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Abstract

Dinitrogen trioxide (N2O3) mediates low-molecular weight and protein S- and N-nitrosation, with 

recent reports suggesting a role in the formation of nitrating intermediates as well as in nitrite-

dependent hypoxic vasodilatation. However, the reactivity of N2O3 in biological systems results 

in an extremely short half-life that renders this molecule essentially undetectable by currently 

available technologies. As a result, evidence for in vivo N2O3 formation derives from the detection 

of nitrosated products as well as from in vitro kinetic determinations, isotopic labeling studies, 

and spectroscopic analyses. This review will discuss mechanisms of N2O3 formation, reactivity and 

decomposition, as well as address the role of sub-cellular localization as a key determinant of its 

actions. Finally, evidence will be discussed supporting different roles for N2O3 as a biologically 

relevant signaling molecule.

1. Dinitrogen trioxide reactivity

Dinitrogen trioxide exists in an equilibrium with nitric oxide ( N• O) and nitrogen dioxide 

( N• O2), where k1 = 8.1 × 104 s−1, and k−1 = 1.1 × 109 M−1 s−1 [1] (Reaction 1).

N2O3 N• O2 + N• O

(R. 1)

Thus, concentrations of 1 μM of N• O2 and N• O each, result in the formation of just 

13.6 nM N2O3 at equilibrium, indicating that this reaction system favors N2O3 dissociation. 

Notably, N2O3 dissociation increases with temperature and decreasing solvent polarity, and 

is particularly efficient in the gas phase where the produced radicals are not constrained by 

a solvent cage [2]. Nitrogen dioxide is a strong one-electron oxidant, capable of reacting 

with thiols with rate constants of 1.9 × 107 and 4.8 × 107 M−1 s−1 for glutathione (GSH) 
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and cysteine (Cys), respectively [3]. Based on these rates and considering a concentration 

of approximately 5 mM GSH in the cytosol, Ford et al. calculated that the rate of N2O3

formation from N• O and N• O2 is 100 times slower than the rate of N• O2 consumption 

by thiols, while results from Madej et al. suggest an even larger difference in favor of 

thiol oxidation [3,4]. As a result, it is likely that the dissociation of N2O3 will be an 

essentially irreversible process under most physiological conditions. In addition, N2O3 is also 

hydrolyzed upon reacting with water to generate nitrite NO2
− , with an observed first order 

rate constant of k2 = 530 s−1 and a t1/2 = 1.3 ms (Reaction 2) [1]. Furthermore, bicarbonate 

and phosphate accelerate N2O3 hydrolysis [5,6].

N2O3 + H2O 2NO2
− + 2 H+

(R. 2)

From a biological perspective, perhaps the best-characterized reaction of N2O3 is its ability to 

react with nucleophilic thiols and amines to generate the corresponding nitrosated products 

with rate constants k3 > 6 × 107M−1 s−1 [6,7]. (Reaction 3).

N2O3 + RS− RSNO + NO2
−

(R. 3)

Although controversial [8,9], thiol S-nitrosation has been associated with not only the 

regulation of individual protein function but also with conserved homeostatic processes, 

and with having a pivotal role in many diseases when dysregulated [10–12]. Many of the 

challenges associated with stringently defining physiological roles for protein S-nitrosation 

as a bonafide signaling process stem from the use of differential labeling techniques for the 

identification of labile S-nitrosated proteins in biological matrices. In particular, the biotin 

switch method and other SNO-capture techniques rely on the use of thiol alkylating agents 

to block non-nitrosated cysteine residues, followed by selective reduction of S-nitrosothiols 

to generate the corresponding free thiols that are then labeled with thiol-reactive reagents 

to enable detection [13–15]. Notably, these approaches are susceptible to artifacts due to 

incomplete blocking or non-specific oxidized thiol reduction [8,16,17]. However, the more 

recent development of phosphine probes capable of specifically reacting with SNO moieties 

while preserving both the S and N atoms in the resulting disulfide-iminophosphorane 

product has allowed the direct quantification of endogenous S-nitrosoglutathione in resting 

and activated macrophages, as well as in cancer cell lines [18]. Furthermore, the use 

of biotin-tagged phosphine-based SNOTRAP reagents has confirmed the presence of an 

endogenous S-nitrosated proteome, and has suggested a potential role for its dysregulation in 

the progression of neurodegenerative diseases [19–21].

From a structural perspective, N2O3 is in equilibrium between at least three different 

conformations: asymmetric (asymN2O3), symmetric (symN2O3) and trans-cis-N2O3, with 

theoretical and experimental measurements suggesting similar isomeric stabilities [22–25]. 
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Reactivity modelling indicates that all three isomers are susceptible to nucleophilic attack by 

thiols or amines, resulting in the transfer of a nitroso moiety and the production of nitrous 

acid (Scheme 1, adapted from Ref. [26]); with calculations showing that symN2O3 and trans-

cis-N2O3 are the more effective nitrosating agents [2,26,27]. Interestingly, while N2O3 has 

mostly been associated with nitrosative chemistry, the fact that this molecule can dissociate 

into N• O and N• O2, suggests a potential role in promoting nitration reactions. In this 

regard, and while possibly less efficient at promoting nitration than other N• O2-generating 

systems such as peroxynitrite- or myeloperoxidase-dependent reactions, a role for N2O3 in 

the nitration of conjugated diene-containing fatty acids has been demonstrated [28–31]. In 

these experiments, Vitturi et al. showed that while nitrosonium tetrafluoroborate (NOBF4) 

is unable to promote the nitration of conjugated linoleic acid (CLA) by itself, addition 

of nitrite NO2
−  results in the formation of NO2-CLA. These results, in combination with 

studies assessing the isotopic distribution of nitrosation and nitration products obtained 

from the reaction between N• O, O2 and 15[N]18[O]2-labeled NO2
−, strongly suggested that 

NO2
− reacts with N2O3 resulting in the formation of a symmetrical isomer of this molecule 

[31]. This was the first demonstration of the formation of symN2O3 under physiologically 

relevant conditions in vitro and in vivo, as experimental proof for the existence of alternative 

N2O3 conformations had been limited to studies in inert low-temperature liquid matrices 

[22,25,32].

Despite substantial evidence of its ability to participate in nitrosation reactions, N2O3

formation is not the only pathway that can lead to nitrosative chemistry in vivo. In principle, 

any molecule capable of oxidizing a thiol or an amine by one electron in the presence 

of N• O has the potential to promote nitrosation. Potential oxidants include N• O2 and the 

carbonate radical anion CO3
• − , with the resulting thiyl or aminyl radicals reacting with N• O

with rate constants approaching the diffusion limit to generate the corresponding nitrosated 

products (Reactions 4–5) [4,7,33,34].

N• O2 + RS− RS• + NO2
−

(R. 4)

RS• + N• O RSNO

(R. 5)

Besides free radical intermediates in solution, alternative mechanisms involving metal 

center-assisted nitrosation have been proposed. For instance, a reaction between glutathione 

(GSH) and cytochrome c in the presence of N• O has been proposed as a significant source 

of intracellular S-nitrosothiols. In this pathway, GSH binds to hexa-coordinated ferric (FeIII) 

cytochrome c facilitating a reaction in which N• O reduces the heme to the ferrous state 

(FeII) and simultaneously generates S-nitrosoglutathione (GSNO, Reactions 6, 7) [35,36]. 

A similar reaction is observed with ceruloplasmin, except that in this case it is the copper 
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atoms that mediate GSNO formation from GSH and N• O [37]. Subsequent transnitrosation 

reactions between GSNO and other nucleophilic thiolates enables downstream protein S-

nitrosation [38].

FeIIICyt c + GSH FeIIICyt c − GSH

(R. 6)

FeIIICyt c − GSH + N• O FeIICyt c + GSNO

(R. 7)

Unlike cytochrome c and ceruloplasmin, thiol nitrosation by dinitrosyl iron complexes 

(DNIC) is independent from existing metal-containing prosthetic groups. In this case, 

nitrosothiol formation requires the generation of nitrosyl complexes with the labile iron 

pool, a weakly coordinated form of endogenous intracellular iron that is accessible to 

exogenous chelators [39–41]. According to one proposed mechanism of DNIC-dependent 

nitrosation, the coordination of two N• O molecules to a ferrous iron atom results in a 

redistribution of electrons leading to the production of bound NO− and NO+ equivalents, 

which upon reaction with a third N• O molecule and a proton, generates a Fe+ NO+
2

complex and nitroxyl (HNO). Reaction of this Fe+ NO+
2
 complex with a nucleophilic 

thiol results in S-nitrosation (Scheme 2) [42,43]. Alternatively, another mechanism posits 

that S-nitrosation occurs as a consequence of the formation of DNIC with low molecular 

weight thiol ligands. These authors suggest that DNIC are formed first via a mononitrosyl 

FeII NO RS
2
 intermediate that undergoes autoreduction to generate FeI(NO)(RS) and a thiyl 

radical, which in the presence of excess N• O, results in the formation of an S-nitrosothiol 

together with the stable FeI NO
2

RS
2

−
 DNIC product (Scheme 3) [44–46].

The co-existence of several proposed mechanisms for biological S-nitrosation is in part 

a reflection of the challenges associated with dissecting reaction pathways that involve 

transient intermediates and that lead to the formation of relatively labile products detected 

by artifact-prone methods [47–50]. Furthermore, S-nitrosation reactions do not occur 

in isolation, and are often accompanied by conditions that are conducive to nitrative 

and oxidative processes. In this regard, kinetic simulations of complex systems suggest 

that oxidation reactions often predominate over both nitration and nitrosation under 

inflammatory conditions [33]. Nevertheless, the relative yields of these pathways is 

determined by the mechanism of formation of the precursor reactive species, their sub-

cellular compartmentalization, the presence of competing substrates, and by changes in 

tissue acidity.
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2. Nitric oxide autoxidation

The contributions of N2O3 as a nitrosating agent have often been studied in the context of 

the reaction between N• O and oxygen O2 , a process also known as “ N• O autoxidation” 

(Reactions 8–10) [1,51,52].

N• O2 + O2 ONOO• + N• O2 N2O4

(R. 8)

N2O4 N• O2 + N• O2

(R. 9)

N• O2 + N• O N2O3

(R. 10)

Although this reaction system generates N2O3, its yield of formation is dictated by the 

relative concentrations of N• O and other substrates capable of reacting with N• O2 (Reaction 

4). In the case of nitrosation reactions, and assuming that N• O concentrations are not 

limiting, some substrates will exhibit preferential reactions towards N2O3 and others will 

follow the radicalar pathway illustrated in Reactions 4–5 [7]. Under experimental conditions, 

this differential reactivity can be elucidated by assessing the dependence between the yields 

of the S- or N-nitrosated product and the concentration of N• O. Thus, if a substrate is 

exclusively nitrosated via the radicalar pathway, the yields will be expected to decrease 

at higher N• O concentrations, as excess N• O would divert N• O2 from substrate oxidation 

to generate N2O3. In contrast, if nitrosation is exclusively dependent on N2O3 formation, 

then the yield of the reaction should be independent of N• O concentration. Following this 

approach, Goldstein and Czapski concluded that while cysteine, GSH, dithiothreitol and 

penicillamine are preferentially S-nitrosated via the radicalar pathway (Reactions 4, 5); 

N-acetyl-penicillamine, morpholine and captopril are preferentially nitrosated by N2O3 [7].

Regardless of the nitrosation mechanism, the rate limiting step for the formation of N• O2

and N2O3 is Reaction 8. This reaction exhibits first order dependence on O2 concentration 

and second order dependence on N• O, resulting in global third-order kinetics with 

k = 2.9 × 106M−2 s−1 (Equation (1)) [1].

−d NO
dt = 4k[NO]2 O2

(Eq. 1)
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Using this information, Lancaster calculated the half-life of N• O under constant 

physiological concentrations of O2 to be between 42 s and 5.8 days for initial N• O
concentrations of 1 μM and 5 nM, respectively [48]. These results not only indicated that 

N• O is stable under physiological O2 levels, but also that the formation of N2O3 and N• O2 via 

N• O autoxidation is too slow to be relevant in vivo. However, it was subsequently found that 

this reaction is accelerated between 30 and 300 times in the presence of lipid membranes, 

and more modestly by proteins [53–55]. This effect has been observed in a variety of 

biological samples and biomimetic ensembles, including hepatocyte membranes, purified 

mitochondria, phospholipids, low-density lipoproteins (LDL), proteins, detergent micelles, 

and perfluorocarbon emulsions [53–57]. This acceleration was termed “lens effect”, and it 

occurs because both N• O and O2 are slightly hydrophobic molecules and are more soluble in 

the hydrophobic regions of lipid membranes and proteins than in the aqueous surrounding 

[58]. As mentioned, the rate of N• O autoxidation has a second-order dependence on N• O
concentration, and a first-order dependence on O2 concentration (Eq. (1).) [1,59]. Therefore, 

an increase in the local concentration of N• O and O2 in hydrophobic regions will result in 

significant acceleration of the reaction [53]. Chemical effects altering the rate constant could 

also be involved in accelerating the reaction in hydrophobic phases, but this possibility has 

been dismissed after careful consideration [58,60].

The concentration of molecules such as N• O and O2 in lipid hydrophobic regions relative 

to water are conveniently expressed as the partition coefficient KP. The KP for O2 and 

N• O in egg yolk phosphatidylcholine (EYPC) membranes is approximately 3, meaning 

that both O2 and N• O are 3 times more concentrated in the lipid membrane than in the 

aqueous surrounding. If we include these KP values in Eq. (1), a theoretical acceleration 

factor equal to 3 × 3 × 3 = 27 can be obtained. Using an N• O-selective electrode, it was 

observed that adding EYPC liposomes resulted in a 28-fold increase in the rate of N• O
autoxidation, consistent with the calculations derived from the KP values [54]. Of note, the 

accelerated formation of N• O2 could similarly be observed [54]. Nitrogen dioxide is also 

more soluble in organic than in aqueous solvents, and by combining experimental data 

with quantum calculations, a KP of 1.5 was estimated between lipid membranes and water 

[60, 61]. Molecular dynamics also support the hydrophobicity of N• O2 [62, 63]. Therefore, 

N• O2 reaction with N• O to make N2O3 will also be promoted by hydrophobic phases. In this 

regard, the rate of thiol nitrosation is increased by membranes and LDL, supporting a role of 

hydrophobic phases in biological nitrosation [54].

The acyl chain region of lipid membranes is often considered as comparable to hydrocarbon 

solvents such as decane or hexadecane. However, although they are similar in polarity, the 

hydrocarbon chains in lipid bilayers are oriented parallel to each other and restricted in 

motion, resulting in general in a lower solubility of solutes because of an exclusion effect. 

To exemplify this, the KP of O2 in decane relative to water at 25 °C is 8.7, whereas the KP of 

O2 in dilauroyl PC membranes relative to water is 3.2 [61]. Furthermore, lipid composition 

can alter the order in the bilayer and this has effects on Kp. For instance, PC composed of 
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saturated acyl chains such as dimyristoyl PC and dipalmitoyl PC undergo phase transitions 

from an ordered gel phase to a disordered fluid phase at 24 and 43 °C, respectively. The KP

of O2 between these membranes and water in the gel phase is approximately 1, but in the 

fluid phase KP is above 3 [64]. Another factor that can modify the solubility of hydrophobic 

molecules is cholesterol, mostly by ordering membranes and reducing free volume [65,66]. 

Therefore, it is expected that more compact and less fluid membranes, such as those rich in 

sphingomyelin and cholesterol will also show lower KP for O2 and N• O.

A provocative study suggested extremely high acceleration of N• O autoxidation by proteins, 

but these observations could not be reproduced and the acceleration effect was later shown 

to be only modest [55, 67,68]. In proteins, hydrophilic amino acid residues are usually 

distributed on the protein surface and exposed to the solvent, whereas hydrophobic amino 

acid residues form the protein core. In theory, this hydrophobic core could be a favorable site 

for N• O and O2 partition and accelerated autoxidation, but proteins have an average density 

of 1.37 g/mL and are densely packed, thus resembling molecular crystals and providing 

limited room to accommodate other molecules. Nevertheless, most proteins are dynamic 

structures, as illustrated by the ability of different exogenously added molecules to quench 

the fluorescence of internal tryptophan residues [69]. Furthermore, some proteins such as 

serum albumin can accommodate hydrophobic ligands such as fatty acids in interior sites 

that are not evident in the crystal structure [70]. Thus, protein dynamics would allow for 

N• O and O2 to accommodate in the hydrophobic core and accelerate their reaction. It was 

found that the degree of N• O autoxidation correlated with protein size and even more with 

their compressibility, indicating the importance of protein dynamics and cavities within the 

hydrophobic core of proteins [55]. Denaturing albumin, which leads to higher exposure of 

hydrophobic surface and lower compressibility, resulted in a decrease in N• O autoxidation, 

indicating that the hydrophobic core rather than a hydrophobic surface is necessary to 

accelerate N• O autoxidation [55]. An overall 1.38-fold acceleration of N• O autoxidation was 

calculated for human albumin, but under normal vascular conditions, the very fast reaction 

between N• O and intraerythrocytic hemoglobin will outcompete this process [55].

The accelerated rate of N• O autoxidation and the downstream generation of N2O3 suggest 

that nitrosation reactions should be favored in close proximity to membranes. In addition, 

while the half-life of N2O3 in the cytosol is limited by hydrolysis (Reaction 2), the 

hydrophobic environment of the membrane protects N2O3 and should increase its chances 

of reacting with targets. To test this concept, peptides incorporating thiols at different depths 

within a lipid bilayer were designed, and it was found that nitrosation yields decreased as 

thiols were located deeper into the membrane [71]. This paradoxical result is explained by 

the lower ionization of thiols in non-polar environments. Thiolates rather than thiols are 

the main substrates for nitrosation reactions, and the low polarity of the membrane interior 

results in decreased thiolate availability.

The ‘lens effect’ suggests that the formation of N• O-derived oxidizing and nitrosating 

species will occur mainly within lipid membranes. Considering that membranes account 

for 3 % of the cellular volume and that N• O autoxidation occurs 30 times faster in this 
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compartment, it was estimated that 50 % of all the N• O autoxidation will occur within 

cellular membranes [58]. As a result, biomolecules in close proximity to membranes will be 

exposed to higher fluxes of oxidizing and nitrosating species. However, as these species are 

diffusible, the yields of oxidative and nitrosative reactions will be significantly affected by 

individual substrate reactivity.

3. Gastric N2O3 formation

Nitrate and nitrite are central components of the human diet and are particularly abundant 

in green leafy vegetables, red beetroot, celery, fennel, and leeks; as well as in cured and 

uncured meats [72,73]. Dietary nitrate has a high bioavailability with close to 100 % of 

any given dose recovered in plasma over 24 h following ingestion [74,75]. Importantly, 

nitrate reabsorption by salivary glands results in its active uptake from the circulation and 

secretion into the saliva, where bacterial components of the oral flora reduce it to nitrite 

[76–78]. In this regard, the concentration of nitrite in saliva increases from a basal value 

of approximately 2 mg/mL to over 70 mg/mL following consumption of 400 mg nitrate, 

the equivalent to 200 g of spinach [79]. In the stomach, parietal cells secrete between 1 

and 2 L of hydrochloric acid daily, resulting in a strong acidic environment in the gastric 

lumen (pH ≤ 3) [80]. Under these conditions, dietary nitrite is in equilibrium with nitrous 

acid HNO2, pKa 3.2), with the protonated form 15- to 150-fold more abundant than the 

anion. Notably, nitrous acid undergoes disproportionation with k = 13.4 M−1 s−1 leading to 

the formation of N2O3 and thus N• O and N• O2 (Reactions 11–12) [81–83].

NO2
− + H+ HNO2

(R. 11)

HNO2 + HNO2 N2O3 + H2O

(R. 12)

The formation of nitrosating intermediates in the stomach has been studied extensively due 

to its potential to generate carcinogenic nitrosamines, nitrosamides and related compounds, 

although the pathological relevance of this pathway is a subject of debate [84,85]. From a 

mechanistic perspective, both radical and N2O3-mediated nitrosation pathways are likely to 

occur in the stomach, but these are modulated by the presence of other dietary components 

[86–88]. An interesting feature of the gastric compartment is that unlike other organs, it 

comprises both aqueous and lipid phases as well as a gas phase containing approximately 60 

mmHg O2 [89,90]. As discussed previously, N• O and O2 tend to partition preferentially into 

lipidic compartments where N2O3 and N2O4 are protected from hydrolysis. This observation 

has important implications for reactivity, as indicated by assessing the effect of ascorbate 

on the yields of nitrosamine formation in the presence or absence of lipid phases. In this 

regard, Combet et al. found that while ascorbate potently inhibits nitrosamine formation 

from nitrite acidification in a monophasic solution, the addition of 10 % lipid to the reaction 
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system results in ascorbate significantly increasing nitrosation yields [91]. Furthermore, the 

same physicochemical properties that dictate the preferential partition of N• O, O2 and N2O3

into hydrophobic layers, also determine an even more favorable partition into the gas phase. 

As a result, nitrous acid disproportionation and N2O3 dissociation are main contributors to 

gastric N• O formation as evidenced by its detection in the exhaled breath [92]. Additional 

mechanisms contributing to intragastric N• O formation include univalent reduction of nitrite 

by dietary ascorbate and polyphenols [93,94]. The formation of N• O and N• O2 in the 

stomach has important roles in gastric physiology, including regulating tissue blood flow 

and mucosal thickness, as well as preventing the proliferation of pathogenic microorganisms 

such as Helicobacter pylori, Escherichia coli and Candida albicans [95–97]. Importantly, 

a recent study of over 80,000 hospitalized patients found that disruption of gastric N2O3

formation secondary to elimination of the oral microbiome with mouthwash is associated 

with a small but significant increase in death rates, particularly in those patients at the lower 

risk of mortality [98]. Although indirect, this evidence suggests an important contribution 

of gastric N2O3 formation to N• O homeostasis and cyto-protective signaling [99]. Finally, 

gastric N• O2 generation secondary to N2O3 homolysis is also conducive to nitration reactions 

as originally appreciated by the groups of Joao Laranjinha and Marco d’Ischia [88,100,101]. 

In particular, the nitration of dietary derived CLA is thought to be the main route for the 

endogenous formation of NO2-CLA, a potent electrophilic fatty acid capable of promoting 

antioxidant and anti-inflammatory signaling in the gastrointestinal tract and beyond [102–

104]. Importantly, the formation of NO2-CLA has been proposed as an anti-hypertensive 

mechanism associated with the consumption of a Mediterranean diet, as well as a potentially 

protective factor in the context of the cardiac arrest survival and recovery [105–107].

4. Vascular N2O3 formation

In 1998, Lancaster published a provocative manuscript in which mathematical modelling 

of the half-life of N• O in the vascular compartment suggested that hemoglobin at a 

concentration approximately 10 % of that found in blood would be expected to scavenge 

over 90 % of all N• O produced by endothelial cells [108]. This conclusion was based on 

the fact that N• O reacts with both oxyhemoglobin and deoxyhemoglobin with rate constants 

between 107-108 M−1s−1 (Reactions 13–14) [109,110], and thus questioned the ability of 

free N• O to function as a vasodilator in vivo [111].

N• O + HbFeIIO2 HbFeIII + NO3
−

(R. 13)

N• O + HbFeII HbFeIINO

(R. 14)
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Notably, it was later found that N• O scavenging by intraerythrocytic hemoglobin at 

50 % hematocrit is 50–150 times slower than by the same concentration of cell-free 

hemoglobin, with earlier microvessel bioassay determinations suggesting this difference to 

be approximately three orders of magnitude [112,113]. Different mechanisms have been 

proposed to explain these observations, including the presence of a cell-free zone adjacent 

to the vascular endothelium, the existence of a N• O-depleted unstirred layer around the 

extracellular side of the erythrocyte membrane, and controversially, the potential existence 

of an intrinsic membrane barrier to N• O diffusion in the erythrocyte [114]. However, these 

observations also led to hypotheses proposing the existence of stabilized forms of N• O that 

could escape scavenging by hemoglobin and could become activated along the arterial to 

venous gradient [115,116]. One such mechanism proposed that nitrite is reduced to N• O
by deoxyhemoglobin, with allosterically controlled reduction rates that are maximal at 

hemoglobin fractional saturations approaching 50 % (Reaction 15) [117,118].

NO2
− + HbFeII + H+ N• O + HbFeIII + OH−

(R. 15)

This reaction elegantly links N• O generation from nitrite to the lower hemoglobin 

oxygen fractional saturations typically found in resistance arterioles, and to hypoxic 

vasodilation responses in general [119,120]. In this regard, nitrite addition to deoxygenated 

erythrocytes leads to the induction of extracellular N• O-dependent responses such as the 

inhibition of platelet aggregation, inhibition of mitochondrial respiration and vasorelaxation 

[116,117,121–123]. However, a main challenge to the mechanism proposed in Reaction 

15 is that nitrite reduction occurs intracellularly in the presence of a large excess of 

oxygenated and deoxygenated hemoglobin (20 mM heme, corresponding to four hemes 

per hemoglobin tetramer), thus suggesting that any N• O generated would be immediately 

consumed (Reactions 13–14) [108,124]. These arguments, together with previous work 

on reductive heme nitrosylation by Ford et al. (Scheme 4a), suggested the possibility 

that the diffusible product of nitrite reduction by deoxyhemoglobin might not be N• O
but rather N2O3 [125,126]. It was hypothesized that this mechanism would limit N• O
scavenging by hemoglobin through the generation of diffusible N2O3 that can then homolyze 

to produce N• O in the extracellular compartment (Reaction 1). Notably, this proposal is 

in line with observations that nitrite supplementation is often associated with increased 

intraerythrocytic S-nitrosothiol formation in vitro and in vivo [116,126–128]. While several 

related mechanisms have been proposed for the hemoglobin-catalyzed generation of N2O3

from nitrite, the formation of a nitrosyl-methemoglobin complex that can then react with 

nitrite in the distal heme pocket through either an outer or inner sphere reaction appears to 

be the more favored possibility (Scheme 4b) [129–132].

Mathematical models and experiments performed in glassy matrices and in solution/sol-gel 

suggest that this reaction scheme is feasible, and that it can extend the half-life of N• O in 

the circulation [130,132–135]. However, whether the physiological levels of nitrite in the 
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erythrocyte are sufficient to sustain N• O formation at functionally relevant concentrations 

remains to be established. Finally, a new mechanism that is independent of N2O3 formation 

has been recently proposed suggesting that nitrite reduction by deoxyhemoglobin leads to 

the formation of a diffusible nitrosyl-ferroheme species in the erythrocyte membrane that 

can transfer to circulating albumin and eventually promote cGMP-dependent signaling in the 

smooth muscle [136].

5. Conclusion

Although impossible to detect directly by current methods, the physiological formation 

of N2O3 is a possible phenomenon, particularly in lipid compartments and in the acidic 

conditions of the stomach (Fig. 1). These locational preferences are defined either by the 

favorable partition of precursor species into nonpolar environments that exclude competing 

thiolates and water, or by conditions that simultaneously decrease thiolate availability by 

protonation and promote N2O3 generation from relatively abundant dietary nitrite via nitrous 

acid disproportionation. Regardless of its mechanism of formation, N2O3 is expected to exist 

at very low steady-state levels even in the absence of substrates, as this species is not 

only susceptible to hydrolysis but it also quickly dissociates into N• O and N• O2. Despite 

its short lifetime, the consequences of N2O3 reactivity are highly pervasive and include 

the generation of stable carcinogenic nitrosamines, the modulation of cysteine-dependent 

signaling pathways via S-nitrosation, the production of local and systemically distributed 

bioactive nitrated fatty acids, and potentially the regulation of vascular physiology in health 

and disease [82,85,103,104,137]. Therefore, understanding the factors that determine the 

formation, reactivity and decomposition of N2O3 is essential for the elucidation of key 

signaling mechanisms that contribute to both homeostatic and pathological states.
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Fig. 1. 
Summary of the main reactions leading to N2O3 formation and consumption under 

physiological conditions. 1: k1 = 13.4 M−1 s−1 [81]; 2: pKa = 3.2 [138]; 3: k3 = 530 s−1 [1]; 

4: k4 > 6 × 107 M−1 s−1 [7]; 5: k5 = 8.1 × 104 s−1 [1], k−5 = 1.1 × 109 M−1 s−1 [1]; 6: KP6 = 1.5
[61]; 7: KP7 = 3.6 [54]; 8: KP8 = 3.2 [54]; 9: k9 = 2.9 × 106 M−2 s−1 [1]; 10: CLA nitration 

follows a complex mechanism. For a detailed discussion see Refs. [102,139].
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Scheme 1. 
Structural isomers and nitrosating reactivity of dinitrogen trioxide.
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Scheme 2. 
Proposed mechanism for thiol nitrosation via FeI(RS)2(NO+)2 formation.
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Scheme 3. 
Proposed mechanism for thiol nitrosation via FeII(RS)2(NO) autoreduction.
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Scheme 4. 
Reductive nitrosylation (a) and nitrite dehydration (b) pathways of hemoglobin.
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