely involve the prior hydrolysis of NAD+ into nicotinamide

and ADP-ribose, possibly by the DTC domain, allowing the

nucleophilic attack of the thioester bond by the 1′-hydroxy group
of the now no longer nicotinamide-bound ribose moiety.

Alternatively, the reaction may proceed like a canonical

“substrate-assisted” ADP-ribosylation reaction with the

C-terminal carboxylate group of ubiquitin acting as a

nucleophile to attack NAD+. This mechanism would require

hydrolysis of the E2-ubiquitin thioester bond in order to free

ubiquitin’s C-terminus and permit nucleophilic attack, for which

there is some evidence (Chatrin et al., 2020). Further mechanistic

studies will be required to firmly establish which of these

methods are used by Deltex family E3s to catalyze this

remarkable form of ubiquitylation.

Ubiquitylated ADP-ribose can be recycled in cell lysates

(Yang et al., 2017; Chatrin et al., 2020) and several linkage

non-specific DUBs (Chatrin et al., 2020) and ADP-

ribosylhydrolysases (Ashok et al., 2022) can remove ADP-

ribose from ubiquitin in vitro. ADP-ribosylation is a

phylogenetically ancient type of target-modifying signal that

pre-dates the emergence of ubiquitylation and is conserved

across all domains of life (Perina et al., 2014). The dynamic

interplay between ubiquitin and ADP-ribose hinted at by these

studies fits into a broader picture linking ADP-ribosylation and

ubiquitylation, exemplified by the poly-ADP-ribosylation-

dependent ubiquitylation of Axin by RNF146 (DaRosa et al.,

2015) or the more recent findings that bacteria can catalyze the

conjugation of ubiquitin to a serine or tyrosine residue in

substrates via a phosphoribosyl linker—a novel type of non-

lysine ubiquitylation known as phosphoribosyl (PR)-

ubiquitylation (see below).

Phosphoribosyl ubiquitylation in
Legionella pneumophilia

Bacteria lack a ubiquitin system of their own (Maupin-

Furlow 2014). Nevertheless, they have evolved various highly

effective strategies to hijack and co-opt the eukaryotic ubiquitin

signaling system for their own needs (Berglund et al., 2020). In

some instances this has led to the evolution of novel mechanisms

that are significantly different from those observed elsewhere in

nature. Members of the SidE effector protein family (SdeA, SdeB,

SdeC and SidE) produced by Legionella pneumophilia bypass the

classical three-enzyme cascade to catalyze a type of serine- and

tyrosine-directed E1/E2-independent ubiquitylation known as

phosphoribosyl (PR)-ubiquitylation (Figure 9) (Bhogaraju et al.,

2016; Qiu et al., 2016; Kotewicz et al., 2017; Zhang et al., 2021). A

combination of ADP-ribosyltransferase (ART) and

phosphodiesterase (PDE) domains allows SidE-type enzymes
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to catalyze the conjugation of ubiquitin to substrate hydroxyl

groups via a phosphoribosyl linker (Akturk et al., 2018; Dong

et al., 2018; Kalayil et al., 2018; Kim et al., 2018; Wang et al.,

2018). In the first step of a multi-step reaction the ART domain

uses the nucleotide cofactor NAD+ to ADP-ribosylate ubiquitin

on the side chain of Arginine 42. This intermediate is then

recognized by the PDE domain, which uses a catalytic histidine

nucleophile to cleave the high-energy phosphoanhydride bond

between the two phosphate groups in ADP-ribosylated ubiquitin,

generating Arg42 phosphoribosylated ubiquitin. This PR-

ubiquitin is either transferred to serine or tyrosine residues in

substrates or released from the enzyme’s active site due to

hydrolysis. Interestingly, unconjugated PR-ubiquitin, much

like ubiquitin conjugated to ADP-ribose via its C-terminus by

Deltex ligases, cannot participate in conventional E1-mediated

ubiquitylation and so poisons the host cell’s ubiquitylation

machinery (Bhogaraju et al., 2016).

PR-ubiquitylation targets a large cohort of structurally

diverse host proteins to promote bacterial proliferation,

including proteins associated with ER remodeling,

mitochondrial dynamics, autophagy, Golgi morphology, and

the secretory pathway (Qiu et al., 2016; Kotewicz et al., 2017;

Wan et al., 2019; Shin et al., 2020; Kawabata et al., 2021; Liu et al.,

2021; Zhang et al., 2021). Structural analyses combined with the

use of model target peptides suggests a promiscuous site

selectivity in which disordered polypeptides with hydrophobic

residues surrounding the target serine/tyrosine residue represent

the preferred substrates (Akturk et al., 2018; Dong et al., 2018;

Kalayil et al., 2018; Wang et al., 2018; Zhang et al., 2021). Unlike

the other forms of non-canonical ubiquitylation discussed thus

far, PR-ubiquitylation cannot be cleaved by conventional DUBs

(Puvar et al., 2017). Instead, Legionella encodes two paralogous

effectors called DupA and DupB (deubiquitylase for PR-

ubiquitylation) that can specifically remove PR-ubiquitin from

substrates (Wan et al., 2019; Shin et al., 2020). These effectors

resemble the PDE domain of SdeA but display a higher affinity

towards PR-ubiquitylated substrates, thereby mediating their

DUP activity. Thus, Legionella can tune the level of PR-

ubiquitylation in cells. Although some understanding has been

gained, further studies will be required to fully appreciate how

this extremely unusual form of non-lysine ubiquitylation is

employed by Legionella to subvert the lost immune response

and promote bacterial survival.

Versatility and variety - New ways to
regulate substrate fate

Lysine is one of the most modified amino acids (Azevedo

and Saiardi 2016). So what advantage does nature derive from

also targeting amino acid side chains containing hydroxy or

thiol groups? Intuitively, this expansion of the ubiquitin code

extends the biological possibilities open to the ubiquitylation

machinery as well as offering up new methods for regulation

and crosstalk with the canonical lysine-directed ubiquitin

system. Several examples of this have been detailed during

the course this review. For example, cysteine ubiquitylation

of PEX5 following peroxisomal cargo import can act as a redox-

sensitive switch to allow cells to rapidly respond to oxidative

stress. The same ubiquitylation machinery that ubiquitylates

PEX5 on Cys11 can also degrade PEX5 by ubiquitylating it by

conventional means on lysine residues (reviewed, Wang and

Subramani 2017), highlighting not only the interplay that can

exist between canonical and non-canonical ubiquitylation but

also the promiscuity that seems to be a feature of the

ubiquitylation machinery involved in non-canonical

FIGURE 9
Unconventional ubiquitylation by Legionella pneumophilia. (A) Conventional eukaryotic ubiquitylation modifies substrate lysines. (B) PR-
ubiquitylation is catalyzed by SidE effectors such as SdeA and targets substrate serines and tyrosines.
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ubiquitylation. UBE2W, UBE2J2, RNF213, and the Deltex

ligases have all been reported to catalyze lysine-directed

ubiquitylation in addition to their non-canonical activities.

Such catalytic plasticity is not uncommon amongst enzymes

(Khersonsky and Tawfik 2010) and is consistent with

mutagenesis data from both ERAD and PEX5 recycling that

suggests that it is the position of the ubiquitylated residue and

not its identity that frequently determines whether

ubiquitylation occurs or not. Given the structural diversity

and potential quantity of substrates that UBE2J2 may have

to ubiquitylate during ERAD (potentially upwards of

7,000 unique proteins) this target residue flexibility may be

advantageous in permitting a more opportunistic mode of

action that allows arbitrary substrate proteins to be degraded

in a timely manner even if available lysine residues are sparse - a

sort of molecular failsafe mechanism. That said, the relationship

between ERAD and infectious pathogens can often resemble a

molecular arms race (Byun et al., 2014; Morito and Nagata

2015; Frabutt and Zheng 2016) and several AB-toxins, a class of

ERAD-subverting proteins produced by both plants and

bacteria, possess a remarkable arginine-over-lysine bias

suggested to help them escape ubiquitin-mediated

degradation during retrotranslocation to the cytosol (London

and Luongo 1989; Hazes and Read 1997; Deeks et al., 2002;

Rodighiero et al., 2002; Worthington and Carbonetti 2007). The

PST1 subunit of the pertussis toxin, for example, is a naturally

lysine-less protein (Locht and Keith 1986; Nicosia et al., 1986).

Replacing up to three of PST1’s twenty-two arginines with

lysines has no effect on in vitro enzymatic activity but

reduces PST1’s in vivo activity by promoting increased

proteasomal degradation (Worthington and Carbonetti

2007). A similar enhancement of proteasomal degradation is

observed upon introduction of four additional lysines into the

plant toxin Ricin, but interestingly mutation of its two

endogenous lysines has no discernable effect on degradation,

suggesting that the protein’s endogenous lysine residues are not

the usual sites of ubiquitylation (Deeks et al., 2002). Whether or

not ERAD substrates are ubiquitylated by priming upon

canonical or non-canonical residues may depend not only

upon the residues available in the substrate, but also the

E3 tasked with ubiquitylating them. The viral ligase

mK3 shows a preference for serine and threonine residues in

the MHC-I heavy chain even when lysines are available (Wang

et al., 2007; Wang et al., 2009), whereas the ERAD ligase

HRD1 can ubiquitylate MHC-I HC on both lysine and non-

lysine residues but shows a preference for lysine (Burr et al.,

2013). Lysine and non-lysine ubiquitylation can, in some cases,

lead to different kinetics of target protein degradation during

ERAD (Ishikura et al., 2010; Burr et al., 2013) suggesting

differential handling of these modifications by the ubiquitin-

proteasome machinery. Similarly, alterations in proteasomal

degradation are also observed when Cys11 in PEX5 is mutated

to lysine, encouraging polyubiquitylation of the peroxisomal

cargo receptor rather than monoubiquitylation (Schwartzkopff

et al., 2015).

Interplay between ubiquitylation and
phosphorylation

Perhaps one of the most obvious benefits of expanding

ubiquitylation to include residues beyond lysine is that it

affords the opportunity for crosstalk with additional post-

translational modifications (PTMs), at the same time avoiding

competition with lysine-targeted PTMs such as acetylation,

which has been reported to prevent substrate ubiquitylation

and suppress isopeptide-linked ubiquitin chain formation

(Gronroos et al., 2002; Ito et al., 2002; Vervoorts et al., 2003;

Bernassola et al., 2004; Jin et al., 2004; Simonsson et al., 2005; Le

Cam et al., 2006; Min et al., 2010; Ohtake et al., 2015; Fan et al.,

2022). The complex interplay between ubiquitylation and protein

phosphorylation is well established and has been extensively

reviewed elsewhere (see, for example, Hunter 2007; Chen and

Chen 2013; Nguyen et al., 2013; Cohen 2014; Schwertman et al.,

2016; Filipcik et al., 2017; Song and Luo 2019; Zhang and Zeng

2020; Dang et al., 2021; Lacoursiere et al., 2022). Therefore, the

ability of ubiquitin to target the same hydroxylated residues as

cellular kinases is an exciting development. In much the same

way that acetylation can inhibit substrate ubiquitylation by

competing for modification of the same lysine residue, it is

possible to envisage a situation where prior phosphorylation

of a serine or threonine could prevent its oxyester-linked

ubiquitylation (or vice-versa). HOIL-1 was identified in rat

brain by means of a yeast two-hybrid screen using Protein

Kinase C (PKC) β as bait (Tokunaga et al., 1998). It was

subsequently shown that phosphorylation of HOIL-1 by PKCβ
in vitro prevented its autoubiquitylation (Tatematsu et al., 2008).

Perhaps tellingly, one of the in vitro phosphorylation sites

identified in HOIL-1, Ser137, has also been reported as a site

of non-canonical HOIL-1 autoubiquitylation (Kelsall et al.,

2019), hinting that competition at this site may result in

mutually exclusive modifications. The ability of HOIL-1 to

form oxyester-linked ubiquitin dimers and introduce branch

points in polyubiquitin chains also offers the tantalizing

prospect of ubiquitin chain formation regulated by competing

phosphorylation on serines and threonines within ubiquitin

itself. Proteomic studies have detected phosphorylation of

most of the serine, threonine, and tyrosine resides in ubiquitin

(summarised in Herhaus and Dikic 2015; Swatek and Komander

2016; Hepowit et al., 2021) (Figure 7), although the functional

relevance, site stoichiometries, and kinases and phosphatases

responsible for these phosphorylations are largely unknown. By

far the best studied example of ubiquitin phosphorylation is the

phosphorylation of Ser65 catalyzed by PINK1 (PTEN induced

kinase 1) during mitochondrial autophagy. Allosteric binding of

this Ser65-phosphorylated ubiquitin to the E3 ubiquitin ligase

Frontiers in Molecular Biosciences frontiersin.org17

Kelsall 10.3389/fmolb.2022.1008175

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1008175


Parkin is required to relieve autoinhibition and achieve maximal

Parkin activation during oxidative stress models of mitophagy

(reviewed, Bayne and Trempe 2019; Tang and Zhang 2020).

Recently it has been reported that ubiquitin is phosphorylated at

Thr12 during the DNA damage response (Walser et al., 2020).

This is relevant because HOIL-1 produces ubiquitin dimers

conjugated at the Thr12 position (Kelsall et al., 2019;

Rodriguez Carvajal et al., 2021). Threonine-12 is one of just

sixteen ubiquitin residues that are essential for life in S. cerevisiae

(Sloper-Mould et al., 2001) and forms part of a ubiquitin surface

feature known as the TEK box (Jin et al., 2008; Kulathu and

Komander 2012), highlighting its importance in ubiquitin

biology. It will be interesting to see if phospho-Thr12 occurs

in response to other cellular stimuli and to establish if there is

indeed antagonism with ubiquitylation at the same site.

Is non-proteinaceous ubiquitylation a
widespread phenomenon

A further PTM that might compete with non-lysine

ubiquitylation at serine and threonine residues is

O-GlcNAcylation, a type of non-canonical nucleocytoplasmic

glycosylation that involves the attachment of a single

N-acetylglucosamine sugar moiety to Ser/Thr residues in

target proteins via a β-O-glycosidic linkage (Yang and Qian

2017). As it targets serine and threonine, there is a well-

established crosstalk between O-GlcNAcylation and

phosphorylation (Hart et al., 2011), but studies have also

revealed an extensive crosstalk between O-GlcNAcylation and

protein ubiquitylation (reviewed in Ruan et al., 2013). In addition

to the ability of non-lysine ubiquitylation to compete with

O-GlcNAcylation for modification of serine and threonine

residues, the recent finding that HOIL-1 can ubiquitylate

glucosaccharides gives rise to the intriguing idea that

O-GlcNAcylation might in fact create a new ubiquitylation

site that can be targeted by a specific sugar-directed ubiquitin

ligase. Protein glycosylation is typically considered to happen

outside of the nucleocytoplasmic milieu, but in reality

glycoproteins can, and do, appear in the cytosol, where they

serve as a trigger to promote ubiquitylation and degradation of

unwanted proteins and organelles (Yoshida and Tanaka 2018).

The ubiquitylation of LPS by RNF213 is an example of the fate

that may await a bacterial glycan in the cytosol, but in addition to

exogenous bacterial and viral surface-exposed glycans,

endogenous glycoproteins can appear in the cytosol as a result

of organelle damage or as a consequence of retrograde transport

of glycoproteins from the ER to the cytosol during ERAD. It is

tempting to speculate that the emergence of high-mannose

glycans into the cytosol in a process involving the highly

promiscuous non-canonical ubiquitin conjugating enzyme

UBE2J2 might create a situation where further non-protein

ubiquitylation can occur. In addition to enzymatic

glycosylation, proteins may also be glycated non-enzymatically

by reducing sugars such as glucose to form lysine-bound adducts

known as Schiff bases or Amadori products which, if left

unchecked, can proceed to irreversibly form dangerous

advanced glycation end products (Popova et al., 2010).

Organisms contain natural defenses against the formation and

accumulation of advanced glycation end products, but once more

it is tempting to speculate that ligases might exist that can

recognize and degrade proteins containing the Schiff base or

Amadori intermediates by directly ubiquitylating the sugar

moiety to prevent progression to advanced glycation end

products. Undoubtably, the field has many surprises to reveal

in the coming years as we learn more about non-proteinaceous

ubiquitylation, but such discoveries will require researchers to

transition into areas not normally associated with ubiquitylation

research and embrace technologies such as metabolomics,

glycomics, and lipidomics. Thus far evidence of non-protein

ubiquitylation has come about fortuitously during the course of

studying a specific protein or system of interest, but targeted

global screens will be required to truly gauge how widespread this

phenomenon is. The development of linkage-specific antibodies

and tailored methods for enrichment will also be necessary to

facilitate discovery in the same way that they have for

conventional lysine-directed ubiquitylation.

Experimental approaches to probe
non-canonical ubiquitylation - The
pitfalls and the prospects

The labile nature of thioester and oxyester bonds means that

current experimental methods may easily miss evidence of non-

canonical ubiquitylation. Something as simple as running SDS-

PAGE gels under reducing and non-reducing conditions reveals

how easily cystine-targeted ubiquitylation might be missed under

normal gel running conditions (Tait et al., 2007; Vosper et al.,

2009). And whereas the susceptibility of the oxyester bond to

hydrolysis under mild alkaline conditions proves a simple way to

test whether ubiquitylation is isopeptide- or oxyester-linked

(Wang et al., 2007; Pao et al., 2018; Kelsall et al., 2019), this

pH-dependent lability can also make this modification hard to

detect by methods such as mass spectrometry or gel analysis if the

sample is not carefully prepared and consideration taken to avoid

heating and high pH (Shimizu et al., 2010; Wang X. et al., 2012;

Anania et al., 2013; Lei et al., 2018).

Mass spectrometry is usually considered the gold standard to

identify protein ubiquitylation sites (Steger et al., 2022) but unless

machines are specifically programmed to search for non-lysine

ubiquitylation this information is simply lost amongst the

thousands of unassigned spectra (Pathan et al., 2017).

Ubiquitin proteomics is typically accompanied by an

enrichment step, often involving purification using a linkage-

specific ubiquitin binder (Hjerpe et al., 2009; Emmerich et al.,
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2013; Michel et al., 2017; Antico et al., 2021) or peptide

enrichment using an antibody recognizing the diGly remnant

attached to ubiquitylated lysines following tryptic digest (Xu

et al., 2010). As discussed earlier regarding N-terminal

ubiquitylation, this antibody is unlikely to enrich peptides

modified on residues other than lysine. To date no ubiquitin-

binding domain has been identified that specifically recognizes

non-lysine ubiquitin linkages but, based upon the close

association between HOIL-1-catalysed oxyester-linked

ubiquitin and HOIP-catalyzed Met1-linked ubiquitin chains,

the Met1-linked ubiquitin binding protein NEMO has been

used to purify and detect HOIL-1 substrates for western

blotting (Kelsall et al., 2019; Petrova et al., 2021). This

approach could perhaps be adapted to enrich oxyester

ubiquitylated proteins prior to mass spectrometry, but would

likely need to be paired with a peptide enrichment step akin to the

anti-K-ε-GG antibody. Blagoev and colleagues have developed a

strategy known as UbiSite that uses an antibody recognizing a

13 amino acid remnant generated by LysC digestion of

ubiquitylated proteins (Akimov et al., 2018a). Unlike the anti-

K-ε-GG antibodies, UbiSite should recognize proteins (and other

biomolecules) ubiquitylated on residues other than lysine and has

already improved the detection of N-terminal ubiquitylated

substrates when compared to conventional methods (Akimov

et al., 2018a).

An important step in understanding the role and extent of

non-lysine polyubiquitylation in cells will be identifying the

‘readers’ - the ubiquitin binding proteins and domains that

detect oxyester linkages within polyubiquitin chains. This may

be achieved by synthesizing oxyester-linked ubiquitin chains

either enzymatically or chemically and identifying binding

partners in vitro and in cell lines (Komander et al., 2009;

Kristariyanto et al., 2015; Zhang et al., 2017; Zhao et al., 2017).

To date there is one example of chemically synthesized threonine-

linked ubiquitylation (Sun et al., 2018) and it will be important to

develop further chemical-biological tools to probe non-canonical

ubiquitylation, such as non-hydrolysable oxyester-linked chains

and chemically modified substrates non-canonically ubiquitylated

at a defined site (Gui et al., 2021). Such methods will also be

instrumental in delineating the role of non-protein ubiquitylation

through the creation of chemically ubiquitylated sugars and lipids

(see Squair and Virdee 2022 for further discussion of how

chemical biology could be used to better understand non-

lysine ubiquitylation).

Concluding remarks

During the mid-1970s a remarkable bifurcated histone adduct

was discovered in which the C-terminus of the small heat-stable

protein ubiquitin was linked via an isopeptide bond to the ε-amino

group of an internal lysine in the histone protein (Goldknopf and

Busch 1977). Subsequent experiments over the following

two decades reinforced the notion that ubiquitylation always

involved the covalent attachment of ubiquitin only to lysine

residues in substrate proteins (Pickart 2001). But, since the late

1990s onwards the field has seen an accumulation of evidence in

support of, first N-terminal, and then ester-linked, ubiquitylation.

More recently examples have emerged that extend the reach of

ubiquitylation to non-proteinaceous substrates such as sugars and

lipids. Indeed, even while the revised version of this manuscript was

in preparation a new study emerged from the Mizushima lab

reporting the conjugation of ubiquitin to phospholipids in yeast

and mammalian cells (Sakamaki et al., 2022), suggesting that

RNF213 is not the only ligase with lipid-directed activity. Results

from bacteria have also completely rewritten the rules of

ubiquitylation, utilizing novel reaction mechanisms and linkage

types to couple ubiquitin to substrates. Of the more than

330 effector proteins that Legionella pneumophilia secretes into

the host cytosol, the functions and biochemical activities of most

remain a mystery (Schroeder 2017), meaning that there is still

significant opportunity for further surprises. Does Legionella also

target non-protein substrates such as membrane lipids or cellular

metabolites to promote its survival? And are there human

equivalents to SidE that can PR-ubiquitylate substrates in the

absence of recognized components of the canonical

ubiquitylation cascade? The answers to these, and other

questions, will become apparent in the coming years, no doubt

driven by the development of improved technologies and an

enhanced willingness by researchers to look beyond lysine when

considering E3 ligase targets.

The realization that so many mammalian DUBs display

esterase activity, and that some even seem to preferentially

target oxyester linkages over isopeptide bonds, indicates that

non-lysine ubiquitylation is likely to represent a general feature

of mammalian ubiquitylation. UBE2J2 and UBE2W represent the

two E2s with confirmed non-lysine activity and both lack key

residues normally associated with aminolysis of the substrate

lysine. Interestingly though, they are not the only E2s to lack

these conserved features of canonical ubiquitylation. UBE2Q1 and

UBE2Q2 stand out as two poorly characterized E2s that lack both

the HPN motif and the conserved downstream D/S residue

(Figure 4). Like UBE2J2, these enzymes are active even in the

absence of a specific E3 ligase (De Cesare et al., 2018). Could they

represent further examples of non-lysine targeted E2s?

And what of the E3s? It is notable that MYCBP2 utilizes a

ubiquitin relay mechanism for catalysis while a similar

coordinated relay mechanism has also been proposed to

operate in LUBAC. It is possible that such a feature may be a

hallmark of those E3s that catalyze ester-linked ubiquitylation.

Only as we uncover more examples of ligases directed against

non-lysine residues will we be able to know for sure.

Charles Darwin concluded ‘On the Origin of Species’ by

marveling at how nature could create ‘endless forms most

beautiful and most wonderful’ from the most simple of

mechanisms and building blocks (Darwin 1859). With these
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words Darwin could have been describing ubiquitin. This

deceptively simple protein continues to amaze with its

versatility and with the myriad ways in which it can be

conjugated to itself and its substrates. The last few years have

seen important advances in our appreciation and understanding

of non-canonical ubiquitylation. It is highly likely that the

coming years will see further advances that will continue to

re-write the rules and challenge the existing paradigms within the

field. As we move ever closer to the 50th anniversary of

ubiquitin’s discovery in 1975, this remarkable protein

continues to astound!

Known unknowns—some
outstanding questions

1) How prevalent is non-lysine ubiquitylation?

2) Do ester-linked ubiquitin chains exist within cells?

3) Is the ubiquitylation of non-proteinaceous substrates (lipids,

sugars) a general mechanism for the detection and clearance

of invading pathogens such as bacteria and viruses?

4) Is glycogen ubiquitylated in vivo and what physiological role

does this play?

5) What structural and biochemical features determine the

reactivity of E2s, E3s, and DUBs towards non-lysine

residues and non-proteinaceous substrates?
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