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A B S T R A C T   

Objectives: When diagnosing Coronavirus disease 2019(COVID-19), radiologists cannot make an accurate judg
ments because the image characteristics of COVID-19 and other pneumonia are similar. As machine learning 
advances, artificial intelligence(AI) models show promise in diagnosing COVID-19 and other pneumonias. We 
performed a systematic review and meta-analysis to assess the diagnostic accuracy and methodological quality of 
the models. 
Methods: We searched PubMed, Cochrane Library, Web of Science, and Embase, preprints from medRxiv and 
bioRxiv to locate studies published before December 2021, with no language restrictions. And a quality 
assessment (QUADAS-2), Radiomics Quality Score (RQS) tools and CLAIM checklist were used to assess the 
quality of each study. We used random-effects models to calculate pooled sensitivity and specificity, I2 values to 
assess heterogeneity, and Deeks’ test to assess publication bias. 
Results: We screened 32 studies from the 2001 retrieved articles for inclusion in the meta-analysis. We included 
6737 participants in the test or validation group. The meta-analysis revealed that AI models based on chest 
imaging distinguishes COVID-19 from other pneumonias: pooled area under the curve (AUC) 0.96 (95 % CI, 
0.94–0.98), sensitivity 0.92 (95 % CI, 0.88–0.94), pooled specificity 0.91 (95 % CI, 0.87–0.93). The average RQS 
score of 13 studies using radiomics was 7.8, accounting for 22 % of the total score. The 19 studies using deep 
learning methods had an average CLAIM score of 20, slightly less than half (48.24 %) the ideal score of 42.00. 
Conclusions: The AI model for chest imaging could well diagnose COVID-19 and other pneumonias. However, it 
has not been implemented as a clinical decision-making tool. Future researchers should pay more attention to the 
quality of research methodology and further improve the generalizability of the developed predictive models.   

1. Introduction 

Beginning in 2020, the coronavirus disease 2019 (COVID-19) has 
spread widely around the world. As of July 15, 2022, there have been 
more than 557,917,904 confirmed cases of COVID-19 and 6,358,899 

deaths worldwide [1]. Based on the estimated viral reproduction num
ber (R0), the average number of infected individuals who transmit the 
virus to others in a completely non-immune population is about 3.77 
[2], indicating that the disease is highly contagious. Therefore, It is 
crucial to identify infected individuals as early as possible for quarantine 
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and treatment procedures. 
The diagnosis of COVID-19 relies on the following criteria: clinical 

symptoms, epidemiological history, chest imaging, and laboratory tests 
[3,4]. The most common clinical symptoms were: fever, cough, dyspnea, 
malaise, fatigue, phlegm/discharge, among others [5]. However, these 
symptoms are nonspecific, and non-COVID-19 pneumonia will have 
similar symptoms [6]. Reverse transcriptase polymerase chain reaction 
(RT-PCR) is the gold standard for diagnosing COVID-19, however, it has 
been reported that RT-PCR may not be sensitive enough for early 
detection of suspected patients, and in many cases the test must be 
repeated multiple times to confirm the results [7–9]. 

Another major diagnostic tool for COVID-19 is chest imaging. Chest 
CT of COVID-19 is characterized by ground-glass opacities (GGO) 
(including crazy-paving) and consolidation [10–12]. While typical CT 
images may be useful for early screening of suspected cases, images of 
various viral pneumonias are highly similar and overlap with image 
features of other lung infections [13]. For example, GGOs are common in 
other atypical pneumonia and viral pneumonia diseases such as influ
enza, severe acute respiratory syndrome (SARS), and Middle East res
piratory syndrome (MERS) [14], making it difficult for radiologists to 
diagnose COVID-19. The results of a meta-analysis showed that chest CT 
can be used to rule out COVID-19 pneumonia, but cannot distinguish 
COVID-19 from other lung infections; The fact that both types of 
pneumonia can appear on chest CT as exudative lesions, GGOs, implies 
that CT cannot differentiate SARS-CoV-2 infection from other respira
tory diseases [15]. 

Radiomics is an emerging field that can extract high-throughput 
imaging features from biomedical images and convert them into mine
able data for quantitative analysis. The underlying assumption is that 
changes and heterogeneity of lesions at the microscopic scale (such as at 
the cellular or molecular level) can be reflected in the images [16], of
fering hope for distinguishing COVID-19 from other pneumonias. In the 
past 3 years, there have been many studies on the diagnosis of COVID-19 
based on radiomics methods. However, there has not been any research 
systematically summarizing the current research on artificial intelli
gence(AI) models for distinguishing COVID-19 from other pneumonias 
on images, and the overall efficacy of this predictive model is still un
known.Additionally, because radiomics research is a multi-step, 
complicated process, it is crucial to evaluate the method’s quality 
before applying it to clinical applications to assure dependable and 
repeatable models. 

Our systematic review aimed to (1) provide an overview of radiomics 
studies identifying COVID-19 from other pneumonias and evaluate the 
efficacy of prediction models; (2) Assess methodological quality and risk 
of bias in radiomics workflows; (3) Determine which algorithms are 
most commonly used to distinguish COVID-19 from other pneumonias. 

2. Materials and methods 

We followed the STARD (Standards for the Reporting of Diagnostic 
Accuracy Studies) [17] and Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) [18]. The registration number 
CRD 42021272433. 

2.1. Search strategy 

We searched from the databases of Pubmed, Web of Science, Embase, 
and Cochrane Library, for studies conducted before November 30, 2021. 
We searched for preprints from medRxiv and bioRxiv, using the method 
of combining subject words and free words. The main subject words 
were"COVID-19", "Artificial Intelligence", and "Diagnostic Imaging". We 
aimed to identify all relevant studies, regardless of language or publi
cation status, with no language restrictions. We also filtered through the 
search to identify relevant systematic reviews for inclusion. Meetings, 
letters, short communication, opinion article were excluded. Details of 
the search are provided in the Table S1. 

2.2. Eligibility criteria 

Two doctors independently screened articles that were retrieved 
electronically. Articles that met all the following criteria were included: 
(1) the index test was studied with chest CT, chest X-ray, or lung ul
trasound (2) only tests of metrics interpreted by algorithms, not human 
interpretations, were included. We included studies involving human 
interpretations if they provided data related to the diagnostic accuracy 
of algorithmic interpretations, (3) they had information that distin
guished between COVID-19 and other pneumonia, including (commu
nity-acquired pneumonia, bacterial pneumonia, viral pneumonia, 
influenza, interstitial pneumonia, etc.). Exclusion criteria were as fol
lows: (1) the included cases had normal, lung cancer, lung nodules, or 
other non-pneumonic cases, (2) only the training group model was 
included and there was no validation group or data regarding diagnostic 
accuracy, (3) the validation group accepted the index test and reference 
standard studies with less than 10 participants, (4) no exact number of 
cases of COVID-19 was provided or other pneumonias, and the data 
related to the diagnostic accuracy were calculated by the number of CT 
image layers. 

2.3. Data extraction 

We extracted the following items: date of the study, number of 
participants and demographic information about participants, type of 
common pneumonia, type of images used in the model, interest in the 
selection basis of the area, the diagnostic performance of the training 
group model, the diagnostic accuracy data of the verification model, 
whether there was external verification, detailed information regarding 
the AI algorithm, technical parameters of the index test, reference 
standard results, and detailed information. 

Two reviewers independently assessed and extracted relevant in
formation from each included study. For each study, we extracted 2 × 2 
data (true positive (TP), true negative (TN), false positive (FP), false 
negative (FN)) for the validation group. If a study reported accuracy 
data for more than one model, we took the 2 × 2 contingency table for 
the model with the largest Youden index. If a study reported accuracy 
data for one or more radiologists and AI accuracy data, we extracted 
only the 2 × 2 contingency table corresponding to AI accuracy. If a study 
reported a combined model of clinical information and radiomics 
signature data and accuracy data for a separate radiomics data model, 
we only extracted the 2 × 2 contingency table corresponding to the 
radiomic model data. If both internal and external validation were re
ported in a study, we only extracted the 2 × 2 contingency table cor
responding to the external validation accuracy data; if the training 
group, the validation group, and the test group were reported in a study, 
and we only extracted the test group accuracy data corresponding to the 
2 × 2 contingency table. If a study reported accuracy data for more than 
one external validation, we extracted the 2 × 2 contingency table for the 
accuracy data for the validation group with the largest number of 
participants. 

2.4. Quality assessment 

The Radiomics Quality Score (RQS) [19], Checklist for Artificial In
telligence in Medical Imaging (CLAIM) checklist [20] and Quality 
Assessment of Diagnostic Accuracy Studies (QUADAS-2) [21] were used 
to assess the methodological quality and study-level risk of bias of the 
included studies, respectively. Studies based on machine learning(ML) 
methods were evaluated using the Radiomics Quality Score (RQS) 
(Table S2), while studies relying on deep learning(DL) methods were 
evaluated using the CLAIM checklist (Table S3). The Diagnostic Accu
racy Study Quality Assessment 2 (QUADAS-2) standard consists of four 
parts: patient selection, index test, reference standard, and flow and 
timing (Table S4). Two graduate students independently assessed the 
quality and discussed disagreements with the evidence-based medicine 
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teacher to reach a consensus. 

2.5. Statistical analysis 

We created a 2 × 2 table for each study based on data extracted 
directly from the article and calculated the accuracy of diagnostic tests 
[22] (sensitivity, specificity, positive predictive value, negative predic
tive value, positive likelihood ratio (PLR), and negative likelihood ratio 
(PLR) with 95 % CI of each study. We analyzed the data at the partici
pant level, rather than the image level and lesion level, which is related 
to the treatment of pneumonia, and which is how most studies report 
data. 

We performed meta-analyses using a bivariate random-effects 
model, taking into account any correlations that may exist between 
sensitivity and specificity [23]. We did not perform meta-analyses if 
only two or three studies (less than four) were assessed for a given study. 
analysis, because the number of studies was too small for a reliable 
assessment.We assessed sensitivity and specificity with 95 % confidence 
intervals(CI) by plotting forest plots, and we performed meta-analyses 
using midas in Stata14. 

We explored heterogeneity between studies by visually examining 
the sensitivity and specificity of forest plots and summary receiver 
operating characteristic (SROC) plots. If sufficient data and information 

were available, we plan to perform subgroup analyses to explore study 
heterogeneity. We considered some sources of heterogeneity, including: 
comparisons between different imaging methods (CT vs. CRX), modeling 
methods (radiomics models vs. DL models), comparisons between 
different sample sizes, Comparisons between different regions of interest 
(Infection regions vs. Others) and different segmentation methods (2D 
vs. 3D). Also allow us to assess the impact of various factors on the 
model’s diagnostic performance. 

We assessed publication bias because we included more than ten 
studies in this systematic review. We initially assessed reporting bias 
using funnel plot visual asymmetry, plotting measures of effect size with 
measures of study precision. We then conducted a formal evaluation 
using Deeks’ test and diagnostic odds ratio (DOR) as a measure of test 
accuracy [24]. 

3. Results 

3.1. Literature search 

As of November 30, 2021, we have retrieved a total of 2001 articles, 
and after removing duplicates, there are 1509 articles left. Two re
viewers independently browsed the titles and abstracts and removed 
862 articles that did not match the research topic. After evaluating 647 

Fig. 1. Flow diagram of the study selection process for this meta-analysis.  
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Table 1 
Summary of general study characteristics.  

Training validation/ Testing 

Study 
ID 

Country of 
corresponding 
author 

Study 
type 

Index 
test 

Date source Eligibility 
criteria 

Reference 
standard 

Common type of pneumonia Number of COVID- 
19 vs. other 
pneumonias 

AUC Type of 
validation 

Number of COVID- 
19 vs. other 
pneumonias 

SEN SPC 

Ardakani 
2020 

Iran R CT Single hospital Yes RT-PCR Atypical, viral pneumonia 86 vs. 69 0.999 Random split 22 vs.17 1.00 0.99 

Ardakani 
2021 

Iran R CT Single hospital Yes RT-PCR Atypical and viral pneumonia 244 vs.244 0.988 Random split 62 vs.62 0.935 0.903 

Ali 2021 turkey R CXR Single database No NA Viral 
pneumonia 

146 vs.901 NR 3fold CV 73 vs.444 0.973 NR 

Han2021 Korea R CT 2datasets No NA Viral pneumonia, bacterial 
pneumonia, fungal 
pneumonia 

164 vs.320 NR External 
validation 

21 vs.40 0.997 0.959 

Di2020 China R CT 5hospitals No RT-PCR CAP 1933 vs. 1064 NR 10 fold CV 215 vs.118 0.932 0.840 
Bai 2020 China R CT 10hospitals Yes RT-PCR Pneumonia 

of other origin 
377 vs.453 NR Random split 42 vs.77 0.950 0.960 

Panwar 
2020 

Mexico R CXR 3datasets No NA Pneumonia 133 vs.231 NR Random split 29 vs.85 0.966 0.953 

Kang 2020 China R CT 3hospitals No RT-PCR CAP 1046 vs. 719 NR Random split 449 vs.308 0.966 0.932 
Liu 2021 China R CT 2hospitals Yes RT-PCR Viral infections, 

mycoplasma infections, 
chlamydia infections, 
fungus infections, 
co-infections 

66 vs.313 1.000 External 
validation 

20 vs.20 0.850 0.900 

Chen 2021 China R CT Single hospital Yes RT-PCR Other types of pneumonia 54 vs.60 0.984 Random split 9 vs.11 0.816 0.923 
Song 2020 China R CT 2hospitals Yes RT-PCR CAP 66 vs.66 0.979 External 

validation 
15 vs.20 0.800 0.750 

Sun 2020 China R CT 6hospitals No RT-PCR CAP 1196 vs. 822 NR 5fold CV 299 vs.205 0.931 0.899 
Wang 2021 China R CT 3hospitals Yes RT-PCR Other types of 

viral pneumonia 
74 vs.73 0.970 External 

validation 
17 vs.17 0.722 0.751 

Zhou 2021 China R CT 12hospitals Yes RT-PCR Influenza pneumonia 118 vs.157 NR External 
validation 

57 vs.50 0.860 0.772 

Azouji2021 Switzerland R CXR 7datasets No NA MERS, SARS 338 vs.222 NR 5fold CV 85 vs.56 0.989 NR 
Cardobi 

2021 
Italy R CT Single hospital No swab test Interstitial pneumonias 54 vs.30 0.830 Random split 14 vs.17 0.570 0.930 

Yang 2021 China R CT Single hospital No RT-PCR Other pneumonias 70 vs.70 NR 10fold CV 20 vs.20 0.942 0.854 
Chikontwe 

2021 
Korea R CT Single hospital No RT-PCR Bacterial pneumonia 38 vs.49 NR Random split 30 vs.39 1.000 0.975 

Zhu 2021 China R CT 6hospitals No RT-PCR CAP 1345 vs. 924 NR 10fold CV 150 vs.103 0.913 0.910 
Xie 2020 China R CT 5hospitals Yes RT-PCR Bacterial infection, 

Viral infection 
227 vs.153 NR prospective 

RWD 
243 vs.73 0.810 0.820 

Qi 2021 China R CT 3hospitals+dataset Yes RT-PCR CAP 127 vs.90 NR 10fold CV 14 vs.10 0.972 0.940 
Wang 2020 China R CT 7hospitals Yes RT-PCR Bacterial pneumonia, 

Mycoplasma pneumonia, Viral 
pneumonia, Fungal pneumonia 

560 vs.149 0.900 External 
validation 

102 vs.124 0.804 0.766 

Yang 2020 China R CT 8hospitals No RT-PCR CAP 960 vs.628 0.976 External 
validation 

1605 vs. 452 0.869 0.901 

Wu 2020 China R CT 3hospitals No RT-PCR Other pneumonia 294 vs.101 0.767 Random split 37 vs.13 0.811 0.615 
Zhang 2021 China R CT 3hospitals No RT-PCR CAP, influenza, mycoplasma 

pneumonia 
72 vs.127 0.987 5fold CV 31 vs.62 0.879 0.887 

Xin 2021 China R CT 2hospitals Yes swab tests CAP 34 vs.48 NR 5fold CV 9 vs.12 0.957 0.984 
Guo 2020 China R CT 2hospitals No RT-PCR Seasonal flu，CAP 8 vs.42 0.970 External 

validation 
11 vs.44 0.889 0.935 

Fang2020 China R CT 2hospitals Yes nucleic acid 
detection 

Viral pneumonia 136 vs.103 0.959 Random split 56 vs.34 0.929 0.971 

Xia 2021 China R CXR 2hospitals Yes nucleic acid Influenza A/B 
pneumonia 

246 vs.44 NR Random split 266 vs.62 0.869 0.742 

Huang2020 China R CT 15hospitals Yes RT-PCR Viral pneumonia 62 vs.64 0.849 5fold CV 27 vs.28 0.778 0.786 
Wu 2021 China R CT Single hospital Yes nucleic acid Other infectious 

pneumonia 
76 vs.77 NR 5fold CV 19 vs.19 0.809 0.842 

Chen2021 China R CT 2hospitals No RT-PCR Viral pneumonia 81 vs.81 0.807 Random split 27 vs.19 0.733 0.822 

Abbreviations: AUC: area under the curve; CAP: community acquired pneumonia;CT: Computed tomography; CV: cross-validation;CXR: Chest X-Ray; R: retrospective; RT-PCR: Reverse transcriptase polymerase chain 
reaction; RWD: Real-world dataset; SEN: sensitivity;SPC: specificity 
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Table 2 
Summary of artificial intelligence-based prediction model characteristics described in included studies.  

Study 
ID 

ROI Segmentation 
Style 

AI 
Method 

Labeling 
Procedure 

Pre-Processing Augmentations Model 
Structure 

Loss 
Function 

Comparison between algorithms AI vs. 
Radiologist 

Ardakani 
2020 

Regions of 
infections 

2D DL by a radiologist 
with more than 15 
years of experience 
in thoracic 
imaging 

Manual ROI 
extraction by 
cropping, Normalization, 
transfer-learning 

NA Ten well-known 
CNN 

NA Ten well-known 
CNN 

Yes 

Ardakani 
2021 

CT chest 2D ML By two radiologists feature extraction random scaling 
shearing 
horizontal flip 

ensemble method NA DT, KNN, Naïve Bayes, SVM Yes 

Ali 2021 Whole image 2D DL NA Normalization, transfer- 
learning 

Horizontal, 
vertical flip, 
Zoom, Shift 

ResNet50, 
ResNet101, Res 
Net 152 

NA ResNet50, ResNet101, Res Net 
152 

No 

Han2021 CT slices 2D DL using the labeled 
COVID-19 dataset 

both labeled and 
unlabeled data can be 
used 

random scaling 
random translation, 
random shearing, 
horizontal flip 

a semi-supervised 
deep neural 
network 

standard 
cross 
entropy loss 

Supervised learning No 

Di2020 Infected lesions 2D ML NA extracted both regional 
and radiomics features, 
Segmentation 

NA UVHL cross- 
entropy 

SVM, MLP, iHL, tHL No 

Bai 2020 Lung 
regions 

2D DL Lesions (COVID-19 
or pneumo- 
nia) were 
manually labeled 
by2 radiologists 

Normalized, 
Segmentation 

flips, scaling, rotations, 
random brightness and 
contrast manipulations, 
random noise, and 
blurring 

DNN NA No Yes 

Panwar 
2020 

Whole image 2D DL NA Filter, dimension 
reduction, deep transfer 
learning 

Shear, Rotation 
Zoom, shift 

A DL and Grad- 
CAM 

binary cross- 
entropy loss 

No No 

Kang 2020 Lesion region 3D ML NA Segmentation, 
Feature 
Extraction, Normalization 

NA Structured Latent 
Multi-View 
Representation 
Learning 

Ross-entropy 
loss 

LR，SVM,GNB, KNN, NN No 

Liu 2021 Each pneumonia 
lesion 

3D ML By three 
experienced 
radiologists 

Feature 
Extraction, Filters 

NA LASSO regression NA No Yes 

Chen 2021 Consolidation 
and ground- 
glass opacity 
lesions 

3D ML By fifteen 
radiologists 

Feature 
Extraction, wavelet 
filters, Laplacian of 
Gaussian filters, Feature 
selection 

NA SVM NA No No 

Song 2020 CT images 2D DL NA semantic feature 
extraction 

NA BigBiGAN NA SVM, KNN Yes 

Sun 2020 Infected lung 
regions 

3D DL NA Feature 
extraction 

NA AFS-DF NA LR, SVM, RF, NN No 

Wang 2021 Pneumonia 
lesions 

3D/2D ML By four 
radiologists 

manual segmentation, 
Feature 
extraction 

NA Linear, LASSO, 
RF, KNN 

NA Linear, LASSO, RF, KNN Yes 

Zhou 2021 Lesion regions 2D DL annotated by 2 
radiologists 

Segmentation randomly flipped, 
cropped 

Trinary scheme 
(DL) 

Binary 
cross- 
entropy loss 

Plain scheme(DL) Yes 

Azouji2021 X-ray images 2D DL NA Resizing x-ray images, 
Contrast limited adaptive 
histogram equalization, 
Deep feature extraction, 
Deep feature fusion 

Rotation, translation LMPL classifier hinge loss 
function 

NaiveBayes, KNN, SVM,DT, 
AdaBoostM2, TotalBoost,RF, 
SoftMax,VGG-Net 

No 

Cardobi 
2021 

Lung area 3D ML NA Segmentation, features 
extraction 

NA LASSO model NA No No 

(continued on next page) 

L.-L. Jia et al.                                                                                                                                                                                                                                    



EuropeanJournalofRadiologyOpen9(2022)100438

6

Table 2 (continued ) 

Study 
ID 

ROI Segmentation 
Style 

AI 
Method 

Labeling 
Procedure 

Pre-Processing Augmentations Model 
Structure 

Loss 
Function 

Comparison between algorithms AI vs. 
Radiologist 

Yang 2021 Pneumonia lesion 3D ML artificially 
delineated 

Segmentation, features 
extraction 

spatially resampled SVM NA Sigmoid-SVM, Poly-SVM, 
Linear-SVM, RBF-SVM 

No 

Chikontwe 
2021 

CT slices 3D DL NA Segmentation random transformations, 
flipping 

DA-CMIL NA DeCoVNet, MIL, 
DeepAttentionMIL, JointMIL 

No 

Zhu 2021 CT images 3D DL NA Segmentation, 
features extraction 

NA GACDN Binary cross 
entropy 

SVM，KNN,NN No 

Xie 2020 CT slices 3D DL NA Segmentation, 
extract 2D local features 
and 3D global features 

random horizontal flip, 
random rotation, random 
scale, random translation, 
and random elastic 
transformation 

DNN NA No Yes 

Qi 2021 Lung field 3D DL NA segmentation of the lung 
field, Extraction of deep 
features, Feature 
representation 

Image rotation, reflection, 
and translation 

DR-MIL NA MResNet-50-MIL, MmedicalNet, 
MResNet-50-MIL-max-pooling, 
MResNet-50-MIL-Noisy-AND- 
pooling, MResNet-50-Voting, 
MResNet-50-Montages 

Yes 

Wang 2020 Lung area 3D DL NA fully automatic DL model 
to segment, 
normalization, 
convolutional filter 

NA DL NA No No 

Yang 2020 Infection 
regions 

3D DL NA Class Re-Sampling 
Strategies, Attention 
Mechanism 

scaling Dual-Sampling 
Attention 
Network 

binary cross 
entropyloss 

RN34 + US, Attention 
RN34 + US 
Attention RN34 + SS 
Attention RN34 + DS 

No 

Wu 2020 CT slices 3D DL NA segmentation NA Multi-view deep 
learning 
fusion model 

NA Single-view model No 

Zhang 2021 Major lesions 3D DL NA Segmentation 
Feature extraction, 
Feature selection, 

scaling DL-MLP NA DL-SVM,DL-LR, DL-XGBoost Yes 

Xin 2021 Lungs, lobes, and 
detected opacities 

2D DL Confirmed by 3 
experienced 
radiologists and 
human auditing 

Segmentation 
Feature extraction 

NA LR, MLP, 
SVM, XGboost 

NA LR, MLP, 
SVM, XGboost 

No 

Guo 2020 NR NA ML by two radiologists Segmentation 
Feature extraction 

NA RF NA No No 

Fang2020 Primary lesion 3D/2D ML by two chest 
radiologists 

Segmentation 
feature extraction, feature 
reduction and selection 

NA LASSO regression NA No No 

Xia 2021 Lung areas 2D DL NA Segmentation 
feature extraction 

random rotation, 
scale, transmit 

DNN Categorical 
cross- 
entropy 

No Yes 
(pulmonary 
physicians) 

Huang2020 Pneumonia lesion 3D ML by two chest 
radiologists 

Segmentation 
feature extraction, filter 

NA Logistic model NA No No 

Wu 2021 Maximal regions 
Involving 
inflammatory 
lesions 

2D ML by two radiologists feature extraction, 
manually delineating 

NA RF NA No No 

Chen2021 Lesion 
region 

2D ML by two radiologists Segmentation 
feature extraction,feature 
dimensionality reduction 

NA WSVM NA RF, SVM 
LASSO 

Yes 

Abbreviations:AFS-DF:adaptive feature selection guided deep forest;AI:artificial intelligence;BigBiGAN: bi-directional generative adversarial network; CT: Computed tomography; CXR: Chest X-Ray; CNN: Convolutional 
neural network;DA-CMIL: Dual Attention Contrastive multiple instance learning; DT: Decision tree; DNN: Deep Neural Networks; DR-MIL: deep represented multiple instance learning; DL: deep learning; RF: Random 
Forests; GNB: Gaussian-Naive-Bayes; Grad-CAM: Gradient Weighted Class Activation Mapping; GACDN: generative adversarial feature completion and diagnosis network; IHL:Inductive Hypergraph Learning; KNN: K- 
nearest neighbor; LR: Logistic-Regression; LASSO: least absolute shrinkage and selection operator; LMPL: large margin piecewise linear; ML: machine learning; MLA: Machine learning algorithms; MLP: Multilayer 
Perceptron; MERS: Middle East respiratory syndrome; NN: Neural-Networks; ROI: Region of interest; SVM: Support vector machine; THL: Transductive Hypergraph Learning; 2D: two-dimensional;3D: three-dimensional; 
UVHL: Uncertainty Vertex-weighted Hypergraph Learning; WSVM: weighted support vector machine 
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AI-assisted imaging studies conducted to diagnose, classify, and detect 
the full text of COVID-19, we excluded 603 articles (including 165 non- 
new coronary pneumonia types that did not specifically account for the 
participants; 279 articles including COVID-19, common pneumonia, and 
healthy individuals; 8 articles including COVID-19, pneumonia, and 
other non-inflammatory lung diseases for participants; 53 articles 
including participants with COVID-19, pneumonia, healthy people, and 
other lung diseases; participants with COVID-19, 16 articles of other 
lung diseases; participants with COVID-19, 82 articles including healthy 
individuals); in the final 44 articles, we ultimately included 32 articles, 
because 8 articles lacked sufficient data to construct a 2 × 2 table; 2 
articles lacked a validation group; 2 studies were conducted at the image 
level. The selection process is shown in Fig. 1. 

We included 32 studies with a total of 6737 participants, of whom 
4076 (60.5 %) were diagnosed with COVID-19, other pneumonias, 
including viral pneumonia (MEERS-COV, adenovirus, respiratory syn
cytial virus, influenza virus), bacterial pneumonia, fungal pneumonia, 
pneumonia caused by atypical pathogens (mycoplasma, chlamydia and 
legionella), pulmonary mycosis, interstitial pneumonia, and 
community-acquired pneumonia. The number of participants ranged 
from 105 to 5372. The mean age of the participants ranged from 40.92 
± 20.41 years to 61.45 ± 15.04 years. The percentage of male partici
pants with COVID-19 ranged from 40.7 % to 62.0 %, and the percentage 
of male participants in other pneumonias ranged from 36.8 % to 64.0 %. 
The characteristics of the included studies are summarized in Table 1 
and Table 2. 

Most studies (20/32) included participants selected from two or 
more hospitals, 7 studies included participants from only one hospital, 4 
studies used image data from public databases, and one study had par
ticipants from both hospitals and public database [25]. Most studies 
(28/32) used CT scans, and the remaining four studies used X-rays. Most 
of the studies (28/32) used RT-PCR as the diagnostic criteria for diag
nosing SARS-CoV-2, and the diagnostic criteria of the remaining four 
studies were unknown [26–29]. 

Sixteen studies performed automatic segmentation, 12 studies per
formed manual segmentation, and the remaining four studies input full- 
slice images. Fourteen studies performed two-dimensional(2D) seg
mentation, 15 studies performed three-dimensional(3D) segmentation, 
two studies performed both 2D segmentation and 3D segmentation [30, 
31], and the remaining one study did not describe the segmentation 
method [32]. Fifteen studies used the infected lesions as regions of in
terest (ROI), 10 studies used the entire image level as the ROI input 
models, 6 studies used the entire lung region as ROI, and the remaining 
one study ROI was not described [32]. 

Pyradiomics (6/32) was the most often used software for extracting 
image characteristics, followed by MatLab (4/32), PyTorch (3/32) and 
Python (3/32). 

With 13 studies using radiomics models and 19 employing DL 
models, feature selection and dimensionality reduction are essential to 
prevent overfitting when developing radiomics models since radiomics 
characteristics typically exceed the sample size [33]. Least Absolute 
Shrinkage and Selection Operator (LASSO) regression is the most used 
algorithm. 

Twenty studies used two or more models, and 12 studies used a 
single model. The three most common models include convolutional 
neural network(CNN), support vector machine (SVM), K-nearest 
neighbor (KNN). Twenty studies only calculated the diagnostic perfor
mance of the AI model, 11 studies compared the AI model with the 
diagnostic performance of radiologists, and one study compared the AI 
model with the diagnostic level given by pulmonary physicians [34], 
The results of these 12 studies all showed that the diagnostic perfor
mance of the AI model in distinguishing other pneumonias of the 
SARS-CoV-2 was higher than that of radiologists or pulmonary 
physicians. 

3.2. Risk of bias assessment 

The mean RQS score of the included 13 studies was 7.8, accounting 
for 22 % of the total score. The highest RQS score was 13 (full score was 
36), seen in only one study [35], and the lowest RQS score was 4 [32, 
36]. Since no study considered the six items "Phantom study", "Imaging 
at multiple time points", "Biological correlates", "Cut-off analyses", 
"Prospective study" and "Comparison to ’goldstandard", these six items 
received a score of zero. Other underperforming items included 
"Multivariable analysis with nonradiomics features", "Calibration sta
tistics" and "Potential clinical utility", "Cost-effectiveness analysis", 
"Open science and data", where each item had an average score below 15 
% (Fig. 2). Table S5 provides a detailed description of the RQS scores. 
The average CLAIM score of the 19 included studies using the DL 
approach was 20, slightly less than half (48.24 %) of the ideal score of 
42.00, the highest score was 29 [37] and the lowest was 14 [28] (Fig. 3, 
Table S6). 

Risk of bias and applicability issues for 32 diagnostic-related studies 
according to QUADAS-2 are shown in Fig. S1. Overall, the methods of 
the 32 selected studies were of poor quality. Most studies showed un
clear risk or high of bias in each domain (Table S7). Regarding patient 
selection, 22 studies were considered to be at high or unclear risk of bias 
due to unclear how participants were selected and/or unclear detailed 
exclusion criteria. With regard to the index test, 30 studies were 
considered to be at high or unclear risk of bias, because it was unclear 
whether a threshold was used or the threshold was not pre-specified. 
Regarding reference standards, 5 studies were considered to be at high 
or unclear risk of bias because reference standards were not described. 
Regarding the flow and timing, 30 studies were considered to be at high 
or unclear risk of bias, due to unclear time intervals between indicator 
tests and reference standards and/or to clarify whether all participants 
received the same reference standards. 

3.3. Data analysis 

A total of 32 studies were included in the meta-analysis, and for the 
validation or test group of all studies, the pooled values and 95 % CI for 
sensitivity, specificity, PLR, NLR, and AUC were 0.92 (95 % CI, 
0.88–0.94), 0.91, (95 % CI, 0.87–0.93), 9.7 (95 % CI, 6.8–13.9), 0.09 (95 
% CI, 0.06–0.13), 0.96 (95 % CI, 0.94–0.98), respectively. When 
calculating pooled estimates, We observed great heterogeneity between 
studies in terms of sensitivity (I2 = 84.7 %), specificity (I2 = 81.1 %). 
The forest plot is shown in Fig. 4, and we can also see the obvious dif
ference between the 95% confidence and 95 % prediction regions from 
the SROC curve in Fig. 5, indicating a high possibility of heterogeneity 
across the studies. 

3.4. Subgroup analysis 

We performed subgroup analyses including five different conditions 
and ten subgroups. Different imaging methods (CT, CRX), modeling 
methods (radiomics and deep learning), sample size (whether greater 
than 100), regions of interest (infection and others) and segmentation 
methods (2D and 3D) moderate to high diagnostic value was shown in 
each subgroup. The results are shown in Table 3. 

3.5. Publication bias 

We assessed publication bias for the 3 included studies, first 
observing that the funnel plots (Fig. 6) were symmetric and uniformly 
distributed along the x and y axes. Second, we formally assessed using 
Deeks’ test and observed that the slope coefficients were not statistically 
significant, (P = 0.89) indicating that the data were symmetric, sug
gesting a low possibility of publication bias. 
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4. Discussion 

In this systematic review, we aimed to determine the diagnostic ac
curacy of chest imaging-based AI models in distinguishing COVID-19 
from other pneumonias, using the QUADAS-2, RQS tool, and the 
CLAIM checklist assess the quality of included studies. Furthermore, our 
meta-analysis is the first to quantitatively combine and interpret data 
from different independent surveys, potentially providing key clues for 

its clinical application and further research. Despite the favorable re
sults, pooled sensitivity, specificity, and AUC were 0.92 (95 % CI, 
0.88–0.94), 0.91 (95 % CI, 0.87–0.93), and 0.96 (95 % CI, 0.94–0.98), 
but due to the immature stage and relatively poor methodological 
quality, these imaging studies did not provide clear conclusions for 
clinical implementation and widespread use. 

In this review, the combination of the complete RQS tool, CLAIM 
checklist, and QUADAS-2 assessments revealed several common meth
odological limitations, some of which apply to both DL and ML studies. 

The majority of studies (13/32) did not have images segmented by 
multiple radiologists, however, due to inter-observer heterogeneity, 
unavoidable even among experienced radiologists [38], this also limits 
the generalizability of the developed predictive models. Some studies 
applied automatic segmentation, which overcomes the differences 
introduced by human factors. However, models created utilizing various 
segmentations would undoubtedly perform differently even when 
trained on the same dataset and using the same AI techniques, adding 
another level of heterogeneity to the field. 

More than half of the studies did not describe algorithms and soft
ware in sufficient detail to replicate the study. Only six percent of the 
studies published the codes for the models, indicating that readers have 
access to the full protocol, i.e., code availability. Open data and code 
facilitate independent researchers using the same methodology and 
same/different datasets to validate results, with the aim of making 
research findings more robust. However, only two studies published 

Fig. 2. Methodological quality evaluated by using the Radiomics Quality Score (RQS) tool. (A). Proportion of studies with different RQS percentage score. (B). 
Average scores of each RQS item (gray bars stand for the full points of each item, and red bars show actual points). 

Fig. 3. CLAIM items of the 19 included studies expressed as percentage of the 
ideal score according to the six key domains. CLAIM, Checklist for Artificial 
Intelligence in Medical Imaging. 
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small amounts of data [37,39]. Therefore, it is hypothesized that some 
practical issues, such as reproducibility and generalizability of AI 
models, should be well resolved before translating these models into 
routine clinical applications. 

We know that the typical imaging manifestations of SARS-CoV-2 are 
ground-glass opacities and consolidation foci, GGO is an indistinct in
crease in attenuation that occurs in various interstitial and alveolar 
processes while sparing bronchial [40] and vascular margins, while 
consolidation is an area of opacity obscuring the margins of the vessel 
and airway walls [41]. However, other types of pneumonia may share 
some similar CT imaging features with SARS-CoV-2, especially other 
viral pneumonias [42–44], This confuses radiologists when diagnosing 
SARS-CoV-2, unable to correctly diagnose whether it is SARS-CoV-2 or 
other pneumonia. A total of 11 studies in our systematic review also 
assessed the diagnostic performance of radiologists, and one study 
assessed the diagnostic performance of pulmonologists [34]. Then 
compared it with the diagnostic accuracy of AI models. all studies have 
shown that the diagnostic performance of AI models is higher than that 
of radiologists/pulmonologists. Shows that AI models have great 

potential in diagnosing SARS-CoV-2 and other pneumonias. 
We performed a subgroup analysis using five key factors, and in the 

subgroup analysis of different imaging modalities, the diagnostic per
formance of the chest X-rays -based AI models were better than that of 
the CT-based models, but only four studies focusing on chest X-rays 
(including 453 COVID-19 patients out of 1100 subjects) were included, 
and all studies used deep learning models. Therefore, the pooled results 
showing that chest X-rays is superior to chest CT are not entirely 
convincing. Another subgroup analysis showed that studies using DL 
models were slightly more valuable than those using ML. The main 
disadvantage of ML algorithm is that the method is based on hand- 
crafted feature extractors, which requires a lot of manpower and effort 
[45]. Furthermore, radiomic signatures are contrived and rely on 
domain-specific expertize [46]. The advantage of DL is that it does not 
need to manually extract features during the learning process, avoiding 
the defects of artificially designed features in radiomics analysis [47]. 
Since the classifier training, feature selection, and classification of DL 
model occur simultaneously, researchers only need to input images, not 
clinical data, or radiomics features. The most commonly used DL model 

Fig. 4. Coupled forest plots of pooled sensitivity and specificity of diagnostic performance of chest imaging for distinguished COVID-19 and other pneumonias. The 
numbers are pooled estimates with 95 % CIs in parentheses; horizontal lines indicate 95 % CIs. 
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in research is CNN,which inspired by the biological natural visual 
cognition mechanism, build by convolutional layer, rectified linear units 
layer, pooling layer and fully-connected layer [48,49]. For example, 
VGG and ResNet are adjusted and combined by simple CNN [50]. In 
addition, the results showed that studies with large sample sizes had 
better diagnostic accuracy than studies with small sample sizes. There
fore, in future studies, increasing the sample size will improve the ability 
to diagnose SARS-CoV-2 and various other pneumonias. 

Limitations of this review. First, many articles published in author
itative journals using AI models to diagnose COVID-19 were not 
included because the models were not validated. Unvalidated models 
have limited value, and validation is an integral part of a complete 
radiomics analysis [19]. Models must be validated internally or exter
nally. Second, the heterogeneity of studies was evident, we performed 
subgroup analyses to explore sources of heterogeneity, but this was 
limited, and in fact, heterogeneity is a recognized feature in a review of 
diagnostic test accuracy [23], and it is impossible to know the source of 
all the heterogeneity. 

To date, no systematic review or meta-analysis has been performed 

that includes all types of imaging techniques to diagnose COVID-19 and 
other pneumonias. Kao et al.[51] evaluated the CT-based radiomics 
signature model to successfully distinguish COVID-19 from other viral 
pneumonias, and came to similar conclusions as ours, with high study 
heterogeneity. They assessed studies up to February 26, 2021, so only 6 
studies were included, and all studies were conducted in China. How
ever, there are several systematic reviews on the diagnosis of COVID-19 
based on AI models [52–55]. The participants in their studies included a 
series of non-pneumonic participants including lung cancer patients, 
lung nodules patients, and normal healthy people. These 
non-pneumonic chest images each have their own typical features. The 
imaging features are significantly different from those of COVID-19, and 
radiologists can easily distinguish them, so we did not include such ar
ticles in our study. 

In conclusion, the artificial intelligence approach shows potential for 
diagnosing COVID-19 and other pneumonias. However, the immature 
stage and unsatisfactory quality of the research means that the proposed 
model cannot currently be used for clinical implementation. Before the 
AI models can be successfully introduced into the clinical environment 
of COVID-19, we need further large-sample multi-center research, open 
science and data, to increase the universality of the model. Furthermore, 
there are some technical hurdles that should be faced when considering 
the application of image mining tools into daily practice. Persistent ef
forts are required to make this tool widely available in clinical practice. 

Fig. 5. Diagnostic performance of SROC curve of an artificial intelligence 
model for distinguishing COVID-19 from other pneumonias on chest imaging. 
There was an obvious difference between the 95 % confidence and 95 % pre
diction regions, indicating a high possibility of heterogeneity across the studies. 

Table 3 
The results of subgroup analysis.  

Subgroup Number of study Sensitivity 
(95 % CI) 

I2 

(%) 
Specificity I2 

(%) 
PLR I2 

(%) 
NLR I2 

(%) 
AUC 

Imaging modality                     
CRX  4  0.91(0.88,0.94)  85.6  0.96(0.95,0.98)  95.3  26.04(3.73,181.94)  93.3  0.04(0.00,0.41)  92.6  0.9914 
CT  28  0.89(0.88,0.90)  78.9  0.89(0.87,0.90)  62.1  6.92(5.35,8.96)  69.5  0.14(0.11,0.19)  80.0  0.9427 
Modeling methods                     
Radiomic algorithm  13  0.92(0.90,0.94)  78.4  0.90(0.87,0.92)  36.8  7.16(4.96,10.33)  53.0  0.15(0.08,0.28)  85.6  0.9446 
Deep learning  19  0.88(0.87,0.89)  78.0  0.91(0.90,0.92)  88.5  8.32(5.69,12.18)  82.5  0.12(0.09,0.17)  76.9  0.9702 
sample size                     
＜100  18  0.87(0.83,0.90)  65.4  0.89(0.86,0.92)  47.8  6.50(4.42,9.58)  49.3  0.18(0.12,0.28)  59.0  0.9371 
＞100  14  0.89(0.88,0.90)  87.0  0.91(0.90,0.92)  90.8  8.81(6.02,12.89)  86.2  0.10(0.07,0.14)  88.6  0.9725 
ROI                     
Infection regions  15  0.89(0.88,0.90)  81.0  0.89(0.88,0.91)  48.8  6.89(5.20,9.12)  58.0  0.14(0.09,0.20)  81.3  0.9409 
others  16  0.88(0.86,0.90)  80.4  0.92(0.90,0.94)  89.5  9.33(5.64,15.45)  83.3  0.11(0.07,0.19)  83.2  0.9691 
segmentation                     
2D  14  0.91(0.89,0.93)  71.6  0.93(0.91,0.95)  88.9  9.71(5.78,16.33)  79.3  0.10(0.06,0.17)  77.3  0.9740 
3D  15  0.88(0.87,0.90)  85.1  0.89(0.87,0.90)  64.8  6.77(4.79,9.57)  76.6  0.15(0.10,0.22)  85.9  0.9386 

Abbreviations: AUC: area under the curve; CT: Computed tomography; CXR: Chest X-Ray; NLR: negative likelihood ratio; PLR:positive likelihood ratio; ROI: Region of 
interest;2D: two-dimensional;3D: three-dimensional 

Fig. 6. Effective sample size (ESS) funnel plots and the associated regression 
test of asymmetry, as reported by Deeks et al. A p value < 0.10 was considered 
evidence of asymmetry and potential publication bias. 
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