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Abstract

Gastrointestinal infectious diseases remain an important issue for human and animal health.

Investigations on gastrointestinal infectious diseases are classically performed in laboratory

animals leading to the problem that species-specific models are scarcely available, espe-

cially when it comes to farm animals. The 3R principles of Russel and Burch were achieved

using intestinal organoids of porcine jejunum. These organoids seem to be a promising tool

to generate species-specific in vitro models of intestinal epithelium. 3D Organoids were

grown in an extracellular matrix and characterized by qPCR. Organoids were also seeded

on permeable filter supports in order to generate 2D epithelial monolayers. The organoid-

based 2D monolayers were characterized morphologically and were investigated regarding

their potential to study physiological transport properties and pathophysiological processes.

They showed a monolayer structure containing different cell types. Moreover, their func-

tional activity was demonstrated by their increasing transepithelial electrical resistance over

18 days and by an active glucose transport and chloride secretion. Furthermore, the orga-

noid-based 2D monolayers were also confronted with cholera toxin derived from Vibrio cho-

lerae as a proof of concept. Incubation with cholera toxin led to an increase of short-circuit

current indicating an enhanced epithelial chloride secretion, which is a typical characteristic

of cholera infections. Taken this together, our model allows the investigation of physiological

and pathophysiological mechanisms focusing on the small intestine of pigs. This is in line

with the 3R principle and allows the reduction of classical animal experiments.

Introduction

Until today laboratory animals are frequently used to investigate physiological and pathophysi-

ological functions of the gastrointestinal tract. This includes studies on the interaction of the

intestinal epithelium with pathogens and their enterotoxins. An approach for investigating
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such topics using alternative models is the usage of cell culture-based systems. However, when

such experiments focus on livestock, such as pigs, which are not only used for studying pig-

specific diseases but also extensively as model for human intestinal pathophysiology [reviewed

by 1], alternative models are still limited. Porcine cell lines, such as the small intestine-derived

IPEC-J2 cells [2] and the colon-derived cell line PoCo83-3 [3] serve as a potential approach to

investigate pathogen-host interactions [4, 5]. However, these cell lines only contain enterocytes

and lack other cell types such as goblet cells. The organoid technique was introduced in 2009

[6]; this method allows displaying the complete cellular composition of the intestinal epithe-

lium, providing a better model to compare with the in vivo situation. Since then, porcine orga-

noids from juvenile [7] and from adult pigs [8] have been successfully cultured. In addition,

organoids can be dissociated and grown in a 2D-monolayer system [9] and this approach has

been proposed as an optimal tool for drug discovery and drug development as reviewed by

Olayanju, Jones [10]. However, despite the application of this tool in many fields, relevant

physiological transport characteristics as well as pathophysiological reactions to enterotoxins

within this system have not been characterized. Therefore, the initial aim of our study was to

establish a porcine intestinal organoid-based system to investigate the physiological transport

properties of the intestinal epithelium using the Ussing chamber method. This could be com-

pared with and eventually replace the use of classical animal-derived tissues. After characteriz-

ing this model our second aim was to prove its suitability for studying pathophysiological

mechanisms: thus, we applied cholera toxin (CTX) in this system and investigated its patho-

physiological effects.

Materials & methods

Generation of intestinal organoids

Intestinal organoids were generated from intestinal crypts [11]. One healthy pig (61.5 kg) was

sacrificed by captive bolt shoot and bleeding. According to the Animal Protection Law, this

(slaughter and removal of tissues) is not classified as animal experiment but has to be

announced to the university’s animal welfare officer (registration no. TiHo-T-2017-22). The

intestinal crypts were obtained by dissecting a 10 cm long part of the porcine jejunum, which

was flushed with ice cold PBS, opened lengthwise with scissors, cut into 2–4 cm pieces and

washed three times with ice cold PBS in a conical tube. The supernatant was discarded after

each washing step. Pieces of the intestine were further processed into pieces with a size smaller

than 0.5 cm, transferred to a tube prefilled with 10 ml ice cold crypt chelating buffer (0.01 M

ethylenediamine tetraacetic acid (EDTA) in PBS, pH 8 [Sigma- Aldrich, Schnelldorf, Germany])

and placed on ice on an orbital shaker on gentle settings for 90 min. Afterwards, the intestinal

fragments were allowed to settle at the bottom of the tube and the supernatant was discarded.

Five ml of ice-cold PBS were added and pipetted up and down 20 times with a glass pipet. Frag-

ments were allowed to settle at the bottom of the tube and the supernatant transferred to a fresh

tube. This process was repeated two times and the supernatant was centrifuged 5 min, 200 x g
and 4˚C. The pellet was resuspended in ice cold PBS and the crypts were counted. The solution

was centrifuged again as described above and 25 μl culture medium (S1 Table) per 1,000 crypts

was used to resolve the pellet. Furthermore, 25 μl Matrigel (FALC354234, Omnilab, Bremen,

Germany) per 1,000 crypts was added. Crypt suspension at a volume of 50 μl each was applied

to a pre-warmed 24-well plate and cultured as described below.

Cultivation of 3D organoids

3D organoids were cultured at 37˚C and 5% CO2, with the culture medium being changed

every two to three days. For weekly subcultivation of the organoids, culture medium was
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removed and 1 ml ice cold PBS added to each well. Matrigel was broken by pipetting the PBS

20 times with a 1,000 μl tip and another 15 times with a 200 μl tip mounted on a 1,000 μl tip.

Organoids were aspirated and transferred to a pre-cooled tube. Four wells of 3D organoids

were pooled at this stage. Organoids were centrifuged at 200 x g, 5 min at 4˚C. Supernatant

was discarded and the pellet resuspended in 50 μl culture medium and mixed with 200 μl

Matrigel. 50 μl of this combination was transferred to a fresh well of a pre-heated (37˚C)

24-well plate. Matrigel was allowed to solidify in the incubator at 37˚C for 45 min and was

overlaid with 500 μl culture medium per well.

RNA isolation, reverse transcription and quantitative real-time PCR

At every weekly subcultivation, organoids were collected in a tube pre-filled with 10 ml ice-

cold PBS and centrifuged for 10 min at 4˚C and 200 x g. Supernatant was discarded. Pellet was

resuspended in 1 ml PBS and transferred to a new tube. After centrifugation at 16,100 x g at

4˚C for 10 minutes, supernatant was discarded and the organoids stored at -80˚C until further

processing. RNA extraction, reverse transcription and qPCR analysis were conducted as

described before [12]. Primers of genes of physiological interest for this work are listed in

S2 Table.

Organoid-based 2D monolayer culture

Generation of an organoid-based 2D monolayer culture was performed by removing superna-

tant from wells containing 3D organoids and subsequent addition of 1 ml ice cold PBS. Matri-

gel was dissected by pipetting and organoids were collected in a tube pre-filled with 10 ml ice

cold PBS. After centrifugation at 4˚C and 600 x g for 10 min, supernatant was discarded. Pellet

was resuspended in 0.05% Trypsin/EDTA and incubated for 5 min at 37˚C before resuspend-

ing the solution 20 times with a 1,000 μl tip and another 15 times with a 200 μl tip mounted on

a 1,000 μl tip. 10% (v/v) ice cold fetal bovine serum in DMEM was added and the tube was cen-

trifuged at 3,000 x g, 4˚C for 10 min. Supernatant was discarded and the pellet resuspended in

monolayer medium (S3 Table). Cells were counted and 2 � 105 cells seeded on precoated

(Matrigel 1:40 in PBS) Snapwells1 (Corning, Kaiserslautern, Germany; diameter: 12 mm; pore

size: 0.4 μm). Basolateral chamber was filled with 3 ml monolayer medium, apical chamber

with 0.5 ml monolayer medium, respectively. After 16 days of cultivation, medium was

changed to differentiation medium for another 2 days (S4 Table) until experiments were con-

ducted after a total incubation time of 18 days.

Transepithelial electrical resistance measurements

To determine cell monolayer integrity, transepithelial electrical resistance (TEER) was mea-

sured using an epithelial volt-ohm-meter (EVOM2; WPI, Berlin, Germany). Measurements

were performed simultaneously to each culture medium exchange of organoids cultured on

Snapwells1 by measuring the TEER of wells with organoids corrected by the respective value

of wells containing no organoids (blank) according to the manufacturer.

Ussing chamber experiments—transport physiology

Organoids cultured on Snapwells1 were mounted in Ussing cambers [13], mimicking the

mucosal and the serosal side of the intestine. Ussing chambers were connected to a computer-

controlled voltage clamp (K. Mussler, Aachen, Germany). Each compartment was filled with 5

ml of the respective buffers (S5 Table), which were heated to 37˚C and aerated with carbogen.
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After an equilibration phase of 5 min, the tissues were set to short-circuit conditions at 0 mV

to impede electrogenic transport.

Ussing chamber—cellular characterization. Fifteen min after setting the short-circuit

conditions to 0 mV, organoid-based 2D monolayers were incubated with glucose (10 mM,

mucosal, diluted in aqua destillata) and mannitol (10 mM, serosal for osmolality equilibration,

diluted in aqua destillata) for 20 min, followed by a 15 min incubation with forskolin (10 μM,

serosal, Sigma-Aldrich, diluted in Dimethyl sulfoxide) and with carbachol (10 μM, serosal,

Sigma-Aldrich, diluted in aqua destillata) for another 10 min. Indometacin (10 μM, diluted in

aqua destillata) was added to impede prostaglandin synthesis and to avoid spontaneous chlo-

ride (Cl-) secretion [14]. Throughout the experiment, both, short-circuit currents (Isc) and

resistances (Rt) were measured. At each experimental run three chambers were performed as

technical replicates.

Ussing chamber—incubation with bacteria-derived toxins. Fifteen min after the tissues

were set to short-circuit conditions, organoid-based 2D monolayers were incubated for 80

min with 7.5 μg/ml CTX (CAS 9012-63-9; Enzo Life Sciences, Lörrach, Germany, diluted in

aqua destillata). This was followed by the addition of 10 μM forskolin to the serosal chamber

for 15 min and a final incubation of 10 min with 100 μM ouabain (Sigma-Aldrich) on the sero-

sal side. Isc and Rt were measured continuously. Technical replicates were obtained as men-

tioned above.

Histological analysis

Analysis of mucus layer formation. Mucus layer formation was analyzed by mucin stain-

ing with periodic acid-Schiff reagent (PAS). Organoids were cultivated on Snapwells1 as

described above, before the Snapwell1membranes were cut out, fixed in Bouin solution for 10

min and then rinsed three times with PBS. After fixation, the membranes were cut in two

pieces and embedded in 5% (w/v) agarose followed by embedding in paraffin. For morpholog-

ical evaluation, 3 μm-slices were sectioned and hematoxylin and eosin (H & E) staining was

performed. In order to confirm the existence of goblet cells, de-paraffinized slides were stained

with PAS, dehydrated and mounted with Eukitt1 (O. Kindler GmbH, Freiburg, Germany), all

according to standard protocols [15].

Immunohistochemical staining. Immunohistochemical staining of zonula occludens-1

protein (ZO-1) and cystic fibrosis transmembrane conductance regulator (CFTR) was

obtained by fixation, embedding and sectioning of organoids on Snapwell1membranes as

described above. After de-paraffinization and inhibition of endogenous peroxidase activity

with 3% H2O2 in 80% ethanol for 30 min, ZO-1, Claudin-2 and Claudin-3 sections were

microwave-pretreated with sodium citrate buffer (pH 6.0) for 3 x 5 min at 800 Watts and

allowed to cool down to room temperature for 30 min. CFTR sections were heated to 96–99˚C

in tris-EDTA-citrate buffer (pH 7,8) for 20 min, allowed to cool down to 60˚C and washed 5

min in TBST [15]. Afterwards, slides for both stainings were blocked with 3% BSA for 20 min,

before they were incubated with the primary antibody (ZO-1: Santa Cruz Biotechnology, Dal-

las, USA; catalog no.: sc-10804, dilution factor: 1:80; Claudin-2: Biologo, Kronshagen, Ger-

many; catalog no.: CLA002, dilution factor 1:50; Claudin-3, Invitrogen, Waltham, USA:

catalog no.; 34–1700, dilution factor 1:1,000; CFTR: Cell Signaling Technology, Danvers, USA;

catalog no.: 78335, dilution factor: 1:100) overnight at 4˚C. The sections were then exposed to

the secondary antibody (biotin-labelled goat-anti-rabbit; Vector, Burlingame, USA; catalog

no.: BA-1000; dilution factor: 1:200) for 60 min at room temperature and, after rinsing, 30 min

with the ABC-System (Vector; catalog no.: PK-6100) according to the manufacturer’s protocol.

After visualization with 3,30-Diaminobenzidine (DAB), the sections were briefly
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counterstained with hematoxylin for 10 sec and rinsed with running water. Finally, the slides

were dehydrated and mounted with Eukitt1. Negative and isotype controls were included in

the analyses and images were captured using a Zeiss Axioskop (Zeiss, Jena, Germany) with an

Olympus SC50 camera controlled by the Olympus CellSens software (Olympus Soft Imaging

Solutions GmbH, Germany).

Immunofluorescence staining. Immunofluorescence was performed by cultivating orga-

noid-based 2D monolayers on Snapwells1 as described above. Fixation, embedding and sec-

tioning of organoids on Snapwell1membranes were carried out as described above. After de-

paraffinization, monolayers used for Villin staining were heated to 96–99˚C in tris-EDTA-cit-

rate buffer (pH 7.8) for 20 min, allowed to cool down to 60˚C and washed 5 min in TBST [15].

All sections were permeabilized for 60 min using 0.25% Triton X-100/PBS and blocked with

5% goat-serum in PBST for one hour. Primary anti-e-cadherin (Abcam, Cambridge, UK; cata-

log no.: ab76055, dilution factor 1:500), anti-villin (Abcam; catalog no.: ab130751, dilution fac-

tor 1:250) and anti-chromogranin A (Immunostar, Hudson, USA; catalog no.: 20085, dilution

factor: 1:1,000) were incubated with the slides at 4˚C overnight. After washing thrice with PBS,

incubation with the secondary fluorescence-labelled antibody (donkey anti-mouse for e-cad-

herin (Invitrogen; catalog no.: A10036; dilution factor: 1:1,000) and goat-anti-rabbit (Sigma-

Aldrich; catalog no.: SAB4600084; dilution factor: 1:1,000) for villin and chromogranin A) was

performed for 60 min at room temperature. Counterstaining of nuclei was done via DAPI

staining and cover glasses were embedded using Pro Long Gold (Invitrogen, USA). Analysis

was performed using a Zeiss Axiovert 200M microscope attached to a Zeiss AxioVision Imag-

ing System. Numeric apertures of the objective lens used was: 40 x oil/NA 1.3.

Data analysis and statistics

Basal values of Isc and Rt were determined by calculating the arithmetic mean of the last 10

data points before the addition of an agent. Changes in short-circuit currents (ΔIsc) were calcu-

lated by subtracting the arithmetic mean from the maximal value after the addition of each

agent. The normal distribution of the residuals was tested using the D’Agostino & Pearson

test. A paired t-test was used to compare datasets. All statistical analyses were performed using

Prism version 8.0.1 (GraphPad, San Diego, USA) and p values� 0.05 were considered statisti-

cally significant.

Results

3D-organoids developed from intestinal crypts

Isolated intestinal crypts of the porcine jejunum embedded in Matrigel1 formed 3D-organoid

structures during a cultivation period of seven days (Fig 1).

Gene expression of porcine 3D organoids

Gene expression of sodium/glucose cotransporter 1 (SGLT1), cystic fibrosis conductance

transmembrane conductance regulator (CFTR) and mucin 2 (MUC2) was determined in 3D

organoids and compared with gene expression in native porcine jejunum. While the expres-

sion of SGLT1 as well as MUC2 showed no differences between organoids and native epithe-

lium, CFTR expression was significantly higher in organoids (Fig 2).

Cellular monolayer and mucin production

The integrity of the cellular layer was determined every day after medium change by measur-

ing the TEER. After 18 days of cultivation, an electrical resistance of 151.4 ± 38.8 O�cm2 was
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reached (Fig 3). Organoids grown in a 2D manner on Snapwell1membranes were stained

with H & E as well as hematoxylin and PAS to determine cellular arrangement and the forma-

tion of mucus. A cellular monolayer could be detected including some cells with a goblet, cup-

like appearance (green triangles, Fig 4). Hematoxylin and PAS staining showed a strong signal

for some cells (violet triangles, Fig 4). Zonula occludens-1 staining showed a positive signal on

the apical side of the cellular layer (black triangles, Fig 4), while the isotype control was nega-

tive. Immunohistochemical staining of Claudin-2 (blue triangles, Fig 5) and Claudin-3 (orange

triangles, Fig 5) both showed a positive signal on the apical side of the cellular layer, while the

isotype control was negative. Immunohistological staining of CFTR showed a strong signal on

the apical membrane of some cells (red triangles, Fig 6). Immunofluorescence staining showed

a positive signal for e-cadherin between the individual cells, villin signals were detected at the

apical membrane of the cells while chromogranin A was only abundant in a few cells (Fig 7).

Ussing chamber studies—transport characteristics

Physiological transport characteristics were investigated using the Ussing chamber system.

Mucosal addition of 10 mM glucose led to a significant increase of the Isc. This was followed

by the serosal incubation with 10 μM forskolin leading to an increase in Isc as well as a decrease

in Rt. Final serosal addition of 10 μM carbachol increased the Isc significantly (Fig 8).

Fig 1. Intestinal porcine crypts isolated from the jejunum (D0) form 3D-organoids (D7) after a cultivation period

of seven days.

https://doi.org/10.1371/journal.pone.0256143.g001

Fig 2. Gene expression of sodium/glucose cotransporter 1 (SGLT1), cystic fibrosis transmembrane conductance regulator (CFTR) and mucin 2 (MUC2) in

intestinal organoids of the porcine jejunum cultivated for seven days in comparison to native tissue. Reference genes ribosomal protein S23 and ribosomal

protein P0 were used for normalization of expression. Values shown are the geometric mean ± geometric standard deviation (SD) of four independent

experiments. � p< 0.05.

https://doi.org/10.1371/journal.pone.0256143.g002
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Ussing chamber studies—effects of CTX

Incubating the organoid-based 2D monolayers with 7.5 μg/ml CTX from the mucosal side lead to a

significant increase in Isc, while Rt decreased. Following serosal incubation with 10 μM forskolin

also showed a significant increase of the Isc, while the Rt was decreased in a significant manner. Final

serosal addition of 100 μM ouabain to the serosal chamber decreased in the Isc significantly (Fig 9).

Discussion

Organoids are characterized by increasing electrical resistance as well as

expression of goblet cells, enterocytes and tight junction associated proteins

Isolated crypts of the porcine jejunum generated 3D-organoids after a cultivation time of 7

days. This is mediated by the multipotent or so-called adult stem cells present in the intestinal

Fig 3. Changes of transepithelial electrical resistance (TEER) values over the 18 day culture period on Snapwells1

of organoid-based 2D monolayers as a function of time. Values shown are the mean ± SD of four independent

experiments (passages).

https://doi.org/10.1371/journal.pone.0256143.g003

Fig 4. Cellular arrangement (cross sections) of jejunum organoids grown in 2D on Snapwells1 for 18 days. Cells

were either stained with hematoxylin and eosin (H & E) or hematoxylin and PAS (H & PAS) as well as

immunohistochemical staining (including isotype controls) of ZO-1 (cross-section). Green triangles indicate cells with

a goblet, cup-like appearance, violet triangles indicate PAS-positive cells and black triangles show a positive signal of

ZO-1. Representative figures are shown, chosen from three independent experiments with three technical replicates

per staining.

https://doi.org/10.1371/journal.pone.0256143.g004
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crypts differentiating into the epithelial cells of the gut [16–18]. These organoids were further

used to generate 2D monolayers. These organoids seeded in a 2D manner on Snapwells1

showed increasing TEER values up to about 150 O�cm2 after 18 days of cultivation compared

to native porcine epithelium with approximately 120 O�cm2 [19]. The data obtained in this

study contrast with data of van der Hee, Madsen [20], who showed an increase to 750–850

O�cm2. This discrepancy could be due to the slightly different cultivation conditions such as a

varying medium composition. Histological analysis of our organoids revealed an intact mono-

layer including the expression of the tight junction-associated protein ZO-1, which is highly

comparable to Caco-2/HT29-MTX based monolayers [21, 22] [Hoffmann et al. 2021, under

revision at: PLOS ONE]. Furthermore, the adherens junction protein e-cadherin as well as the

tight junction proteins Claudin-2 and Claudin-3 were shown to be expressed in organoid-

based monolayers. Investigations in piglets showed developmental changes in intercellular

junctions such as an increase in protein expression of Claudin-1, Claudin-3, occludin and ZO-

1 during the suckling period [23]. This increase in tight junction protein expression may also

be assumed during the cultivation process of organoids but needs to be demonstrated with fur-

ther experiments. In addition to the expression of ZO-1, histochemical staining of organoid-

based 2D monolayers showed the abundance of mucus-filled cells throughout the monolayer,

which could further be supported by MUC2 gene expression in the 3D organoids, therefore

these cells can be identified as goblet cells. The amount of goblet cells detectable by immuno-

histochemistry in the monolayer appears to be slightly higher compared to native porcine

Fig 5. Cellular arrangement (cross sections) of jejunum organoids grown in 2D on Snapwells1 for 18 days.

Immunohistochemical staining (including isotype controls) of Claudin-2 and Claudin-3 was performed. Blue triangles

indicate ceklls with positive Claudin-2 signal, orange triangles indicate cells with a positive Claudin-3 signal.

Representative figures are shown, chosen from three independent experiments with three technical replicates per

staining.

https://doi.org/10.1371/journal.pone.0256143.g005

Fig 6. Cellular arrangement (cross sections) of jejunum organoids grown in 2D on Snapwells1 for 18 days.

Immunohistochemical staining (including isotype controls) of CFTR was performed. Red triangles indicate cells with a

positive signal of CFTR. Representative figures are shown, chosen from three independent experiments with three

technical replicates per staining.

https://doi.org/10.1371/journal.pone.0256143.g006
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jejunum, which only shows a moderate number of goblet cells [24]. This finding can be

explained by the composition of the differentiation medium containing the gamma-secretase

inhibitor DAPT, leading to increased formation of goblet cells [25]. Expression of villin shows

Fig 7. Immunofluorescence staining (cross sections) of jejunum organoids grown in 2D on Snapwells1 for 18

days. E-cadherin, villin and chromogranin A are displayed in red, nuclei are counterstained in blue. Representative

figures are shown, chosen from three independent experiments with three technical replicates per cellular approach.

https://doi.org/10.1371/journal.pone.0256143.g007

Fig 8. Basal and maximal Isc and Rt values of organoid-based 2D monolayers cultivated for 18 days determined before and after subsequent addition of

glucose, carbachol and forskolin. Values shown are the mean ± SD of four independent experiments. �� p< 0.01.

https://doi.org/10.1371/journal.pone.0256143.g008
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mature enterocytes indicating the formation of the typical intestinal brush boarder membrane

[9, 26]. Chromogranin A allowed the identification of single enteroendocrine cells in our orga-

noid-based 2D model [9, 26]. The cellular composition of porcine 3D organoids has been

shown in previous studies also indicating the presence of absorptive enterocytes, goblet cells

and enteroendocrine cells [26, 27], but to our knowledge not in the 2D model under these cul-

tivation conditions. The abundance of enterocytes, goblet cells and enteroendocrine cells pro-

vides a secretory, functionally active epithelium including a mucin-rich environment that

serves as a barrier against infections and allows these organoids to serve as an optimal system

for the underlying question.

Development of an intact cellular layer during cultivation as well as a cellular composition

including absorptive enterocytes and goblet cells enables our model to be compared with

native epithelium.

Cellular characterization shows functional transport characteristics

Intestinal glucose transport is mainly mediated by the sodium/glucose cotransporter 1

(SGLT1) [28], resulting in an increase in Isc in response to mucosal addition of glucose as

shown in porcine organoids seeded on Snapwell1 inserts as well as in native porcine jejunum

in earlier studies [29]. Abundance of SGLT1 and other transport proteins was shown in earlier

studies on murine organoids [30, 31] and could also be confirmed in our study based on

SGLT1 gene expression. However, gene expression in organoids was lower compared to native

epithelium which might explains the moderate increase in Isc in response to mucosal addition

of glucose. One reason could be the relatively high abundance of goblet cells in this model and

the resulting low number of enterocytes which solely express SGLT1 as already shown in rats

[32].

Secretion of Cl- by the cystic fibrosis transmembrane conductance regulator (CFTR) can be

stimulated by the addition of forskolin leading to an activation of the adenylate cyclase and ele-

vating intracellular cyclic adenosine monophosphate (cAMP) levels [33]. This Cl- secretion

leads to an increase of the Isc in Ussing chamber experiments performed in this study. The

same mechanism has been shown in native porcine intestinal epithelium [29, 34, 35]. CFTR
expression was further confirmed by qPCR analysis, showing significantly higher expression

in 3D organoids compared with native tissue. This further supports the high increase of Isc

using the organoid-based 2D monolayer. However, histological analysis showed CFTR expres-

sion in a few cells indicating a high transport capacity. Besides Cl- secretion, CFTR plays an

Fig 9. Basal and maximal Isc and Rt values of organoid-based 2D monolayers cultivated for 18 days determined before and after subsequent addition of

CTX, forskolin and ouabain. Values shown are the mean ± SD of four independent experiments. � p< 0.05; �� p< 0.01.

https://doi.org/10.1371/journal.pone.0256143.g009
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important role regarding bacterial growth in the intestines [36–38] as well as composition of

epithelium-covering mucus [39]. Decreasing tissue resistance due to the addition of forskolin

is mediated by the activation of protein kinase A due to higher cAMP levels leading to a modi-

fication of the tight junction barrier as has been shown in several other studies [40–42].

Further Ca2+-dependent Cl- secretion [43] resulting in an increase in Isc could be demon-

strated in our system by addition of carbachol and potential activation of calcium activated cal-

cium channels [44], which has already been shown for native porcine epithelium [45, 46].

Physiological transport properties induced by different agents investigated in this study are

highly comparable to the response of native tissue obtained in earlier studies. This clearly dem-

onstrate the suitability of the present model as an alternative for animal-based studies such as

Ussing chamber experiments, which needs freshly obtained material from slaughtered ani-

mals. In contrast, our organoid-based system allows the ongoing cultivation of the epithelium

without the need of new native material, as it has been reviewed by Seeger [47].

Incubation with CTX leads to pathophysiological responses

In our experiments, incubation with CTX led to an increase in Isc. This was likely the result of

the activation of the adenylate cyclase leading to elevated cellular cAMP levels, resulting in an

increased Cl- secretion and decreased sodium absorption [48, 49]. In more detail, Cl- secretion

is mediated either by phosphorylation of CFTR [50] or by recruitment of CFTR to the apical

membrane of the cells [51]. Furthermore, in our setup, incubation with CTX resulted in a

decrease of Rt. This decrease can be explained by the disruption of the epithelial barrier and

disturbance of the cellular junctions [52]. Nevertheless, infections with Vibrio cholerae do not

cause clinically relevant infections in pigs. This probably depends on components, which are

solely found in the intestine and especially in the mucus of pigs that allow the binding of the

toxin and therefore impede its effects [53]. Moreover, these components, chemically identified

as neutral glycosphingolipid, seem to depend on the ABO blood type of the infected organism

[54]. Since 1977 [55] an association between blood type and severity of cholera infection was

recognized. Recent studies revealed a direct molecular link between blood group and CTX

infection [56], but the detailed cellular mechanism still remains unclear. Despite the clinical

irrelevance for pigs, CTX was used in this study as a proof of concept, enabling the comparison

to earlier studies and models [Hoffmann et al. 2021, under revision at: PLOS ONE].

After treatment with CTX, forskolin was still able to induce an increase in Isc. This was not

shown in an earlier study using the Caco-2/HT29-MTX [Hoffmann et al. 2021, under revision

at: PLOS ONE] and one could speculate that this is impeded by the full activation of the CFTR.

However, qPCR reveals high abundance of the transporter and the toxin itself is, as discussed

before, supposed to be less harmful using porcine material.

Although this part of the study can be regarded as a proof of concept, mimicking patho-

physiological in vivo reactions, this enhances the suitability of our model for further patho-

physiological relevant questions such as the investigation of effects of other bacterial toxins or

living pathogens.

Conclusion

With the present study we were able to establish a porcine organoid-based model of the small

intestine generated from adult stem cells from intestinal crypts forming the investigated orga-

noids. This study further proves the feasibility to use this model for investigating physiological

(e.g. glucose transport or Cl- secretion) and pathophysiological responses to CTX as a proof of

concept. Expression of tight junction associated proteins, as well as transport characteristics

are comparable with data obtained from native porcine epithelium. This highlights the
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suitability of our organoid-based model to replace the use of native epithelium. Taken

together, the present study proposes a model with great potential as an alternative to classically

used intestinal tissue samples directly obtained from pigs, implicating a possibility to reduce

animal experiments.
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