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Abstract

Optimal contributions approaches to parental selection in closed breeding populations aim to 
maximize genetic gains, while restraining long-term inbreeding. The adoption of optimal contribution 
selection (OCS) in highly fecund outcrossing species presents a number of challenges not applicable 
to species of low fecundity (e.g., livestock) for which they were developed. This is particularly true if 
overlapping-generations or rolling-front breeding strategies are applied, in which case the number 
of individuals per family in juvenile (i.e., sexually immature) age groups is not necessarily known 
but is likely to be large. In these circumstances, conventional OCS procedures must be modified or 
a large number of dummy individuals defined, making computations onerous. Here, an approach 
to OCS is presented that involves the use of “between-family relationship matrices” instead of 
“between-individual relationship matrices.” The method is applicable to breeding programs 
involving highly fecund outcrossing species with overlapping generations, including circumstances 
where the number of juveniles per family is unknown but large.
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Managers of closed selective breeding populations of outcrossing 
species generally aim to maximize genetic gains while restraining 
long-term inbreeding. This represents an optimization problem 
that can be solved, or approximated, using “optimal contribution 
selection” (OCS) methods, including Lagrange-multiplier proced-
ures (Meuwissen and Sonesson 1998; Tang et al. 2008; Dagnachew 
and Meuwissen 2016), semi-definite programming (Pong-Wong and 
Woolliams 2007) and second-order cone programming (Yamashita 
et  al. 2018). Optimal contribution selection methods are dynamic 
rules used to select parents by maximizing the mean additive genetic 
value of selected parents while constraining the mean relationship 
(or, equivalently, co-ancestry)—a predictor of future inbreeding—
among members of a breeding population (Meuwissen 1997; 
Meuwissen and Sonesson 1998; Hinrichs et  al. 2006; Pong-Wong 

and Woolliams 2007; Skaarud et al. 2011; Kerr et al. 2015; Chapuis 
et al. 2016; Dagnachew and Meuwissen 2016). A breeding popula-
tion is herein defined as the collection of all individuals that have the 
potential to contribute genes to future generations (Kerr et al. 2015). 
For a concise overview of the history, methods, and application of 
OCS in selective breeding programs, refer to Woolliams et al. (2015).

Overlapping-generations or rolling-front, as opposed to discrete-
generation, breeding strategies are adopted in many outcrossing 
species to distribute workload more evenly, more fully utilize infra-
structure, and to ensure the best individuals can be used as parents as 
soon as they reach sexual maturity (Borralho and Dutkowski 1998; 
Kube et al. 2012; Kerr et al. 2015). An overlapping-generations ap-
proach also allows parental contributions from failed families, or 
additional contributions from underrepresented candidates of high 
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genetic value, to be captured in later rounds of parental selection 
(i.e., selection rounds).

The adoption of OCS approaches in highly fecund species (e.g., 
many aquaculture and forestry species) presents a number of chal-
lenges that are not applicable in terrestrial animals, for which the 
methods were initially developed (Hinrichs et  al. 2006; Skaarud 
et al. 2011; Kerr et al. 2015). These challenges are exacerbated where 
overlapping generations breeding strategies are applied (Meuwissen 
and Sonesson 1998: Kerr et al. 2015).

Firstly, when overlapping generations are present, it is neces-
sary to account for varying parental contributions from different 
age groups to the future breeding population. This issue was ad-
dressed by Meuwissen and Sonesson (1998) with the use of an 
r vector, the elements of which reflect current plus expected fu-
ture contributions of each age group until they die divided by 
the generation interval. This approach has been widely adopted 
in the implementation of OCS with overlapping generations. 
However, conjecture remains as to the most appropriate means 
of determining r—refer to Meuwissen and Sonesson (1998), 
Grundy et al. (2000), and Kerr et al. (2015) for discussion of ap-
proaches used to determine parental contributions from different 
age groups.

Secondly, in highly fecund species, the number of individuals in 
the breeding population is not always known, particularly in ju-
venile (i.e., sexually immature) age groups (Kerr et al. 2015). In add-
ition, in some species, pedigree reconstruction (Kube et  al. 2012) 
and, increasingly, genomic selection (Sonesson et al. 2012; Tsai et al. 
2016) methods are adopted. In these cases, families of unlabeled in-
dividuals are generally pooled at a young age, and at the time selec-
tion decisions are made, neither the original number of individuals 
nor the retained number of individuals per family may be known in 
juvenile age groups (Skaarud et al. 2011; Kerr et al. 2015). One im-
perfect but simple approach to address this issue in the application 
of OCS is to generate dummy individuals for juvenile families with 
unknown numbers of individuals (Kerr et al. 2015).

Thirdly, in the case of overlapping generations for highly fecund 
species, the number of individuals that must be considered is po-
tentially large, and solving the optimization problem can be com-
putationally demanding (Meuwissen and Sonesson 1998; Hinrichs 
et al. 2006; Kerr et al. 2015). In highly fecund aquaculture and for-
estry species, a parent may have tens or hundreds of thousands of 
viable progeny. Various means of reducing the resulting computa-
tional burden have been proposed (Hinrichs et  al. 2006; Skaarud 
et  al. 2011). For example, Hinrichs et  al. (2006) detailed modifi-
cations to Meuwissen s (1997) Lagrangian multiplier method, that 
substantially reduced the computational task for highly fecund spe-
cies by 1) requiring inversion an additive relationship (A) matrix of 
dimensions equal to the number of parents, rather than the number 
of candidates, and 2)  adopting the Sherman-Morrison formula to 
negate the need for repeated inversion of A. This method can be 
extended to overlapping generations but still requires all individuals 
in the population to be known, or dummy individuals generated, in 
circumstances where only family-level information is available for 
juvenile age groups.

Fourthly, in selective breeding programs involving highly fecund 
species, it is generally necessary to apply a preselection step or steps 
to identify a small number of “candidate parents” from a large 
number of juvenile individuals. This issue is complicated further in 
the context of forestry species—due to their long-lived nature and 
ability to be cloned. Kerr et al. (2015) addressed these issues in the 
context of Pinus and Eucalyptus genetic improvement programs, by 

adopting classes defined by reproductive status (i.e., “new progeny,” 
“juvenile”, and “candidate parent”), rather than age, in the applica-
tion of OCS.

Here, an approach to OCS in presented that does not require the 
number of individuals in each family to be known. This method is 
directly applicable to highly fecund species with overlapping gener-
ations and uniform numbers of individuals per family, but has appli-
cations in other circumstances (e.g., where the number of juveniles 
per family is unknown but large). It involves the replacement of 
between-individual relationship matrices with “between-family re-
lationship matrices” (Chapuis et al. 2016) in the definition of, and 
solution to, the optimization problem.

Methods

Between-Family Relationship Matrices
If full-sib families are large and the number of individuals per 
family is uniform, the average (Ā) of the elements of a between-
individual additive (numerator) relationship matrix (A) can be ap-
proximated by the average of a between-family relationship matrix 
(Supplementary Material 1):

Ā ≈
1′ Af 1

n2f
 (1)

given

Af =




b1 c12
c21 b2

· · · c1nf
· · · c2nf

...
...

cnf1 cnf2

. . .
...

· · · bnf




 (2)

where Ā is the average of the elements of A, nf  is the number of 
families, Af  is a between-family relationship matrix (Chapuis et al. 
2016), bx is the relationship between 2 individuals from family x and 
cxy is the relationship between an individual from family x and an 
individual from family y. It follows that the elements of Af  represent 
twice the Wrights inbreeding coefficient (F; Wright 1922) of the pro-
geny of a cross between an individual from family x with a different 
individual from family y.

Defining the Optimization Problem
Optimal contribution selection approaches generally select parents 
to maximize c

′

t EBVt  subject to constraints on sex-age group con-
tributions and the average relationship—refer to Meuwissen and 
Sonesson (1998) and Woolliams et  al. (2015) and note that the 
method of Meuwissen and Sonesson (1998) is explicitly articulated 
for the case of separate sex-age classes by Tang et  al. (2008). In 
general terms, the optimization problem can be expressed, using the 
notation of Tang et al. (2008), as:

Maximize:

c′tEBVt (3)

Subject to:

Q
′

1 c1 = s1 = s−Q
′

2 c2 (4)

and

Ct+1 ≤ (r1 + r3)
2At+1(a,a) + 2 (r1 + r3)At+1(a,b)rb + r

′

b At+1(b,b)rb 
(5)

given
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At+1(a,a) = c′1A11c1 + 2c′1A12c2 + c′2A22c2 (6)

At+1(a,b) = c′1At+1(1,b)J + c′2At+1(2,b)J (7)

At+1(b,b) = J′At+1(b,b)J (8)

where a subscript of 1 denotes available candidates for which 
contributions are to be optimized—herein referred to as Class 
1 candidates (Meuwissen 1997; Woolliams et  al. 2015)—and a 
subscript of 2 denotes available candidates with fixed (i.e., previ-
ously committed or mated) contributions—herein referred to as 
Class 2 candidates—ct is a vector of genetic contributions of all 
individuals at time t (i.e., contributions from Class 1 and Class 
2 candidates in the selection round undertaken at time t) to age 
group 1 at time t+1; EBVt is a vector of estimated breeding values 
for individuals at time t; Q is an incidence matrix relating in-
dividuals to sex-age groups, other than age 1 at time t+1; s is a 

contribution vector of sex groups, in which case s =
î
0.50.5

ó′
, or 

sex-age groups (if the elements of r are to be fixed) in which case 

contributions of males and females groups must both sum to 0.5; 
Ct+1 is a scalar representing the constraint on the average of rela-
tionships between members of the population at time t+1; r1 and 
r3 are weight scalars denoting the sum of all current and future 
contributions (until death at age q) of age 1 males and females, 
respectively, divided by the sex-specific generation interval; A is 
a between-individual additive genetic relationship matrix at time 
t; At+1(1,b) is a between-individual additive genetic relationship 
matrix of dimensions equal to the number of Class 1 candidates 
by the number of existing individuals to be retained; At+1(2,b) is 
equivalent to At+1(1,b) for Class 2 candidates; J  is a matrix with 
rows representing all individuals in age groups 2 to q at time t+1 
and columns representing the corresponding sex-age groups (the 
jth column of J  consists of zeros except for the n elements that cor-
respond to the animals in sex-age group j which equal 1/n, where 
n is the number of animals in sex-age j); rb is a vector and equals 
[r′2r

′
4]

′ where r2 and r4 are weight vectors denoting the long-term 
contributions of sex-age groups, other than age 1, for males 
and females, respectively, divided by the sex-specific generation 
interval. Note that individuals in age groups 1 to q−1 at time t are 
identical to age groups 2 to q at time t+1 and thus represent “ex-

isting individuals to be retained”; (r1 + r3)
2At+1(a,a)  represents the 

average relationship between new progeny; 2 (r1 + r3)At+1(a,b)rb 

represents the average relationship between new progeny and ex-

isting individuals to be retained; and r
′

b At+1(b,b)rb represents the 

average relationship between existing individuals to be retained—
refer to Tang et al. (2008) for further clarification (e.g., the dis-
tinction between A matrices with single bars and double bars). 
Further note that to apply OCS in circumstances where genomic 
selection is adopted, pedigree-based relationship matrices (A)  
can be replaced with a marker-based (genomic; G) relationship 
matrices (Sonesson et al. 2012; Woolliams et al. 2015).

Incorporating Between-Family Relationship 
Matrices
If full-sib families are large and the number of individuals per family 
is uniform, the average of the between-individual relationship matrix 

for existing individuals to be retained (i.e., At+1(b,b) ) can be approxi-
mated by the average of the corresponding between-family relation-
ship matrix. That is:

J′fAt+1(b,b)f
Jf ≈ At+1(b,b) = J′At+1(b,b)J (9)

given

Jf = [L,L] (10)

where At+1(b,b)f
 is a between-family relationship matrix with dimen-

sions equal to the number of families in existing sex-age groups to 
be retained (nf ) L is a matrix with nf  rows and q-1 columns repre-
senting age groups 2 to q at time t+1. The jth column of L consists 
of zeros except for the n elements that correspond to the families in 
sex-age group j which equal 1/n, where n is the number of families 
in sex-age group j.

Furthermore, if full-sib families are large and the number of 
individuals per family is uniform, the average relationship matrix 
between candidates and existing individuals to be retained (i.e., 

At+1(a,b)) can be approximated as c′1At+1(1,b)f
Jf + c′2At+1(2,b)f

Jf . 
That is:

At+1(1,b)f
Jf ≈ At+1(1,b)J = M1 (11)

At+1(2,b)f
Jf ≈ At+1(2,b)J = M2 (12)

whereAt+1(1,b)f
 is a relationship matrix of dimensions equal to the 

number of Class 1 candidates by nf , with elements equal to the re-
lationship between the candidate and a different individual from 

the family; and At+1(2,b)f
is the equivalent of At+1(1,b)f

 for Class 
2 candidates. The optimization problem (Equations 3–8) can then 
be re-expressed incorporating between-family relationship matrices 
(Supplementary Material 2). This problem can, in turn, be solved 
using the Lagrange multiplier methods (Meuwissen and Sonesson 
1998; Hinrichs et  al. 2006); or other approaches, such as semi-
definite programming (Pong-Wong and Woolliams 2007) and 
second-order cone programming (Yamashita et al. 2018).

Validation
Comparison of At+1(b,b) , calculated as J′fAt+1(b,b)f

Jf , with 
J′At+1(b,b)J was undertaken using simulated data. Simulations in-
volved the construction of a pedigree 20 selection rounds deep from 
a base population of unrelated individuals, with 1280 individuals 
per selection round and random selection of parents. Within selec-
tion rounds, parents were randomly mated. A  fixed age structure 
was assumed—40% males from age group 2 (i.e., selection round 
19), 10% females from age group 2, 10% males from age group 3 
(i.e., selection round 18) and 40% females from age group 3—cor-
responding to a s vector of (0.1 0.4 0.0 0.4 0.1 0.0) and a r vector 
of (0.045 0.227 0.227 0.143 0.179 0.179). Thus age group 1 (i.e., 
selection round 20) was assumed to represent a juvenile age group 
from which no candidates were available. For simplicity, all candi-
date parents were assumed to be Class 1. Six scenarios were mod-
eled: 10, 40 and 160 families per selection round with either equal 
numbers of individuals per family or unequal numbers of individuals 
per family (Table 1 and Figure 1). To examine the impact of the use 
of a between-family relationship matrices to estimate At+1(b,b)  (i.e., 
to validate Equation 9), for each of 100 simulated pedigrees of each 
of the 6 scenarios, J′At+1(b,b)J − J′At+1(b,b)f

Jf  was calculated and ex-
pressed as a percentage of the corresponding elements of J′At+1(b,b)J.  
Furthermore, for each of the same 100 simulated pedigrees, the M1 
the matrix was generated to validate Equation 11. Retaining only 
one row (i.e., individual) per family, for each column of M1, the 
intercept, slope and R2 of a simple linear regression were calculated, 
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fitting the column of M1 derived from At+1(1,b)J  as the dependent 
variable and the column of M1 derived from At+1(1,b)f

Jf  as the ex-
planatory variable.

An R package (R Core Team 2020) entitled “OptContR,” 
incorporating the function “get.c,” was developed to implement and 
validate the use of between-family relationship matrices in OCS. 
This package, a simple spreadsheet-based example of implementa-
tion and the code used for simulations, is available at https://github.
com/mghamilton/OptContR.

Results

For scenarios with large families and a uniform number of individ-
uals per family, minimal bias was evident in the diagonal elements 

of At+1(b,b) . That is, values derived from J′fAt+1(b,b)f
Jf  were only 

marginally less than those derived from J′At+1(b,b)J. However, bias 
increased as the number of individuals per family decreased (com-
pare Table 1, a with Table 1, e). As expected, no bias was evident in 
off-diagonals (Table 1, a). However, in scenarios where the number 
of individuals per family was not uniform, substantial bias was evi-
dent (Table 1, b, d, and f).

For the column of M1 corresponding to age 1 (i.e., juvenile) 

males, no bias was evident when M1 was computed as At+1(1,b)f
Jf  

(Figure 1). In the case of age 2 males (i.e., mature animals, where 
individuals are represented in both rows and columns of At+1(1,b)), 
minimal bias was evident where the number of individuals per family 
was large and uniform, with the mean of intercepts approximately 
zero, slopes approximately 1—although always greater than 1—and 
R2 approximately 1. In contrast, in scenarios where the number of 
individuals per family was small and or where the number of indi-
viduals per family was not uniform, substantial bias was evident. 

Equivalent trends were evident for columns of M1 corresponding to 
females (Supplementary Material 3).

Discussion

Downward bias in the elements of At+1(b,b)  and M1 results in 
under estimation of both the average of relationships between ex-

isting individuals to be retained (i.e., r′bAt+1(b,b)rb) and the average 
of relationships between new progeny and existing individuals 
to be retained (i.e., 2 (r1 + r3) (c′1M1 + c′2M2)rb). In terms of the 
constraint on Ct+1 (Equation 5), these biases act to relax the con-
straint on the average of relationships between new progeny (i.e., 

(r1 + r3)
2At+1(a,a) ). However, in circumstances where the number of 

individuals per family is large and uniform, biases in the elements 

of At+1(b,b) , when computed as J′fAt+1(b,b)f
Jf  (Table 1, a), and M1

, when computed as At+1(1,b)f
Jf  (Figure 1), are small and thus, in 

the application of OCS methods, unlikely to materially impact on 
parental selections in any given selection round or long-term genetic 
gains and inbreeding.

In circumstances where the number of individuals per family is 
not uniform, the impact of adopting between-family relationship 

matrices on the computation of At+1(b,b)  and M1 is less predictable 
and biases more extreme (Table 1, b, d, and f; Figure 1). However, 
by observing that there are no significant biases in the columns of 
M1 corresponding to juvenile age groups (age 1 in Figure  1 and 
Supplementary Material 3), “combined individual-and-between-
family relationship matrices” may be adopted to minimize biases in 
M1, while negating the need to know the number of individuals in 
each juvenile family (Supplementary Materials 4 and 5). In adopting 

Table 1. Validation of Equation 9—mean difference (and standard deviation) between At+1(b,b) computed as J′At+1(b,b)J  and J′
f At+1(b,b)f Jf , 

expressed as a percentage of the elements of J′At+1(b,b)J , from 100 simulated pedigrees for each of 6 scenarios (a–f)

a) 10 families with 128 individuals b) 5 families with 64 individuals and 5 families with 192 individuals

 Male (2) Male (1) Female (2) Female (1)  Male (2) Male (1) Female (2) Female (1)

Male (2) 0.42 (0.03) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) Male (2) 5.96 (2.63) 0.03 (3.36) 5.64 (2.64) 0.03 (3.36)
Male (1) 0.00 (0.00) 0.40 (0.03) 0.00 (0.00) 0.00 (0.00) Male (1) 0.03 (3.36) 5.27 (2.77) 0.03 (3.36) 4.97 (2.78)
Female (2) 0.00 (0.00) 0.00 (0.00) 0.42 (0.03) 0.00 (0.00) Female (2) 5.64 (2.64) 0.03 (3.36) 5.96 (2.63) 0.03 (3.36)
Female (1) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.40 (0.03) Female (1) 0.03 (3.36) 4.97 (2.78) 0.03 (3.36) 5.27 (2.77)
          

c) 40 families with 32 individuals d) 20 families with 16 individuals and 20 families with 48 individuals

 Male (2) Male (1) Female (2) Female (1)  Male (2) Male (1) Female (2) Female (1)

Male (2) 1.61 (0.07) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) Male (2) 5.92 (1.98) 0.08 (1.72) 4.68 (2.01) 0.08 (1.72)
Male (1) 0.00 (0.00) 1.55 (0.06) 0.00 (0.00) 0.00 (0.00) Male (1) 0.08 (1.72) 5.76 (1.75) 0.08 (1.72) 4.56 (1.78)
Female (2) 0.00 (0.00) 0.00 (0.00) 1.61 (0.07) 0.00 (0.00) Female (2) 4.68 (2.01) 0.08 (1.72) 5.92 (1.98) 0.08 (1.72)
Female (1) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.55 (0.06) Female (1) 0.08 (1.72) 4.56 (1.78) 0.08 (1.72) 5.76 (1.75)
          

e) 160 families with 8 individuals f) 80 families with 4 individuals and 80 families with 12 individuals

 Male (2) Male (1) Female (2) Female (1)  Male (2) Male (1) Female (2) Female (1)

Male (2) 6.37 (0.11) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) Male (2) 10.31 (0.82) −0.01 (0.85) 5.48 (0.87) −0.01 (0.85)
Male (1) 0.00 (0.00) 6.15 (0.13) 0.00 (0.00) 0.00 (0.00) Male (1) −0.01 (0.85) 9.73 (0.78) −0.01 (0.85) 5.05 (0.83)
Female (2) 0.00 (0.00) 0.00 (0.00) 6.37 (0.11) 0.00 (0.00) Female (2) 5.48 (0.87) −0.01 (0.85) 10.31 (0.82) −0.01 (0.85)
Female (1) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 6.15 (0.13) Female (1) −0.01 (0.85) 5.05 (0.83) −0.01 (0.85) 9.73 (0.78)

Rows and columns represent sex-age groups at time t.
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combined individual-and-between-family relationship matrices, 
columns in At+1(1,b) (and rows in J ), corresponding to mature age 
groups are represented by individuals—noting that the identities 
of individuals in mature age groups are likely to be known—and 
columns corresponding to juvenile age groups are represented by 
families. Alternatively, combined individual-and-between-family 
relationship matrices could be partitioned into “mature” and “ju-
venile” sub-matrices (Kerr et al. 2015). Combined individual-and-
between-family At+1(2,b) and At+1(b,b) matrices may also be used to 
compute M2 and At+1(b,b) , respectively. However, some degree of 
inaccuracy in the elements of At+1(b,b)  corresponding to juvenile 

age groups is unavoidable in circumstances where the number 

of individuals per juvenile family is unknown (Supplementary 
Materials 4 and 5).

In conclusion, the use of between-family relationship matrices in 
the application of OCS procedures to highly fecund species reduces 
the size of relationship matrices—and the corresponding compu-
tational tasks—and, in the case of juvenile families, negates the 
need for the number of individuals to be known or an arbitrary 
number of dummy individuals to be generated (Kerr et al. 2015). 

Approximations of At+1(b,b) , and M matrices (Equations 9–12), 
computed using between-family relationship matrices, closely re-
flect those computed using individual relationship matrices in cir-
cumstances where the number of individuals per family is large and 

Non-uniform NUniform N Non-uniform NUniform N

)821
=

N(seili
maf

01

)23
=

N(seili
maf

04 16
0 

fa
m

ili
es

 (N
 =

 8
)

10
 fa

m
ili

es
 (N

 =
 6

4)
10

 fa
m

ili
es

 (N
 =

 1
92

)

40
 fa

m
ili

es
 (N

 =
 1

6)
40

 fa
m

ili
es

 (N
 =

 4
8)

16
0 

fa
m

ili
es

 (N
 =

 4
)

16
0 

fa
m

ili
es

 (N
 =

 1
2)

10
 fa

m
ili

es
 (N

 =
 1

28
)

40
 fa

m
ili

es
 (N

 =
 3

2)

16
0 

fa
m

ili
es

 (N
 =

 8
)

10
 fa

m
ili

es
 (N

 =
 6

4)
10

 fa
m

ili
es

 (N
 =

 1
92

)

40
 fa

m
ili

es
 (N

 =
 1

6)
40

 fa
m

ili
es

 (N
 =

 4
8)

16
0 

fa
m

ili
es

 (N
 =

 4
)

16
0 

fa
m

ili
es

 (N
 =

 1
2)

Age 2 (at �me t) Age 1 (at �me t)

0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8

tpecretnI

a)

1.5

1.3
1.2
1.1
1.0

0.8
0.7
0.6
0.5

0.9

1.4

Sl
op

e

b)

1.1

1.0

0.9

0.7

0.6

0.8R2

c)

Figure 1. Validation of Equation 11—the (a) intercept, (b) slope, and (c) R2 of simple linear regression models fitting elements of the columns of M1 corresponding 
to males (with only 1 row per family retained) derived from At+1(1,b)J  as the dependent variable and columns of M1 derived from At+1(1,b)f Jf  as the explanatory 
variable. The mean (and standard deviation) of the analysis of 100 simulated pedigrees, for each of 6 scenarios, is presented. For scenarios with non-uniform 
numbers of individuals per family, results are presented separately for small and large families. N refers to the number of individuals per family.
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the number of individuals per family is uniform. Such circumstances 
exist in some aquaculture and forestry breeding populations, in 
which excess individuals per family are grown in a common rearing 
environment until they are of a size that allows a fixed number of 
individuals per family to be tagged or labeled (Kube et  al. 2011; 
Hamzah et al. 2014). In breeding programs with large numbers of 
individuals per family but where individuals in juvenile age groups 
are not individually identified—because individuals are too nu-
merous, to minimize or simplify data storage (Kerr et al. 2015), or 
as a consequence of deferred genotyping and pedigree reconstruc-
tion (Kube et al. 2012)—combined individual-and-between-family 
relationship matrices can be adopted in the implementation of OCS 

procedures to minimize biases in key inputs (i.e., At+1(b,b)  and M 

matrices).
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