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Computationalmodelling of the lungs is an active field of study that integrates
computational advances with lung biophysics, biomechanics, physiology and
medical imaging to promote individualized diagnosis, prognosis and therapy
evaluation in lung diseases. The complex and hierarchical architecture of the
lung offers a rich, but also challenging, research area demanding a cross-
scale understanding of lung mechanics and advanced computational tools
to effectively model lung biomechanics in both health and disease. Various
approaches have been proposed to study different aspects of respiration, ran-
ging from compartmental to discrete micromechanical and continuum
representations of the lungs. This article reviews several developments in com-
putational lung modelling and how they are integrated with preclinical and
clinical data. We begin with a description of lung anatomy and how different
tissue components across multiple length scales affect lung mechanics at the
organ level. We then review common physiological and imaging data acqui-
sition methods used to inform modelling efforts. Building on these reviews,
we next present a selection of model-based paradigms that integrate data
acquisitions with modelling to understand, simulate and predict lung
dynamics in health and disease. Finally, we highlight possible future direc-
tions where computational modelling can improve our understanding of the
structure–function relationship in the lung.
1. Introduction
Lung biomechanics is an active field of study that aims to understand the
relationship between structure and function in the lung under normal and
pathological conditions. Many pathological conditions—including acute
respiratory distress syndrome (ARDS), emphysema and idiopathic pulmonary
fibrosis—alter the structure of the lung acutely or in a delayed manner leading
to lung functional decompensation [1]. The importance of understanding lung
biomechanics is clear, especially in light of the COVID-19 pandemic. Before
COVID-19, ARDS affected 200 000 individuals annually in the USA, with a
mortality rate of approximately 40% [2]. The incidence of ARDS increased sub-
stantially with COVID-19, with 30% of COVID patients admitted to hospital
having ARDS of which 75% were admitted to the intensive care unit [3].
ARDS mortality is strongly associated with ventilator-induced lung injury
(VILI), potentially due to the interactions between micro- and macroscale
elements of the lung [4]. Tools capable of describing and predicting the
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Figure 1. An idealized example of developing a computational model based on animal models and its application to patient diagnosis/treatment. CT, computed
tomography; P-V, pressure–volume. Images taken from [6,8–12] and Cancer Research UK with permission.
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reciprocal relationships between lung structure and function
are therefore critical to understanding the underlying mech-
anisms in disease progression, as well as for developing
individualized therapies. The architecture of the lung is com-
plex and fractal-like, with multiple length scales ranging from
the liquid film containing surfactant on the surface of alveoli
to large bronchi. The development of platforms that can inte-
grate the mechanics of the lung at multiple scales and
quantifiably relate lung function at the organ level to the
responses of meso- and microstructural units is therefore
essential to understanding the dynamics of the lung. Compu-
tational models [5–7] have emerged as powerful means to
bridge multiple length scales and provide a detailed under-
standing of the lung structure–function relationship and its
alterations in lung disease and injury.

Figure 1 shows the conceptual pipeline for using animal
models and patient data to develop subject-specific compu-
tational lung models. The development of a comprehensive
computational model that can describe lung biomechanics
demands an understanding of the biophysical behaviour
and microstructure of the surfactant system, the parenchymal
tissue and the conducting airways, as well as how they relate
to organ-level function. Preclinical lung injury studies offer
valuable information regarding the multiscale structure–
function relationship in the lung that would be infeasible
to achieve in human subjects. These data, which include
highly invasive measurements of structure and function,
form the basis for computational models that provide insights
into how minimally invasive clinical data can be used to
deliver personalized lung injury prognosis and treatment.

This paper begins by reviewing the major topics relevant
to the development of a physiologically faithful biomechani-
cal computational model—including the anatomy of the
lungs, mechanics of respiration and the process of data acqui-
sition. The anatomy section provides insights into the
development of material models of lung tissues that account
for lung microstructure. The discussion of respiration mech-
anics assists with understanding the loading and boundary
conditions required to simulate spontaneous respiration or
mechanical ventilation. The data acquisition section reviews
different modalities that can be used to estimate model par-
ameters to capture physiologically accurate lung function.
Following these sections, we review a selection of existing
computational lung models, focusing on how different
models combine data with existing knowledge on lung
structure to generate and predict lung function in health
and disease. We conclude our review by highlighting
near-term goals in computational modelling of the lung
that remain to be met. The scope of this review is focused
on image-based and physiology-driven biomechanical
models of lung function in health and disease; however, the
broader landscape of respiratory modelling certainly includes
other aspects of lung function, such as biochemical signall-
ing and enzymatic processes, that remain to be covered in
future reviews.
2. Anatomy of the respiratory system
As a respiratory organ, the lung’s primary function is to
transport oxygen from the atmosphere to the blood and
remove carbon dioxide from the blood into the atmosphere.
From a biomechanics perspective, the lung can be divided
into two major components: the airways and the lung par-
enchyma. The conducting airways provide a pathway for
air to travel from the atmosphere to the parenchyma, where
the gas exchange between alveolar airspace and capillaries
occurs. The effective biomechanical behaviour of the lung
at both organ and parenchymal tissue scales strongly
depends on the hierarchical structure of the lung (figure 2)
and the biomechanical behaviour at the alveolar level.
For this reason, we start by briefly reviewing several studies
characterizing the architecture and material behaviour of
the lung.

2.1. Conducting airways
The conducting airways comprise the nasal–oral cavity, the
larynx, the trachea, bronchi and bronchioles. The general
structure of the conducting airways is that of a branching
tree beginning with the trachea, which subsequently divides
into two bronchi. This pattern continues in a dichotomous
pattern, where each airway divides into two ‘child’ branches.
These branches are referred to as generations and have been
numbered top-down or bottom-up [15,16]. The nature of
branching and the number of generations is species-specific.
The full airway tree in humans has an asymmetric branching
pattern with 23 generations including the acinar airways (res-
piratory bronchioles). The conducting airways form the first
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16 generations on average [17] with diameters starting
around 14mm for the main bronchus and going down to
around 2mm at the 15th generation [18]. The last seven gen-
erations comprise acinar airways that have alveolar entrances
in their walls. In humans, the airways bifurcate into two
nearly equal child airways with similar diameters, lengths
and branching angles.
2.2. Lung parenchyma
The distal conducting airways connect to the acinar airways
(figure 2), which are characterized by the presence of alveoli
in the airway walls and lead to the alveolar ducts and sur-
rounding alveoli. The alveolar ducts and alveoli that are fed
by one terminal bronchiole are referred to as an acinus.
Each acinar unit contains hundreds or thousands of alveoli,
which are minute and delicate balloon-like structures
perfused with a dense meshwork of capillaries. The alveolar
structures provide a tremendous surface area and thin
blood–gas barrier to facilitate efficient diffusive gas exchange.
Human lungs contain an estimated average of 480 million
alveoli [1], which translates to a surface area of the order of
100 m2. Collectively, the tissues that participate in diffusive
gas exchange, namely the alveoli septa, are referred to as
the parenchyma. To develop comprehensive biomechanical
models of the parenchymal tissue, it is important to under-
stand and isolate the mechanical contribution of each
structural component in relation to the behaviour of the
tissue as a whole.
Similar to most other soft biological tissues, the lung
parenchyma exhibits a nonlinear stress–strain behaviour.
A study by Zeng et al. [19] measured the stress–strain behav-
iour of lung parenchyma strips excised from humans, using
an exponential-like constitutive relation to describe the be-
haviour. This nonlinear behaviour has been attributed to
the realignment and straightening of load bearing fibres
[20]. The authors also studied the creep and stress relaxation
responses to measure parenchymal viscoelastic behaviour
ex vivo [19]. They found that, in stress relaxation tests, tissue
stress was reduced by 22–28% after 15min. Interestingly,
the study found regional variations in the lung tissue
stress–strain behaviour as well.

The lung cells and extracellular matrix (ECM) form the
alveolar walls. The ECM primarily consists of collagen, elas-
tin and proteoglycans. A thin liquid film which covers a layer
of epithelial cells lines the inner surface of the alveoli. This
liquid film has a surface tension that is moderated by pul-
monary surfactant and, along with the properties of the
ECM, is an important determinant of the mechanical behav-
iour of the lungs. The properties of different components
of the lung parenchyma were studied by Birzle et al. [9],
who treated rodent parenchymal slices with collagenase
and elastase to remove the collagen and elastin, respectively.
The authors proposed that the lung parenchyma’s mechan-
ical behaviour is determined by four components: collagen,
elastin, ground substance (proteoglycans), and fibre inter-
action between collagen and elastin, and quantified the
contribution of each component by treating the tissue
with the appropriate enzyme. They found that elastin’s



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220062

4
contribution was dominant at lower strains while collagen
influenced the behaviour at both low and high strains.
Neither the liquid film’s nor the surfactants’ effects were
studied, as they were washed out during the treatment of par-
enchymal specimens. Below, we discuss the contributions of
each ECM component and the liquid film to the mechanical
behaviour of parenchymal tissues.

2.2.1. Collagen
The collagen in the lung parenchyma consists primarily of
type I and type III collagen. Collagen molecules assemble to
form right-handed superhelix fibrils which are very stiff
and have a diameter and length of 1.5 nm and 300 nm, res-
pectively [21]. The mean collagen fibre diameter in human
alveolar walls was reported to be 0.966 ± 0.481 μm [22].
These fibres show wavy organization at low lung volume.
During inspiration, the collagen fibres are recruited via fibre
re-orientation and straightening, exhibiting a strain-stiffening
behaviour [20,23]. The variability in collagen fibre undulations
and diameter leads to a wide range of time-constants in the
viscoelastic behaviour of lung parenchyma [24]. Both quasi-
static and dynamic collagen testing, in which tissue strips of
the lung are treated with collagenase to isolate the contri-
butions of collagen, has been reported [25–27]. Birzle et al.
[25] found that the samples treated with collagenase had a
larger drop in stiffness at higher strains, indicating a larger col-
lagen contribution at this point, while elastin contribution was
more significant at lower strains.

2.2.2. Elastin
Elastin is another structural component of the parenchyma.
Elastin self-assembles to form easily extensible cross-linked
fibres, although its three-dimensional (3D) geometry has
not been well documented [28]. The mean diameter of elastin
fibres in human alveolar walls was reported to be 0.973 ±
0.472 μm [22], and the statistical distribution of diameter
values within the parenchyma was found to be skewed
towards thinner fibres with a long tail, similar to that of col-
lagen fibres [22], although the elastic modulus of elastin is
approximately two orders of magnitude smaller. Unlike the
curly collagen fibres, elastin remains linearly elastic up to
200% strain [22], with values reported to be around 1MPa.
The relatively low elastic modulus of elastin is believed to
be due to its amorphous structure [22]. Furthermore, because
of this linear elastic behaviour, elastin substantially contrib-
utes to lung elastic recoil at lower inflation levels. Elastin is
connected to collagen fibres via microfibrils or proteoglycans
to form an interconnected network in the septa.

2.2.3. Proteoglycans
The proteoglycans form an amorphous matrix [29] in which
collagen and elastin fibres are embedded and appear as opa-
cities in transmission electron microscopy (TEM) imaging.
They are known to play several important biological roles:
they influence intracellular signalling by acting as receptors
on the surface of epithelial cells that facilitates cell–cell
adhesion and cytoskeleton organization [30]; they can also
bind to growth factors and proteins to regulate the secretion
of proteins involved in tissue remodelling. While the inter-
actions between proteoglycans and collagen determine the
growth of collagen in the lateral and axial directions [31,32],
the nature and extent of proteoglycans’ role in lung
biomechanics remain to be fully understood. However, exist-
ing studies suggest that their direct contribution to lung
parenchyma stiffness is not significant compared with that
of collagen and elastin, although they play a significant role
in stabilizing alveoli (mechanics, structure and function) [33].

2.2.4. Liquid film
The parenchyma is lined with a thin liquid film that contains
pulmonary surfactant produced by type II alveolar epithelial
cells. This liquid film is known to substantially contribute to
lung elasticity (stiffness), with several studies reporting that
recoil pressure decreases significantly in saline-filled lungs
when compared with air inflation, due to the lack of surface
tension forces from the liquid film in saline-filled lungs
[34,35]. The surfactant biophysics plays a key role in respir-
ation by regulating the surface tension of the liquid lining
layer. The surface tension varies during normal breathing
by the amount of surfactant released by the epithelial cells,
the molecular-scale structure of the surfactant in the alveolar
space and the time-course variation of alveolus surface area.
At low lung volumes, the surface tension is lowered through
dynamic compression of the surfactant monolayer. Since the
surface tension is inversely proportional to the surface con-
centration of surfactant, dynamic compression reduces
surface tension to near zero, which is essential for preventing
alveolar collapse (derecruitment) [36]. In general, the liquid
film has been modelled as acting in parallel to the elastic be-
haviour of the parenchyma, in opposition to inflation [7,34].
Many lung models have incorporated the effect of varying
surface tension [7,37–41] to mimic the observed hysteresis
in the lung pressure–volume relationship. However, this
remains a challenging area for computation due to the tre-
mendous disparity in length scales, thin-film interfacial
flows, surfactant dynamics and fluid–structure interactions
in the lung.

2.3. Pleural membranes
Both lungs are covered in two serous membranes separated
by pleural fluid. The outer membrane is referred to as the
parietal pleura and is attached to the intercostal muscles
and diaphragm. The inner membrane is called the visceral
pleura and surrounds the lung parenchyma. Both membranes
contain mesothelial cells which secrete the pleural fluid
enabling the lungs to slide during expansion within the
pleural cavity. The visceral pleura is also composed of
elastin and collagen and hence contributes to the mechanical
behaviour of the lungs during respiration. A study by
Stamenovic [42] reported that the serous membranes could
carry around 30% portion of the shear loading. The report
additionally suggested that the membranes’ contribution
might be higher for other types of loading. Another study
by Melo et al. [43] used atomic force microscopy (AFM) and
found that the visceral pleura has a significantly higher stiff-
ness than that of alveolar walls represented by the ranges of
56.6 ± 4.6 to 99.9 ± 11.7 kPa and 27.2 ± 1.64 to 64.8 ± 7.1 kPa,
for the membrane and the walls, respectively.
3. Mechanics of respiration
Understanding the mechanics of spontaneous breathing is
essential to correctly account for the driving forces and
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identify the precise boundary conditions when modelling
respiration. This section will also briefly discuss the differ-
ences between mechanical ventilation and spontaneous
breathing. Simulating lung function during ventilation is
important when studying/modelling conditions such as
ARDS [44], in which the pressure and flow values supplied
by the ventilator can further damage the lungs through
VILI, leading to worse outcomes.

Before delving into the details of respiration, it is impor-
tant to briefly list the different volume and pressure
parameters commonly measured to assess organ level lung
function [45]. Normal breathing in a subject at rest is com-
monly referred to as tidal breathing, and the volume of air
moved in and out of the lungs is referred to as the tidal
volume (Vt). The volume of air present in the lungs at the
end of expiration during tidal breathing is called functional
residual capacity (FRC). Total lung capacity (TLC) is the
total volume of air that the lungs contain after maximal
inspiration, while residual volume (RV) is the volume of air
remaining in the lungs at the end of a maximal forced expira-
tion. The difference in volume between RV and TLC defines
the vital capacity. These common clinical measures of lung
health are typically measured using plethysmography.

Spontaneous respiration is driven by the behaviour of
the tissue surrounding the lungs. The lungs are also sur-
rounded by a thin layer of fluid in the pleural space and
thus are subjected to pleural pressure on their outer surface.
During inspiration, the inspiratory muscles (consisting of
the diaphragm and intercostal muscles) contract, causing
the pleural space to expand [5]. The expansion of the pleural
space causes the pleural pressure to fall, leading to the expan-
sion of the lungs and a drop in alveolar pressure below
atmospheric pressure, which in turn causes airflow into the
lungs. During expiration, the diaphragm and intercostal
muscles relax, causing an increase in pleural pressure which
in turn increases alveolar pressure and drives air out of the
lungs. During forced expiration, muscle contraction can pro-
vide additional positive pressure to the pleural space, further
increasing both alveolar pressure and the rate of expiration.
Changes in alveolar and pleural pressures during a respirat-
ory cycle are illustrated in figure 3.

Changes in transpulmonary pressure (alveolar pressure
minus pleural pressure) are a driving force of respiration
and should therefore be incorporated into computational
models to properly simulate in vivo lung physiology. Changes
in transpulmonary pressure throughout the respiration cycle
translate to lung motion which is measurable through medi-
cal imaging. For example, displacement measurements on
costal and diaphragmatic surfaces at end-inspiration have
been used to estimate changes in alveolar pressure [5,47].
Using a similar method based on computed tomogrpahy
(CT) scans, Tawhai et al. [48] prescribed approximate
normal displacements on the parietal pleural surface at FRC
and TLC in their lung model to simulate spontaneous respir-
ation. In contrast to prescribing the displacements directly on
the lungs, prescribing the displacement on the parietal
pleural membrane, which is separated from the lungs by
pleural fluid, allows for lateral movement of the lung
during respiration. In summary, spontaneous respiration
models use either lung displacement or pleural pressure as
the input to predict airflow into the lungs and changes in
alveolar pressure. However, it should be noted that pleural
pressure, and hence transpulmonary pressure, is not uniform,
but varies in the vertical direction across lung height [49–51].
Computational models must therefore account for this verti-
cal gradient to accurately simulate lung motion if pleural
pressure is used as the input.

Mechanical ventilation is used when spontaneous breath-
ing is insufficient to maintain gas exchange. Unlike in a free-
breathing subject, where the contraction of the surrounding
muscles drives inhalation, mechanical ventilation is driven
by directly pumping air into the trachea at a controlled
pressure and/or volume. The resulting inflation of the
lungs is opposed by the resistive and elastic properties of
the lungs, the surfactant in the alveoli and the viscoelasticity
of the thorax. Although the overall concept is simple, venti-
lation parameters must be carefully selected for each patient
to reduce the risk of VILI. Positive end expiratory pressure
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(PEEP) is a common biomarker in mechanical ventilation,
defined as the pressure in the lungs above atmosphere at
end-expiration. PEEP is one of the most important par-
ameters set during mechanical ventilation with improper
values of PEEP leading to VILI [52]; in particular, excessive
PEEP may lead to overdistension (volutrauma), while
low PEEP may lead to the cyclic collapse and reopening of
alveoli and small airways (atelectrauma). Computational
models of ventilation [52,53] use time-dependent flux
(flow) or pressure boundary conditions at the trachea to
simulate mechanical ventilation to optimize PEEP values in
a patient-specific manner.

Assimilation of patient-specific physiological and imaging
data into computational models enables multiscale quantifi-
cation of the structure–function relationship in the lung and
the advancement of in silico lung models for use in precision
pulmonary medicine. Available methods for obtaining
patient-specific data relevant to lung computational models
are presented in the following section.
4. Data acquisition
Computational lung models depend on multi-modality data-
sets, potentially collected at different length scales, to reliably
simulate and predict the structure–function relationship
in the lung. These datasets provide essential population-
level and subject-specific information on components of the
lung from the nasal cavity to the alveoli. For this reason, var-
ious invasive and non-invasive data collection methods
(figure 4), from pressure–volume (P-V) measurements to ima-
ging, have been used to build and calibrate models and
estimate the involved parameters. Below, we review a variety
of data that can be collected from lung mechanical function
measurements and lung imaging and discuss how such
data can be incorporated into subject-specific lung models.
Ex vivo biomechanical testing and imaging of harvested
parenchymal and airway tissues are additional invasive
techniques, commonly used in animal studies, that can pro-
vide important modelling data [33,61,62]. Such studies have
been previously described [63] and will not be extensively
discussed here.
4.1. Lung mechanical function
Accurate measurements of the lung volume are crucial to
assess lung function in health and disease. Not only the
spontaneous lung volume but also the time-course variation
of the lung volume within several respiratory cycles plays
an important role in assessing lung mechanics due to the
viscoelasticity of the parenchymal tissue. Plethysmography
and spirometry are common methods to non-invasively
measure lung volumes—and resistances, in the case of
plethysmography [63]. Both of these tests are also broadly
applicable, as they are typically performed on conscious,
free-breathing subjects. In plethysmography, the patient is
enclosed in a sealed box where they breathe into a mouth-
piece. Plethysmography estimates important volumetric
lung capacities, as well as airway resistance, using pressure
measurements in the box and Boyle’s Law. Spirometry is
an alternative method for performing volumetric measure-
ments without the use of an enclosing box but does not
approach plethysmography’s level of detail.

The forced oscillation technique (FOT) [64,65] is another
common modality for measuring lung mechanical function
in vivo in humans and animals, or ex vivo in harvested
lungs. Pressure oscillations are produced by a pump or
speaker and are applied to the lungs through a mouthpiece
or tracheostomy tube. The pressure input can be a single
sinusoidal wave or a set of waves with multiple frequencies
of interest. The pressure is then measured at the opening of
the mouthpiece. Temporal pressure and flow measurements
are transformed to the frequency domain using Fourier
analysis and used to calculate the mechanical impedance
(Z). The real part of this impedance describes the resistance,
while the imaginary component describes the reactance, or
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elastance, at the frequencies applied to the respiratory
system. In small animal models, the constant phase model
is fitted to the multi-frequency impedance measurements
[66] to compute Newtonian flow resistance, tissue elastance,
tissue damping and gas inertance. A distinct feature of
the FOT is that it can be applied to spontaneously breathing
patients without confounding the results as long as the
applied oscillations fall outside the frequencies of the
underlying respiration.

The gold standard for measuring respiratory mechanics is
invasive mechanical ventilation of a chemically paralysed
subject. The paralytic is applied to prevent spontaneous
breathing efforts that mask the true resistive and elastic prop-
erties of the respiratory system. Measurements conducted
during ventilation can include simple stepwise quasi-static
P-V measurements that describe the quasi-static compliance
of the respiratory system (Cst), defined as the change in
volume per change in pressure at zero flow. Dynamic
measurements, such as single-frequency sine waves, are com-
monly fitted to the single compartment lung model to
evaluate respiratory system resistance (Rrs), which includes
both tissue and airway resistance as well as the respiratory
system elastance (Ers), the latter of which is defined as the
change in pressure per change in volume (the inverse of com-
pliance). In animal models, the FOT is also frequently used to
probe respiratory system mechanics during ventilation. How-
ever, this technique has yet to gain broad application in
mechanically ventilated human subjects.

Similar volumetric measurements can be performed on
harvested whole lungs enclosed in a box that are inflated
and deflated using a pump or syringe. By excising the lungs
from the thoracic cavity, it is possible to evaluate the properties
of the lungs independent of the contributions of the chest wall.
This measurement provides the P-V relationship from which
various lung properties can be calculated as described above
for ventilated subjects, including lung compliance (CL) and
lung resistance (RL) [23,67]. Transpulmonary pressure is simi-
larly easy to determine, and the bulk modulus (B) can be
calculated from the P-V curve as well. Recently, Sattari et al.
[68] applied this approach to measure the organ-level visco-
elastic behaviour of harvested lungs. Sealing the lungs in a
tank, with one piston connected to the trachea and one
piston connected to the tank, the authors created a device
that could simulate spontaneous breathing and mechanical
ventilation based on the piston chosen to provide the
volume-controlled air flow. The driven piston was then used
to measure the changes in pressure and volume caused by
the expansion of the lungs. The authors investigated different
deformation fields induced by the two types of ventilation in
both murine and porcine lungs [57,68] using a speckle pattern
on the costal surface along with digital image correlation.
These studies offer the possibility of identifying and using
appropriate kinematic metrics to optimize mechanical venti-
lation protocols in human lungs.

4.2. Imaging techniques to characterize lung structure
and function

Chest X-ray (CXR) and thoracic CT scans are the most com-
monly used non-invasive imaging modalities for studying
lung structure. Other imaging modalities used for both clini-
cal and translational studies of the lung include magnetic
resonance imaging (MRI), positron emission tomography
(PET), electric impedance tomography (EIT) and lung ultra-
sound (LUS). While CXR’s advantages include its speed
and ease of use, its diagnostic ability to differentiate between
lung conditions such as ARDS, pneumonia, atelectasis and
pleural effusion is poor [69]. However, CXR is still widely
used in lung imaging to detect secondary complications
such as pneumothorax and displacement of devices [70].
Thoracic CT scans use X-ray beams at different angles that
are then reconstructed to create a 3D image, offering both
higher resolution and the ability to obtain quantitative ima-
ging parameters. More specifically, thoracic CT scans assign
a numerical value to each volume element (voxel) that
describes X-ray attenuation, enabling the quantitative esti-
mation of lung aeration. CT scans are used clinically in the
diagnosis of chronic obstructive pulmonary disease (COPD)
[71–73], interstitial lung disease [60,74], emphysema
[75–77], asthma [78] and ARDS [79–81].

Lung deformation has a complex and significantly hetero-
geneous pattern due to the lung’s spatially heterogeneous
mechanical properties, unequal time constants in different
lung regions and the non-uniform expansion of the thoracic
cavity during respiration. Thoracic CT scans can be used to
quantify this deformation by imaging the lungs at certain
capacities (e.g. end-inspiration and end-expiration) to pro-
duce lung geometries at different phases in a respiration
cycle [5,47,48]. The displacement field of the lung parench-
yma can be calculated from this deformation, and image
registration techniques can subsequently be used to create a
time-dependent 3D displacement field which can serve as
an important boundary condition in simulating spontaneous
or ventilated breathing [82].

MRI can produce images with similar resolution to CT,
but without ionizing radiation. Conventional MRI produces
contrast by detecting water-bound protons in tissue, which
depend on tissue proton density. However, lung tissues
have low proton density and also yield high susceptibility
to artefacts from the gas–tissue interface, resulting in
inadequate image contrast and incomplete morphological
information. However, recent advances have enabled the
use of noble gases, including He-3 and Xe-129, as contrast
agents, improving our ability to image alveolar spaces [83].
Oxygen-enhanced MRI has also been developed to visualize
ventilation. Similar to oxygen, these gases travel through
alveolar spaces, septal tissue and blood, allowing the calcu-
lation of parameters such as septal wall thickness and
alveolar surface area. Hyperpolarized lung functional MRI
allows for the evaluation of regional ventilation via the esti-
mation of gas distribution in the patient’s lung, and MRI
scans in patients with diseases such as asthma, COPD, and
cystic fibrosis clearly show that not all areas of the diseased
lung are equally recruited. A study by Washko et al. [84]
showed comparisons between (hyperpolarized) MRI and
multi-detector CT (MDCT) scans for a patient, reporting
that MRI was able to detect the lack of function in certain
lobes, while CT was not. MRI can thus be used in place of
CT in certain situations to minimize patients’ exposure to
radiation while obtaining additional functional information
such as gas distribution.

EIT is another important bedside imaging technique that
can provide semi-continuous information about the regional
changes in lung resistivity based on differences in ventilation
from the reference state. EIT can display poorly ventilated
regions of the lungs, identified by a lack of change in
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impedance, as well as alveolar overdistension, identified by a
large change in impedance. A study by Roth et al. [52] used
EIT as a validation tool for their computational model and
found that the measured change in impedance was correlated
to ventilation and, by extension, to alveolar strain. This study
suggested that EIT could be used for continuous bedside
monitoring of regional lung activity to prevent alveolar
overdistension (i.e. volutrauma).

In addition to in vivo medical imaging methods,
microscopic imaging such as light microscopy, electron
microscopy and micro-CT are commonly used ex vivo in pre-
clinical studies to image harvested tissues and analyse lung
microstructure. Micro-CT [11,59,85,86] imaging has been
used in combination with computational modelling to
image and reconstruct porous parenchymal tissue to study
the relationship between macroscopic and microscopic
strains. Light microscopy (LM) can be used to view the alveo-
lar mechanics dynamic in vivo [87] or uses excised tissue that
is sectioned and mounted on glass slides. Because of its rela-
tive simplicity and low cost, LM is the most commonly used
technique in preclinical studies. However, LM has also been
used clinically on stained biopsied tissue to assess changes
to lung microstructure in diseases like ARDS [88–90]. TEM
is a higher-resolution imaging technique that can be used
to study the sub-cellular structures in the lung parenchyma
[91–93]. The primary limitation of conventional EM is its
lack of 3D information due to the minimal thickness of the
slices used (60–90 nm). However, recent developments in
‘volume electron microscopy’ have enabled 3D reconstruction
and visualization of septal wall morphology [94,95].

4.3. Mechanical testing of the parenchyma at tissue
and alveolar wall levels

In addition to its geometry and organ-level function, the
lung’s material properties are important when developing
discretized computational models of lung biomechanics.
These material properties include stiffness, density, viscoelas-
ticity and porosity, and can be obtained from experimental
testing of excised tissue. Several studies have conducted
mechanical testing of parenchymal tissue (e.g. [96–99]);
however, given the scope of this review, we will focus on
studies that used ex vivo data to develop material models
for parenchymal tissues. Birzle et al. [9,25,100,101] measured
the viscoelastic mechanical properties of lung parenchyma in
uniaxial tension and developed a structurally based material
model, differentiating between the contributions of different
components of the parenchyma (including collagen and elas-
tin fibres) to tissue-level behaviour. The mechanical testing of
the parenchyma at the tissue level is complemented by its
mechanical characterization at the alveolar wall level, which
together could provide an understanding of force transition
in the parenchyma across length scales once combined with
modelling. The alveolar wall-level tests could also provide
further insights into the contributions of collagen and elastin
fibres to the mechanical behaviour of the parenchyma.
An example of such tests was reported by Jorba et al. [102]
who used AFM to investigate the properties of alveolar
walls prepared from rodent parenchymal tissues. Interest-
ingly, they found that the septal wall stiffness was an order
of magnitude larger than that of the parenchymal tissue
and that the stiffness was dependant on lung strains. The
information about the behaviour of a single alveolar wall is
valuable in the development of image-based, microscale bio-
mechanical models of the parenchyma discussed in the next
section. Lastly, due to differences in structure, the biomecha-
nical properties of the airways diverge from those of the
parenchyma. Eskandari et al. [103,104] investigated the mech-
anical properties of porcine airways via biaxial stretching of
excised airways, developed a material model that takes into
account the contributions of both the matrix and the fibres
in the airways, and found that the airways exhibited non-
linear anisotropic and heterogeneous behaviour. The
incompressible material model resulted in good agreement
between model estimations and the experimental data.
5. Computational modelling
Computational modelling offers a unique platform for
integrating imaging, respiratory mechanics and structure–
function data measured at different length scales to under-
stand, simulate and predict lung dynamics in both health
and disease. Roughly speaking, there are two main
approaches to computational lung modelling: compartmental
(reduced-order) and anatomically based (high-fidelity). Com-
partmental models often focus on establishing relatively
simple mathematical relationships between lung properties,
such as relating organ-level pressure and volume measure-
ments through lung resistance and elastance. They also
offer a suitable platform for studying the multiphysics
response of the lung, e.g. by integrating lung mechanics, pul-
monary circulation and gas exchange. These models hold
significant translational potential for lung diseases such as
ARDS, where model prediction must be achieved in a
timely manner and with limited data. Anatomically based
computational modelling of the lung typically involves
reconstructing the lung anatomy from medical imaging,
acquiring subject-specific microstructure from ex vivo exper-
iments, and applying appropriate boundary conditions
obtained from imaging and invasive lung function assess-
ments. This modelling paradigm enables a detailed
simulation of the multiscale and high-fidelity mechanics of
different lung components, capturing the translation of phys-
iological or pathophysiological mechanisms from the
microscale (the alveoli and terminal bronchioles) to organ-
level behaviour. In contrast to the zero-dimensional (0D)
models, well suited for clinical applications, image-based
high-fidelity models may be more appropriate for preclinical
mechanistic studies in which there is ample time and data for
model parametrization. Combining the feasibility of 0D
models with the subject-specificity of image-based models,
therefore, remains to be an important unmet milestone.
In this section, we briefly review reduced-order, or 0D,
models, addressing the multiphysics nature of lung function.
We then cover multiscale computational models, starting
with discrete micromechanical models of alveolar tissue, fol-
lowed by continuum-level, or ‘homogenized’, models of the
lung. Finally, we discuss select models that focus on flow in
the airway tree.

5.1. Zero-dimensional (reduced-order) models
Compartmental, or ‘0D’, models are computationally inexpen-
sive, rendering them highly efficient for parameter estimation
in clinical applications. These models use simplified, 0D com-
partments to model the mechanical behaviour of respiration
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[105–111]. Both the number of compartments and their connec-
tivity depend on the application. For each compartment,
ordinary differential equations may be used to describe lung
deformation, gas exchange, gas transport [106] and parenchy-
mal interdependence [6]. The compartmental nature of these
models also means that different anatomical components of
the lung (e.g. capillaries, alveolar septal wall, alveolar space,
airways, etc.) can be accounted for, leading to anatomically
detailed lung models with larger parameter spaces. The inter-
action between compartments can be also described using
additional differential equations [6,112].

A common workflow for preclinical compartmental
models is shown in figure 5. Parameter estimation depends
on the acquisition of lung function measurements, which
are typically acquired invasively in murine/rodent models
via intubation of the trachea for ventilation (figure 5a).
Compartmental models typically include parameters for
airflow and acinar mechanics, represented by a combination
of resistors, springs and dampers (figure 5c). These unknown
parameters can be quantified by fitting the model predic-
tion for lung function to the experimental measurements
(figure 5c). Because these models enable the quick estimation
of lung function parameters (rather than waiting for periodic
scans), they are useful in clinical situations where the
patient’s condition is rapidly changing. Given the low com-
putational expense of these models and their ability to
work with limited and rapidly changing data, they are com-
monly employed clinically for the real-time assessment of
lung health and adjustment of mechanical ventilation settings
in ARDS patients. Also, these models can be coupled with
higher-order models (as described in §5.3.3) to capture the
multiphysics nature of lung biomechanics while keeping
computational costs reasonable [113].

5.2. Discrete micromechanical models
Microscale models of portions of the lung are instrumental
to the creation of accurate and predictive computational
models. Discrete micromechanical modelling is a common
approach for studying the mechanical behaviour of
lung parenchymal tissues at smaller scales using a repre-
sentative tissue element (RTE). The RTE captures the
tissue’s behaviour at a ‘mesoscale’ that contains sufficient
information about tissue microstructure (microscale) and is
expected to statistically represent the behaviour of larger
tissue volumes (macroscale) (figure 6). The behaviour of
the RTE can therefore be used to develop material models
that represent lung tissue stress–strain response. Two types
of discrete mechanical models that will be covered
here: two-dimensional (2D) spring models and 3D acinar
unit models.
5.2.1. Two-dimensional spring network models
Two-dimensional spring models represent the alveoli as a
network of 2D springs, with hexagonal units being the
most common approach. Spring models are computationally
efficient and can be used to explore the phenomenon of
alveolar interdependence. Mead et al. [114] modelled the
alveoli as a hexagonal network to estimate the distension
pressure within individual alveoli and compare it to transpul-
monary pressure, demonstrating that the distension pressure
is close to transpulmonary pressure in uniformly expanded
lungs. Hexagonal models are often made of elastic line
elements to simulate naturally observed deformation in
the alveoli, with angular springs (or torsion springs) at the
nodes to prevent the folding of neighbouring line elements.
The use of angular springs at the nodes was introduced in
later studies [33,115,116] to simulate alveolar interdepen-
dence since the deformation of each hexagonal unit is
coupled with deformation in the surrounding hexagonal
units. Similar hexagonal alveolar models were developed
[33,115,116] to imitate observed deformation patterns, as
well as to study the interaction between collagen and proteo-
glycans [33] and the elastic and hysteresis behaviour of the
parenchyma [115].
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Cavalcante et al. [33] developed a nonlinear hexagonal
spring network model to distinguish between the contri-
butions of collagen and elastin. The model also imposed a
rotational strain energy function to restrict the free rotation
of the springs about the nodes. Experimental studies were
performed at different levels of osmolarity to isolate the
effect of collagen and elastin, as the mechanical behaviour
of proteoglycans is reported to be strongly dependent on
osmolarity. Estimating the elastic modulus of the spring
representing the alveolar wall, they were able to predict col-
lagen and elastin fibre moduli. Another recent study using
spring models was reported by Jawde et al. [20] in which
the lung parenchyma was modelled as a hexagonal network
of springs to investigate the mechanism of alveolar
wall deformation. Alveolar walls bend and extend under
deformation, and this study was able to separate the
contribution of the two mechanisms and compute the
relationship between macroscopic tissue strain and micro-
scopic alveolar strain. They were also able to validate the
model against both tensile tests of parenchymal tissue strips
and mechanical behaviour observed in the literature [33,117].
5.2.2. Three-dimensional acinar unit models
Acinar and alveolar models constitute another important
class of micromechanical parenchymal models. Acinar
models involve simulating a large number of acinar struc-
tures that are inflated using air pressure at the terminal
airways [37,40,52,118]. Alveolar models tend to focus on a
single alveolus [7,85,119,120] and have been used to study
the effect of surface tension on the expansion of the alveoli
[7,120]. Acinar models aim to provide a structurally accurate
picture of the parenchyma by including numerous acinar
units, each of which models an acinus and behaves similarly
to a balloon expanding under pressure. Despite significant
resemblance to lung acinar structure, these models often do
not account for parenchymal interdependence—i.e. the fact
that the expansion of an alveolus depends on its surrounding
alveolar units. Inter-acinar interactions need to be accounted
for to generate a realistic deformation at the parenchymal
tissue scale but are often omitted to reduce computational
complexity. Additionally, acinar models are computationally
expensive since they involve simulating thousands of phys-
ical units for an accurate prediction. Several such models
reported in the literature are reviewed below.

Weichert et al. [120] developed an alveolar model based
on a biophysical approach that accounted for the varying
surface tension of the liquid film. They modelled a single
alveolar sac as a TKD, or a truncated octahedron, and incor-
porated the cyclic change in surfactant concentration in the
liquid film during breathing by including an interfacial
energy term on the inner surface of the TKD (alveolar)
element. They demonstrated the effect of the surfactant
in reducing the surface tension of the liquid film lining,
thereby reducing the stiffness of the alveoli. Wall et al. [7]
used a similar acinar model as an RTE to predict larger-
scale parenchymal tissue behaviour. They demonstrated
their multiscale approach by simulating the deformation of
a heterogeneous parenchymal tissue strip due to inflation
(respiration), where the local behaviour was derived from
an assembly of acinar units with different properties.

The work by Swan et al. [121] investigated the effects of
gravity on the topographic distribution of ventilation in the
lungs in the upright posture, to address the lack of detailed
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upright imaging data (since most imaging methods require
the patient to be lying supine). They computed the changes
in ventilation by including acinar units at the end of the
airways expanding isotropically due to airflow, while the
flow rate and pressures at the terminal airways were com-
puted assuming a line transmission model. The study
found non-uniform acinar volume at FRC, with acini at the
apex containing higher volume than acini at the base of
the lungs, resulting in higher normalized ventilation at the
base compared with the apex. The authors also found
that lung compliance plays a more significant role than
airway resistance in determining ventilation distribution in
healthy patients.

An example of coupling reduced-order models with
higher-order models is the work by Roth et al. [52], where
the authors combined a reduced-order acinar model with a
(higher-order) synthetic airway tree model to determine the
variation in ventilation caused by atelectasis. The authors
used CT scans to determine atelectatic regions. They then
closed the airways in those regions and applied appropriate
boundary conditions to simulate mechanical ventilation.
They reported that the closure of airways in atelectatic
regions may prompt over-ventilation of healthy regions
under default mechanical ventilation protocols that, in turn,
can lead to over-stretching of alveoli walls and further lung
injury. The authors validated their simulation results against
EIT measurements (figure 6g) of the deformation at the fifth
intercostal space, supporting their claim that this model
can be used to individualize ventilation protocols based on
EIT monitoring.

One limitation of acinar models is the absence of inter-
connectivity between the acinar units. This limitation was
recently addressed by Ma et al. [39]. The authors combined
the acinar model developed by Fujioka et al. [37] with surfac-
tant effects described in Ryans et al. [40,41] to develop a half-
lung (half of one lung) model with synthetic airways. Each
alveolus was modelled as a truncated octahedron, and the
model accounted for surfactant transport during the respir-
ation cycle. The interactions between acinar units and flow
through the airways were incorporated using reduced order
models to reduce the computational demand of the whole
model. The resulting model allows for the adjustment of sur-
face tension inside each alveolus (through surfactant
concentration), and successfully recapitulated the P-V
relationship for the entire lung. As the authors point out,
one significant potential application of this model would be
to investigate lung injuries where airways are blocked by
liquid accumulation leading to regional under-ventilation,
with concomitant over-ventilation in healthy lung regions,
inducing further lung injury.

Concha et al. [119] proposed a method to improve the
computational efficiency of lung modelling using a microme-
chanical parenchymal model consisting of incompressible
neo-Hookean structural elements arranged in the shape of a
TKD where each TKD represented an alveolar unit. The
model predictions were compared against deformations
from a finite-element simulation of an RTE reconstructed
from micro-CT scans. The TKD-based model was able to
reproduce the RTE response for isotropic volumetric expan-
sion, select anisotropic deformations and equibiaxial
tension. The primary parameters for capturing the macro-
scopic behaviour of lung tissues were found to be the
porosity and the alveolar wall stiffness. A key advantage of
using a structural model (such as TKD) is that it is more
numerically stable at higher strains and offers reduced com-
putational cost compared with the finite-element model
generated from micro-CT images (discussed below). Concha
et al. [85] further extended their TKD model to describe the
pressure–volume relationship in the lungs during respiration
and reported that the computational speed of the TKD model
is five orders of magnitude higher than that of its counterpart
finite-element model. The authors used their model to per-
form a parametric study on the sensitivity of parenchymal
mechanical behaviour to changes in material properties,
simulating the potential effects of diseases such as emphy-
sema (increased compliance) and pulmonary fibrosis
(increased stiffness) on lung biomechanics.

5.2.3. Liquid film model
The liquid film present in the alveolar walls is a critical aspect
of microscale lung structure. This thin liquid film is instru-
mental to the lung’s behaviour under both healthy and
pathological conditions, as the surface tension can exert
large stresses due to the very small curvature radii of the
alveoli and acini. The importance of this lining fluid is
demonstrated by the dramatic change in PV hysteresis with
the removal of the air–liquid interface [106,122]. Functional
pulmonary surfactant is critical to the developing lung, and
its deficiency is associated with respiratory distress syndrome
[123,124] as well as ARDS [125].

Biophysical models of liquid film fluid dynamics under
pathological conditions have focused on airway closure
resulting from a liquid film instability that creates a meniscus
that obstructs airflow [126–128] and can induce a coupled
response that collapses compliant airways [129,130]. Surfac-
tant can stabilize this system, and accurate computational
models are essential [38,131]. Once an airway or alveolus is
collapsed, the motion of the meniscus strongly influences
flows and pressures [132,133], and the reopening of airways
and alveoli is a very complex fluid–structure interaction
[134,135] that can exert enormous stresses on pulmonary epi-
thelial cells. This may induce further damage to the diseased
lung [136–139]. Surfactant delivery through aerosols or liquid
administration is a highly complex phenomenon that may be
important for successful ARDS treatment [140–142].

5.3. Continuum models
While discrete alveoli and acini-based models offer insight
into the biomechanics of alveoli in respiration, modelling
the whole lung with these approaches quickly becomes com-
putationally infeasible due to the large number of acini
present and the inter-dependence of alveoli during expan-
sion. An alternative approach to organ-scale lung modelling
is to develop a continuum material that can capture the
stress–strain behaviour of the lung at the parenchymal
tissue scale while also incorporating information about
microscopic features such as porosity (figure 6d,e).

5.3.1. Phenomenological solid models
Phenomenological solid models treat the parenchyma as a
non-porous but compressible homogeneous solid (figure
6d ). While these models do not explicitly account for tissue
porosity, tissue compressibility can be appropriately gauged
to capture the effects of tissue porosity at the macroscopic
level. Phenomenological models were primarily used to
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study the interaction of the lung with its surrounding tissues
such as the diaphragm. Tawhai et al. [48] used a homo-
geneous solid model to determine ventilation differences
(measured by tissue density and elastic recoil) due to patient
position, arguing that, since lung imaging often requires the
patient to lie supine or prone, additional post-processing is
needed to translate ventilation results to the case of upright
positioning. The parenchymal tissue was modelled using an
exponential strain energy function, and the study determined
the ventilation difference (tissue density) and tissue recoil
pressure as a function of height. However, as the authors
note, the assumption of homogeneous parenchyma is likely
not valid in the case of lung injury or disease.

Ladjal et al. [47] used a similar model to study the effects
of lung cancer using four-dimensional (4D)-CT imaging,
modelling the lungs and all the interacting elements in the
thoracic cavity, including the diaphragm and rib cage, and
investigating the interaction between these elements and
the lungs using 4D-CT. The ribs were modelled as rigid
bodies rotating about their attachment to the spine, while
the lungs were modelled as a compressible isotropic hypere-
lastic material. The authors developed an optimization
algorithm to determine the diaphragmatic force using a 4D-
CT image-based inverse model. Reported applications
included creating a digital duplicate of the lungs that can
be used for diagnosis and dose distribution simulation.
5.3.2. Phenomenological poroelastic models
Porosity carries information about the regional ratio of air-to-
tissue volume and is an important parameter for characteriz-
ing air diffusion throughout the lung tissue. Indeed, the
heterogenous distribution of instantaneous porosity is a key
determinant of regional alveolar deformation that needs to
be accounted for to accurately model the ventilation behav-
iour. Structurally based poroelastic models can feasibly
simulate organ-level behaviour validated by CT scan and
volumetric measurements, and can statistically represent
smaller scale structural features of the lung. Berger et al. [5]
modelled the parenchyma as a poroelastic material character-
ized by a neo-Hookean strain energy function. Normal
breathing was simulated using a displacement boundary con-
dition on the surface of the lungs at FRC and TLC, as
measured from CT scans. Air was then assumed to comple-
tely fill the porous material, simulating lung ventilation.
Mechanical properties of the lung parenchyma were obtained
from experimental studies [143,144]. This model was used to
study the effects of localized airway constriction on lung ven-
tilation by reducing the radii of the terminal airways in a
certain region. A large elastic stress was found at the bound-
ary between healthy and affected tissue due to the difference
in ventilation (i.e. stress).

Patte et al. [145] developed a similar poroelastic model to
study lung deformation driven by the gradient between
pleural and alveolar pressure. Their study also accounted
for interaction with the ribcage as a means to limit defor-
mation. This work was extended by Genet et al. [146] to
study pulmonary fibrosis, where the fibrotic tissue was seg-
mented using CT scan images and material properties were
determined using an inverse model. The authors compared
the ventilation behaviour of healthy versus diseased lungs
and reported that diseased tissue was stiffer than healthy,
in agreement with commonly observed tissue stiffening in
pulmonary fibrosis [147].

5.3.3. Image-based poroelastic models
Image-based poroelastic models involve reconstructing
microstructurally faithful geometries of alveolar tissues,
often obtained using micro-CT and developing finite-element
models of using these geometries. The acquired geometry
allows for modelling realistic alveolar microstructure, as
opposed to the phenomenological poroelastic model that
assumes an average size for the pores (alveoli). Unlike an
idealized geometry, this approach allows the modelling of
diseased tissue to be used to individualize treatment proto-
cols in a clinical setting. However, the primary limitation of
a finite-element approach is the computational cost, with
the average time for a forward simulation of the cubic speci-
men (of size 100 μm) being 300min [85], limiting the
specimen size for inverse problems. However, under the con-
dition of statistical homogeneity in healthy lungs, a micro-CT
based finite-element model of a parenchymal cube can be
used to develop a ‘homogenized’ behaviour described by a
continuous energy function [85,119].

Rausch et al. [59] developed an imaged-based finite-
element model of a cubic rat lung specimen using micro-CT
scans. Whole lung samples were kept at a fixed physiological
pressure to prevent alveolar collapse. The cubic element
(with a dimension of 100 μm) was isolated from the images
to generate a finite-element mesh, which was subjected to
tensile and shear loading. The authors used the model to
determine the relationship between maximum local strain
and macroscopic strain experienced by the cube. Interestingly,
they found that thin alveolar walls are subjected to strains up
to four times larger than the macroscopic strain and that such
hot spots were present only in certain septal walls in the cube.
These findings imply that alveolar walls may be at risk
for overdistension and epithelial cell damage when the
macroscopic strains are at safe values.

In a related study, Sarabia-Vallejos et al. [11] used micro-
CT to create a finite-element model of a section of the lung
to estimate alveolar stresses. The authors used rat lungs to
investigate the effects of alveolar pressure and porosity on
the stress sustained by the alveolar septal wall. Like in the
previous study, the whole lung was imaged and two cubic
elements (100 μm and 300 μm in size) were isolated to
generate finite-element meshes, which were subjected to
hydrostatic pressure loading. They found that von Mises
stress on the alveolar wall could be 12–27 times the alveolar
pressure. The study also found that 2D mechanical analyses
tend to overestimate alveolar stresses [148]. However, the
authors acknowledged the important limitation of not con-
sidering surfactant concentration kinetics in their modelling.
The presence of surfactant can indeed significantly modulate
the amount of mechanical stress experienced by the alveolar
wall, as the surface tension forces induced by surfactant are
believed to accommodate a large fraction of alveolar pressure.

5.4. Fluid dynamics models of ventilation
Physiological respiration involves a heterogeneous distri-
bution of pressure within the lung, so comprehensive
modelling of the lungs will depend on knowledge of this
pressure field. In turn, air flow and pressure determine the
deformation sustained by the alveoli and can directly
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contribute to pathologies involving alveolar over-distension.
The pressure field is determined by knowing the air flow in
the conducting airways. Hence, to understand the ventilation
distribution in different regions of the lungs, it is necessary to
understand the mechanics of airflow through the airways
[149]. Early studies investigating the flow through the air-
ways used a mathematical fractal tree model developed by
Weibel [18] and Horsfield et al. [15] to study gas mixing,
flow distributions, and aerosol deposition [150–152]. More
recent advances in generating the airway tree structure
were reported by Tawhai et al. [153], who obtained the lung
and proximal airway morphology from MRI scans and gen-
erated the distal airway tree structure ‘synthetically’ using a
space filling algorithm and lung morphology (figure 6c).

The ability to reconstruct anatomically faithful models is
limited by the resolution of the CT scans used; however,
since the flow velocity and Reynolds number in distal
branches are small, they can be represented by 1D trans-
mission element models [118,154]. Bordas et al. [17] used
MDCT scans to develop computational fluid dynamics
(CFD) models of air flow in central airways to investigate
the flow resistance in healthy and asthmatic patients. The
study showed a significant increase in airway resistance
with asthma, and the estimated resistance from CFD simu-
lations showed a strong correlation with both patients’
forced expiratory volume in one second (FEV1) and the
ratio of FEV1 over forced vital capacity (FEV1/FVC).

Interestingly, while it is important to include the airway
tree in a lung model to capture ventilation distribution, a
study by Ma et al. [118] investigated flow in the upper
airway (mouth to trachea) using forced oscillation simu-
lations, where the frequency of the input was between 0.156
Hz and 8Hz. This study used proton MRI and CT scans to
generate the upper airway and the airway tree up to the
sixth generation, respectively. The nasal passage was not con-
sidered due to insufficient MRI resolution to capture its
complex structure, and so was manually closed off in the
model. CFD simulations showed that the upper airways
account for 45–70% of total resistance at 0–1 Hz and 70–
81% of total lung resistance between 1 and 8Hz. The trachea
did not affect resistance but contributed significantly to the
elastance of the lungs.

Overall, CFD models of ventilation can provide signifi-
cant insights into the mechanisms and flow alterations in
pulmonary diseases involving alterations in airway structure
such as bronchoconstriction (e.g. asthma), bronchopulmon-
ary displasia, tracheomalasia, COPD, etc. Understanding
how these diseases disturb the flow in the airways is essential
in modelling and optimizing pulmonary drug delivery tech-
niques such as aerosol transport. Studies by Venegas et al.
[155] and Donovan et al. [156,157] investigated the effect of
bronchoconstriction, induced by asthma, on the airflow in
the lungs. Venegas et al. used PET scans to demonstrate
that bronchoconstriction leads to regions of poor ventilation
where the injected tracer is unable to be washed out of the
lungs. This condition was referred to as bimodal ventilation,
implying that there are two levels of ventilation in the lungs.
Venegas’s study further used a simplified airway structure
model to mimic similar effects when parts of the airway
tree were blocked. Donovan et al. [156] developed a realistic
airway tree to simulate the airway flow behaviour in
asthma through randomly generated constrictions, and they
found that a greater number of bronchioles are
underventilated compared to the control lungs. Their study
confirmed a bimodal ventilation distribution that has also
been observed experimentally in rats [158].
6. Future directions
Computational lung biomechanics research holds immense
potential for improving our understanding of the structure–
function relationship in the lung. The lung’s complex and
hierarchical anatomy is a challenge in developing physiologi-
cally realistic lung models, demanding multiscale approaches
that capture the airway tree, alveolar network structure and
local phenomena at the alveolar scale (such as surfactant
activity), while analysis is further complicated by the pres-
ence of an air–liquid interface with dynamic surface
tension. Below, we discuss several ways in which we believe
computational lung modelling can improve our understand-
ing of both basic science and translational aspects of lung
biomechanics.

6.1. Subject-specific lung modelling advanced by
machine learning

Despite the several studies on image-based lung modelling
reviewed in this paper, there remains a need for subject-specific
lungmodels that can incorporate commonly available imaging
and functional data. Personalized computationalmodels of the
lung will improve the diagnosis and treatment of various
respiratory illnesses and facilitate a more comprehensive
understanding of lung function in health and disease. Current
image-based computational studies which use medical
imaging are computationally expensive [5,52,145,153], with
inverse modelling simulations requiring days/weeks to com-
plete. For critical care applications, models need to work
with limited data (e.g. pressure–volume measurements and a
potential CT or EIT scan) and be able to generate predictions
in minutes, as a patient’s condition may rapidly evolve. Com-
partmental models that have a limited parameter space and
require limited functional data may meet this need; however,
they may fall short in the case of lung diseases with strong
spatial heterogeneity, requiring the incorporation of image-
based morphological and microstructural information for
reliable prediction. There is thus a need to combine the compu-
tational advantages of compartmental models with the
multiscale models’ ability to account for high-fidelity
properties to create computational models which balance per-
sonalization, accuracy and predictive speed. Nonetheless,
image-based high-fidelity models still serve as a promising
platform for identifying, isolating and studying the
mechanisms of disease progression.

Recently, machine learning (ML) techniques have proven
helpful in enhancing the translation of computational
lung modelling to the clinic [159,160]. Although ML often
is directly applied in lung imaging to study clinical aspects
of lung function such as ventilator parameter optimization
[161,162], ML toolsets can also be used to facilitate several
steps in common image-based modelling pipelines, that
would otherwise require time-intensive processes. These
steps include segmentation of the lungs and airways
[163–165], isolation and segmentation of diseased regions
such as inflammation, obtaining strains and displacements
from image registration, and so on. The use of ML to
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automate these, otherwise tedious, steps would allow these
processes to be performed in timelines suitable for timely
patient-specific treatment decision making in clinical appli-
cations. In addition, image-based computational models,
requiring CFD or finite-element simulations, could entirely
be replaced by trained ML models [166]. Altogether, the
ML models hold a strong promise to significantly augment
individualized diagnosis, prognosis, and therapeutics in
pulmonary diseases.

6.2. Multiphysics, multiscale models of the lung
Multiphysics and multiscale modelling of the lung remains
an area of active research, showing promise for full inte-
gration of different respiratory mechanisms in the lung.
Respiration is a complex process that takes place across mul-
tiple length scales and involves tissue deformation, air flow,
gas exchange in the alveoli and blood flow through the capil-
laries. These phenomena are intertwined, demanding a
multiphysics modelling approach to accurately capture their
interaction and contribution to lung function. A multiscale
approach to modelling the structure–function relationship
in the lung is also indispensable. Lung deformation at the
tissue level is driven by the recruitment and deformation of
the alveoli [89]. During inflation, the alveoli go through
recruitment (if already collapsed), septal unfolding, changes
in shape, and then septal stretching—with recruitment
being unlikely during regular respiration. Here, the shape
change is dominated by the effect of surfactant, while the
stretching phase is dominated by the elastic properties of
the ECM. A multiscale model is needed to connect these com-
plex alveolar micromechanics to organ-level function [167].
Such a model will address the need to predict changes in
the organ-level function based on alterations in alveolar
behaviour, and vice versa. In addition, alveolar micromecha-
nics itself is largely influenced by the make-up of the septal
wall fibrous network involving collagen, elastin, and proteo-
glycans. Further down-scaling of micromechanical models
can then provide valuable insights into the contribution of
each fibre group to the parenchymal mechanics at larger
length scales.

Another related area of research is the development of
physiological material models for tissue-level behaviour to
be incorporated into inverse models. The hysteresis observed
in the P-V loop of the lungs is largely due to the surface ten-
sion of the liquid film [106] in the alveoli and the regulation
of its surfactant concentration. The effect of varying surfac-
tant concentration has been studied using acinar models
[120] but has not been incorporated directly into the material
properties of continuum models. Continuum poroelastic
models of parenchymal tissue that incorporate the effects of
surface tension and viscoelasticity will allow for improved
simulation of respiratory biophysics in the whole lung.
6.3. Growth and remodelling
Developmental and pathological growth and remodelling
(G&R) studies could provide valuable insights into the pro-
gression of different lung diseases. G&R often refer to
changes to one or more of the tissue properties in response
to lung disease or injury—including mass, volume, material
properties and architecture. G&R models have been devel-
oped to investigate biomechanical alterations of different
soft tissues in disease and to identify the mechanisms driving
these alterations [168,169]. Humphrey [170] reviewed con-
strained mixture models that have been applied to
investigate the G&R of soft tissue with a focus on vascular tis-
sues. Lung G&R models could adopt and build on the G&R
frameworks developed in the vascular field to model and
understand lung remodelling processes in pulmonary dis-
eases. For instance, the study by Hill et al. [171] offers a
modelling foundation to study inflammation-driven airway
remodelling in asthma. Such studies will improve our under-
standing of underlying causes/drivers of remodelling events,
potentially enabling the prediction of chronic remodelling
events, which could in turn facilitate individualized
interventions.
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