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A B S T R A C T   

Objective: This study aimed to accurately segment teeth under complex oral conditions, including 
complex structural interference among adjacent teeth or malocclusion conditions, such as tooth 
rotation and displacement caused by dental crowding. 
Study design: Cone-beam computed tomography (CBCT) images were obtained from 19 patients 
with complex oral conditions, and a three-step solution was proposed. This study used a global 
convex level-set model to extract bony tissue and developed a flexible curve extraction method for 
separating neighbouring teeth under complex structural interference. In addition, a local level-set 
model with adaptive edge feature enhancement was proposed to segment individual teeth pre-
cisely. This model adaptively enhances edge features based on the structure of the root boundary 
and accurately distinguishes between the close-contact root and alveolar bone resulting from 
tooth rotation or displacement. 
Results: The experimental results showed that the average Dice similarity coefficient values for 
incisors, canines, premolars, and molars were 93.30%, 93.47%, 93.24%, and 93.89%, respec-
tively, and the average tooth centroid distances were 0.66, 0.61, 0.87, and 0.80 mm, respectively. 
Conclusion: The proposed method can effectively segment teeth without relying on highly precise 
annotated datasets, yielding satisfactory results even under complex structural interference be-
tween adjacent teeth or tooth rotation and displacement caused by dental crowding. It is more 
robust than the other methods and provides valuable data for further research and clinical 
practice.   

1. Introduction 

With computer technology and many orthodontic oral subjects of crossover and integration, digital oral diagnosis and treatment 
provide a more precise and personalised healthcare experience and digital dental model for patients and doctors, which are vital in 
clinical practice [1–3]. A complete digital dental model includes soft and hard tissues, such as crowns, roots, jawbones, and gingiva. 
Using the digital model data of soft and hard tissues, orthodontists can accurately simulate and design tooth movement, evaluate the 
relationship between the root and bone, and assess the risks of bone dehiscence and fenestration. Compared with traditional 
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orthodontics, digital technology applications dramatically increase the predictability of treatment outcomes and effectively control 
risks. Currently, with the popularisation of oral and model scanning equipment, doctors can easily obtain digital models of crowns and 
gingiva. The establishment of a root model relies on the collection of CBCT images. Cone-beam computed tomography (CBCT) images 
are widely used in the diagnosis and treatment of oral and maxillofacial diseases because of their low radiation doses, high isotropic 
spatial resolution, and complete root data. The uniqueness of this data source makes tooth segmentation in the CBCT data crucial for 
establishing a complete digital model. 

Researchers have proposed several methods for complete tooth segmentation, which can be divided into two types: direct 3D 
segmentation and 2D slice-by-slice segmentation. Methods based on direct 3D segmentation include a rapid automatic segmentation 
method based on a region-growth algorithm that involves four predefined thresholds [4]. However, growth regions may not be 
distinguishable from a predefined threshold because of their similar intensities in images of the alveolar bone or other tissues in and 
around the root [5]. In Refs. [6,7], a 3D region-based level-set method was applied for tooth segmentation. However, tooth seg-
mentation guided by only global intensity statistics cannot accurately distinguish between the tooth root and the alveolar bone with 
similar image intensities. Although the application of a 3D level-set approach can effectively achieve tooth segmentation in most cases, 
it lacks local control. In a 2D slice-by-slice-based segmentation approach, an optimal thresholding method for tooth segmentation 
based on the superstructure and image intensity information was proposed [8], which was superior to global thresholding. However, 
the structure of a tooth is too complex to achieve satisfactory results using a single threshold. Inspired by the significant success of deep 
learning in computer vision and medical image computing in recent years, an increasing number of researchers have begun building 
neural networks [9–15]. Although methods that learn the feature information of objects for prediction have achieved satisfactory 
results, they encounter the problem of a lack of high-quality datasets. Studies on weakly supervised learning techniques require only a 
rough label [16,17], but their accuracy is poor. The level-set method performs better in tooth segmentation than other traditional 
segmentation models [5,18–23]. Xia et al. [29] proposed a segmentation line based on the Radon transform to separate neighbouring 
teeth, achieving independent segmentation of each tooth. Their experiments focused on the segmentation of neatly arranged, struc-
turally stable teeth. However, patients who require CBCT imaging often have various dental problems, including complex structural 
interference between adjacent teeth, tooth rotation, and displacement caused by dental crowding. Therefore, this remains a chal-
lenging task in clinical practice for the following reasons:  

(1) The presence of impacted teeth or other structurally complex dental conditions in CBCT images can result in complex structural 
interference with adjacent teeth. Traditional methods for separating neighbouring teeth cannot accurately segment adjacent 
teeth under such conditions, compromising precision and making it challenging for doctors to accurately observe neighbouring 
tooth boundaries, potentially affecting subsequent diagnosis.  

(2) Tooth rotation and displacement caused by dental crowding can result in excessive contact between the tooth roots and alveolar 
bone, resulting in the loss of their boundaries in CBCT images. Because teeth and alveolar bone have similar intensities in the 
images, traditional tooth segmentation methods can only differentiate between non-tightly contacted root and alveolar bone. 
This may result in the root of the reconstructed 3D dental model not being enveloped by alveolar bone, further causing de-
viations in doctors’ judgment of the alveolar bone’s shape and the anatomical position relationship with the root, thereby 
increasing the corresponding risk of orthodontic treatment. 

Fig. 1. Slice-by-slice tooth segmentation flowchart.  
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This study aimed to achieve precise tooth segmentation in CBCT images under complex oral conditions, such as complex structural 
interference between adjacent teeth or tooth rotation and displacement, without heavy reliance on extensively annotated datasets. A 
flexible and curved segmentation line was created for the precise separation of neighbouring teeth with complex structural inter-
ference, followed by the segmentation of each tooth. Considering the close contact between tooth roots and alveolar bone caused by 
tooth rotation or displacement, this study developed a hybrid level-set model with adaptive edge feature enhancement, which can 
enhance the boundary features to varying degrees based on the structure at the root boundary. Two optimization coefficients were 
constructed to optimise the edge indicator, enabling the level-set curve to accurately guide the differentiation between the tooth root 
and the surrounding alveolar bone, thus achieving high-precision tooth segmentation in scenarios such as tooth rotation and 
displacement. In summary, the proposed method is simple and effective and does not rely on many annotated datasets. It can adapt to 
complex oral conditions and is more robust than the other methods, the workflow is shown in Fig. 1. 

2. Methods and materials 

In this study, 19 CBCT images were selected for the segmentation experiments. The scanning (NewTom VG, Italy) parameters of the 
CBCT images evaluated were 120 kV, 5 mA, with an exposure time of 6 s. The field of view (FOV) was 8 or 12 cm, the voxel size was 
0.25 mm, and the file format was DICOM. We initially excluded cases with metal braces and metal restorations and included cases 
involving teeth with mild to moderate crowding (with a difference of approximately 2–9 mm between the dental arch length and 
dental arch curve length). Additionally, within the dataset, there were complex structural interference data related to impacted teeth 
and adjacent teeth. All data were used after obtaining informed consent from the patients. 

The experimental data type was professionally assessed by experienced orthodontists from the Jilin University Stomatology 
Hospital, and the algorithm results were compared with the manual segmentation results of experienced doctors, which served as the 
gold standard. 

2.1. Global convex segmentation model for bony tissue separation 

Because regions composed of non-bony tissue (soft tissue and air) do not require segmentation, they are considered as background. 
Therefore, the first task in this study was to separate the bony tissue through the convex segmentation of CBCT images. As shown in 
Equation (1), a hybrid active contour model is adopted in this paper based on the Chan–Vese and local binary fitting (LBF) models 
[24–26]. 

Eglobal =ωECV + (1 − ω)ELBF + Eedge (1) 

With the Chan–Vese model (ECV) in (1), an image segmentation method based on global energy minimisation was represented as 
∫

Ωλ1 ⋅ |I(y) − c1|
2Hε(φ)+ λ2 ⋅ |I(y) − c2|

2
(1 − Hε(φ))dy. A global energy function was used to describe the foreground and background 

areas of an image, which are indicated by c1 and c2 in (1), respectively. Specifically, the Chan–Vese model divides an image into 
foreground and background regions. In this study, the foreground was represented as bony tissue and the background was defined as 
non-bony tissue. The segmentation results were determined by minimising the global energy function. In contrast, the LBF model (ELBF) 
in (1) was represented as 

∫

Ωλ1 ⋅ |I(y) − f1|
2Hε(φ)+ λ2 ⋅ |I(y) − f2|

2
(1 − Hε(φ))dy. Unlike the Chan–Vese model, the LBF model is an 

image segmentation method based on a local binary mode. Specifically, the LBF model divides each image into several small regions, 
calculates the local binary mode in each small region, and determines the segmentation result based on the relationship between the 
local binary mode and the intensity value. The LBF model has a good local adaptive performance, but overfitting may occur. The 
hybrid segmentation method based on the LBF and Chan–Vese models can better adapt to different image scenes while maintaining 
local adaptability and global consistency. In other words, the proposed method involves partitioning the image into multiple small 
regions, applying the LBF model for segmentation in each region, and leveraging the Chan–Vese model to enhance the overall con-
sistency of segmentation results. In addition, this study incorporated Eedge to guide the separation of bony tissue, which is represented as 
∫

Ωg|∇Hε(φ)|dy. 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c1 =

∫

ΩI(x)Hε(φ)dx
∫

ΩH(φ)dx

c2 =

∫

ΩI(x)(1 − Hε(φ))dx
∫

Ω(1 − Hε(φ))dx

(2)  

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1 =
Kσ(x) ∗ (Hε(φ) ⋅ I(x))

Kσ(x) ∗ Hε(φ)

f2 =
Kσ(x) ∗ ((1 − Hε(φ)) ⋅ I(x))

Kσ(x) ∗ (1 − Hε(φ))

where I(y) represents the CBCT image, Hε(φ) is the normalised Heaviside function, δε is the normalised Dirac function [25], λ1, λ2 are 
positive weights, Kσ denotes a Gaussian kernel of size σ, which is used to represent the small regions divided by the LBF model, the 
weight ω ∈ [0, 1] is expressed as the weight ratio of the two models, g is an edge indicator that is used to guide the global convex 
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segmentation and effectively find the edge of bony tissue. As shown in Equation (2), c1 and c2 represent the mean value of intensity 
inside and outside the level set curve, respectively, and the local average intensities f1and f2 is interpreted as the weighted average of 
the intensity in the Gaussian window inside and outside the contour, respectively. 

To minimise the energy function (1), the evolution equation of the level set can be obtained using variational and gradient descent 
methods. However, in the evolution of the level set model, a position with a positive value tends to + ∞, and a position with a negative 
value tends to − ∞; thus, the level set function cannot reach a stable state. Chan et al. [26] proposed a global optimal solution method 
in which the level-set function is restricted to the region [0,1] in each iteration, as shown in Equation (3). 

min
0 ≤ u ≤ 1

∫

Ω

{
ω ⋅

(
λ1 ⋅ (I − c1)

2
− λ2 ⋅ (I − c2)

2)
+(1 − ω) ⋅

(
λ1 ⋅ (I − f1)

2
− λ2 ⋅ (I − f2)

2)}
• u(x) dx+

∫

Ω
g ⋅ |∇u|dx (3) 

By setting Σ = {x : u(x)≥ μ}, where μ ∈ [0,1], the set Σ is obtained as the global segmentation results of a tooth. This problem can 
be solved based on the gradient descent and Eulerian–Lagrangian equations. However, this method occasionally results a slower 
regularisation process and higher time complexity. This study used the split Bregman method to solve unconstrained problems [27,28]. 

2.2. Curve segmentation lines for separating neighbouring teeth under severe dental crowding and tooth deformities 

The direct segmentation of all teeth from CBCT images may result in boundary loss. Therefore, based on the assumption that a 
straight line can separate them, Xia et al. [29] proposed extracting an interdental straight segmentation line using the Radon transform 
to separate neighbouring teeth, and the method is represented by Equation (4); thus, each tooth is segmented independently: 

R(θ, ρ)(I(x, y))=
∫+∞

− ∞

∫+∞

− ∞

I(x, y)δ(ρ − xcosθ − ysinθ)dxdy (4) 

However, impacted teeth or other structurally complex dental conditions can result in complex structural interferences between 
adjacent teeth, causing straight interdental segmentation lines that do not wholly and accurately separate neighbouring teeth. Fig. 2 
(a), which simulates the close contact and relatively complex structure of two neighbouring teeth, shows that a significant segmen-
tation error occurs when using an interdental straight segmentation line. Therefore, a method for separating neighbouring teeth based 
on a curved segmentation line is proposed. Keeping the θ value of the straight segmentation line unchanged, several straight lines with 
ρ in the range [ρ − α, ρ+α] are selected (α is a positive integer), and the optimum point (minimum intensity value) is selected from the 
intersections at the common perpendicular of these 2α +1 parallel lines. The optimum point is indicated by the red point. The curve 
formed by connecting the optimal points is expressed as the optimal interdental curve segmentation line of the neighbouring teeth, as 
shown in Fig. 2(b). This method detects optimal points between neighbouring deformed teeth and constructs a flexible and curved 
interdental segmentation line that can separate neighbouring adhesive teeth completely and accurately, and it has better general-
isation than the traditional interdental straight segmentation line. 

2.3. Independent tooth segmentation based on local level set model with adaptive edge feature enhancement 

The geodesic active contour model is a level-set model based on the snake model and curve evolution theory [30]. It not only 
overcomes the limitation of the initial contour and free parameters in the solution process of the snake model but can also split or 
merge naturally in the evolution process to enable the detection of object boundaries. The LLIF model [36] assumes that local regions 

Fig. 2. (a) The two yellow regions represent neighbouring distorted teeth with complex structures, and the black lines represent the result of the 
straight-line segmentation extraction method. (b) The red straight line represents straight lines with the same angle as the original straight line, the 
blue straight line is perpendicular to the red straight line, and the optimal point is selected at the intersection of the red and blue lines, represented 
by the red points. 
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have spatially varying means and variances and follow a Gaussian distribution. It can accurately extract independent teeth when under 
image blurriness and intensity nonuniformity, which plays an important role in our research. In this study, the traditional geodesic 
active contour model was improved by enhancing the edge features for independent tooth segmentation and combined with the LLIF 
model [36], which is expressed as Equation (5): 

E(φ)=
∫

Ω
hr

⃒
⃒
⃒
⃒∇H(φ)

⃒
⃒
⃒
⃒dx+

∫

Ω
− log p

(

I(x)
⃒
⃒
⃒
⃒U(x), S(x))dx + β

∫

Ω
(H(φ) − H(φ0))

2dx (5)  

{
U(x) = u1(x)H(φ) + u2(x)(1 − H(φ))
S(x) = s1(x)H(φ) + s2(x)(1 − H(φ)) (6)  

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u1(x) =
∫

ΩKL(y − x)I(y)H(φ)dy
∫

ΩKL(y − x)H(φ)dy

u2(x) =
∫

ΩKL(y − x)I(y)(1 − H(φ))dy
∫

ΩKL(y − x)(1 − H(φ))dy

(7)  

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s1(x) =
∫

ΩKL(y − x)(I(y) − U(x))2H(φ)dy
∫

ΩKL(y − x)H(φ)
)
dy

s2(x) =
∫

ΩKL(y − x)(I(y) − U(x))2
(1 − H(φ))dy

∫

ΩKL(y − x)(1 − H(φ))dy

(8)  

where hr is the edge indicator used in this study, ∇H(φ) indicates the edge of the level set, U(x) and S(x) are represented in Equation 
(6), u(x) and s (x) are respectively represented by Equation (7) and Equation (8), KL is a Gaussian window, and the actual tooth 
boundary was found by minimising the energy function. 

2.3.1. Selecting the key region for independent tooth 
In this study, the influence of unnecessary factors on the image was eliminated as much as possible. Based on the theory that the 

contours of the prior layers of the same tooth are similar, the region close to the boundary of the prior contour of the tooth was defined 
as the key region, and the region far away from the boundary was defined as the non-key region. In this experiment, the calculations 
were limited to the key region, thereby minimising the impact of extraneous gradients on the segmentation of individual teeth and 
mitigating the effects of scattering caused by the root canal treatment The key region of an independent tooth image is defined as 
follows: Let the value in the contour region of the prior independent tooth be p (yellow region in Fig. 3(a)), and the value outside the 
contour region of the tooth be 0 (white region in Fig. 3(a)). A k ∗ k scale filter is applied to the results of the tooth before the contour 
labels to determine the key region. The obtained region RT = {x : 1< I(x)< p} is the key region in the edge indicator, and regions C =

{x : I(x)= p} and D = {x : I(x)= 0} are the internal and external non-key regions, respectively (Fig. 3(b)). In this study, the RT key 
region was defined as the active region of the edge indicator. 

2.3.2. Local intensity fitting coefficient for adaptive enhancement 
Because the root intensity is similar to that of the surrounding bony tissue, the gradient between the root and surrounding alveolar 

bone is not prominent, which results in an insufficient constraint on the edge indicator for actual tooth boundaries. Researchers have 
attempted to use hybrid level-set models to address this problem. A general hybrid level set model is primarily driven by the intensity 
energy and edge detection energy of an image, and this method is only effective for roots that are not in close contact with the alveolar 

Fig. 3. (a) Prior contour region of a tooth. The yellow region indicates the prior contour region, and the white region indicates the region outside 
the prior contour region. (b) The result of a filter operation on the labels of the prior contour region of the tooth. The blue and yellow regions 
represent the key region RT , the blue region A is the external key region, and the yellow region B is the internal key region. Regions C and D are 
considered non-key regions because they are too far away from the prior contour curve. 
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bone; otherwise, the actual tooth boundary feature is not prominent, and the teeth and alveolar bone have similar image intensities. 
Thus, the intensity and edge energy terms in the hybrid level set cannot effectively detect the boundary at the root and may cause 
severe boundary leakage. However, in clinical dentistry, tooth rotation or displacement caused by dental crowding often results in 
excessive contact between the teeth roots and the alveolar bone, resulting in the loss of their boundaries in CBCT images and 
significantly affecting the segmentation process. Inaccurate differentiation of the two causes the reconstructed root to not be enveloped 
by the alveolar bone, resulting in deviations in doctors’ judgments of the shape of the alveolar bone and the anatomical position 
relationship with the root, thereby increasing the corresponding risk of orthodontic treatment. To address this problem, the local 
intensity fitting coefficient is proposed to enhance the weight of the feature between the roots and alveolar bone in the key region, and 
the local intensity fitting coefficient is defined as Equation (9): 

Lc(x)=
{

τ ⋅ tanh( − w ⋅ FI(x)) + τ + 1
0

x ∈ RT
x ∕∈ RT

(9)  

FI(x)= μt(x) − [μb(x)+ σb(x)] (10)  

where τ is the positive integer weight, and w is the coefficient that affects the degree of bending of the hyperbolic tangent function 
tanh(x). FI(x) is represented by Equation (10), which is used to quantify the degree of intensity difference between teeth and alveolar 
bone. μt(x),μb(x), and σb(x) are the mean value of the tooth intensity, mean value of the alveolar bone intensity, and variance of the 
alveolar bone intensity in a small region with the central point x, respectively, and RT is the key region in the image. 

Consider a case in which the tooth is in close contact with the alveolar bone. The minor intensity difference inside and outside the 
contour in a small region on the boundary of the tooth causes the local intensity fitting coefficient to increase, increasing the weight of 
the gradient at position x and reducing the evolution speed of the level-set curve. When the tooth and alveolar bone are not in close 
contact, the small region centred on a point x have a significant intensity difference inside and outside the tooth contour, making the 
local intensity fitting coefficient Lc(x) ≈ 1. This coefficient adjusts the weight of the edge indicator at the tooth boundary based on the 
different edge features. Experiments have shown that this coefficient can effectively distinguish between the root and alveolar bone in 
close contact caused by tooth rotation and displacement. It prevents edge leakage and improves segmentation accuracy in clinical 
dentistry. 

2.3.3. Boundary confidence coefficient for detecting tooth boundary accurately 
Owing to the high tooth shape similarity between adjacent slices in CBCT images, researchers have introduced a tooth shape prior 

to the constraint term in the level set to make the tooth shape segmented from the current layer as similar as possible to that in the 
previous layer [5,19,21]. The segmentation results obtained by introducing tooth shape prior constraints not only make the recon-
structed 3D dental model smoother but also prevent boundary leakage errors to a certain extent. Specifically, the traditional tooth 
shape prior constraint is primarily constrained by continuously superimposing the signed distance of the tooth shape before the curve 
evolution process. Although this constraint can make the level-set curve as similar as possible to the prior curve, it does not contribute 
to determining the actual tooth boundary. Therefore, a boundary confidence coefficient is proposed to constrain the edge indicator. 
This can prevent the level-set curve from evolving too far from the prior and guides the evolution of the level-set curve. The boundary 
confidence coefficient is defined as Equation (11) 

Bc(x)=
{
(1 − Norm(|φ0|))

κ

0
φ ∈ RT
φ ∕∈ RT

(11) 

Norm( ⋅) is the normalization function defined as Equation (12) 

Norm(|φ0|)=
|φ0| − min(|φ0|)

max(|φ0|) − min(|φ0|)
(12) 

The tooth shape prior φ0 is standardised using Norm( ⋅). The coefficient optimises the edge indicator according to the distance 
between the evolving curve and the prior contour of a tooth and selects a more precise tooth boundary in the case of a tooth in close 
contact with the alveolar bone. 

Furthermore, although the local intensity fitting coefficient effectively prevents the level-set curve from spreading to the alveolar 
bone around the tooth when the centre point x is far from the tooth boundary, the results from the local intensity fitting coefficient used 
to increase the weight of the gradient at this point are unreliable. Therefore, the boundary confidence coefficient can also constrain the 
local intensity fitting coefficient to detect precise tooth boundaries in cases of tooth rotation and displacement. 

2.3.4. Construction of the multiscale edge indicator with adaptive edge feature enhancement 
Image gradient information is essential in tooth segmentation and has been widely used in level-set models [5,18–23]. The 

traditional edge indicator constructed using the image gradient was used to control the speed of curve evolution. The robustness of the 
traditional edge indicator worsens if a small Gaussian kernel is used to process dental CBCT images while smoothing them. The edge 
indicator may be unable to accurately segment an image with inhomogeneous intensity if a large Gaussian kernel is used [31]. Thus, 
utilizing a multiscale Gaussian kernel and gradient direction is indispensable to determining and retaining the effective gradient. 

The image intensity is also an important piece of information for tooth segmentation. Without considering the internal contours 
caused by the pulp cavity, the tooth region has higher intensity. In this study, the gradient information was taken as the primary 
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premise for edge determination, and the tooth boundary was determined by influencing the gradient weight under different image 
intensities. In this study, the weight of the gradient increased with the image intensity because the image intensity of the tooth was 
generally more prominent than that of the other tissues. 

The objective of the edge indicator is to remove the influence of noise while preserving the edge information and ensuring that the 
contour curve stops at the target boundary. Because the root boundaries are blurred, the gradient at the boundary is not prominent, and 
an edge indicator function with a rapid decline should be adopted for an image with a slight edge gradient value [32,33]. This study 
adopted a steep-edge indicator by combining multiscale gradient and intensity information as Equation (13). 

hr(x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ ⋅ exp

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−

⃒
⃒
⃒
⃒
⃒

1
K

∑K

S=1
ν ⋅ [∇Gs ⋅ I(x)]3 ⋅ Iw(x) ⋅ Lc(x) ⋅ Bc(x)

⃒
⃒
⃒
⃒
⃒

2σ2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

1

∇IG ⋅ ∇φg ≥ 0
∇IG ⋅ ∇φg < 0 (13)  

where ∇Gs ⋅ I(x) is the gradient of image I(x) smoothed by a Gaussian filter of scale (2S + 1) ∗ (2S + 1), ν is the positive weight, ∇φg is 
the direction gradient of the level set evolution, σ is the variance of the Gaussian kernel, ρ is the weight coefficient, Iw(x) represents the 
weight of the image intensity, and Lc(x) and Bc(x) are the coefficients to optimise the edge indicator. 

2.3.5. Evolution of level set curves 
The minimisation of functional energy (5) was solved using an explicit iteration scheme based on the following gradient descent 

flows as Equation (14): 

∂φ
∂t

= δ(φ)div
(

hr •
∇φ
|∇φ|

)

+ δ(φ)

[

− (s1 − s2)+ 2(I − U)(u1 − u2)+
(I − U)

2
(s1 − s2)

Sj

]

− 2βδ(φ)(H(φ) − H(φ0)) (14)  

where t is the iteration time, t > 0, and div is the divergence operator. 
In addition, the level-set function was regularised by convolving it with a Gaussian filter. This regularisation method based on a 

Gaussian filter can effectively prevent the level set from being too steep or flat and has a higher efficiency [34]. 

2.4. Performance evaluation 

All methods applied in this study were implemented on a Windows 10 operating system with an Intel I9-10900 KF with a 5.3 GHz 
CPU and 64 GB RAM. According to experience, the parameters λ1 = 1, λ2 = 1, μ = 0.6 were set in the global convex segmentation 
process. The parameter α was set to 2 in the extraction of interdental curve segmentation lines, which means that the curve was 
constructed from five straight lines. The following parameters were set in the independent segmentation of the local level set: v = 1,
K = 3, τ = 4, κ = 4. 

The experiments were evaluated by comparing the segmentation results obtained in this study with those obtained using manual 
segmentation performed by multiple professional clinicians. Five metrics were used: volume difference (VD, mm3), Dice similarity 
coefficient (DSC, %), average symmetric surface distance (ASSD, mm), maximum symmetric surface distance (MSSD, mm), and dis-
tance of tooth centroids (DTC, mm) [31], which are defined as follows: 

VD= |VR− VA| (15)  

DSC=
2VR ∩ VA

VR+VA
(16)  

VR and VA in VD and DSC indices represent the volume under the gold standard and the volume segmented by the algorithm, 
respectively. 

ASSD(SR, SA)=mean{mean{dist(a, SR), a∈ SA},mean{dist(r, SA), r∈ SR}} (17)  

MSSD(SR, SA)=max{max{dist(a, SR), a∈ SA},max{dist(r, SA), r∈ SR}} (18)  

SR and SA in ASSD and MSSD denote the surfaces partitioned under the gold standard and algorithm, respectively. dist(x, S) denotes the 
shortest Euclidean distance from point x to plane S, and mean{ • } denotes the arithmetic mean operator. 

DTC=
1
L
∑L

i=1
d(Si(R), Si(A)) (19)  

d(Si(A), Si(B)) is the shortest Euclidean distance between the centroids under the gold standard and algorithm. 
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3. Results 

3.1. Qualitative results 

The proposed method was compared with two high-performance level set models and one method that combines deep learning. 
Gan’s method [5] is a hybrid level set model that includes local intensity energy, global intensity energy, edge detection energy, and 
shape constraint energy. Gan’s method [21] introduces intensity information into the edge detector and optimises the shape constraint 
term. Xie’s method [35] combines deep learning and level-set methods and constrains the evolution of level-set curves through ellipse 
priors. 

As shown in Fig. 4, Gan’s method [5] had a significant under-segmentation at the tooth root under tooth rotation caused by 
adhesion between the tooth root and alveolar bone. The multiscale image gradient information used in this study can be effectively 
obtained at different scales to maintain the actual gradient. In addition, the boundary confidence coefficient was weighted according to 
the distance from the level-set curve to the prior. This solves the problem in which the traditional prior energy term coefficient is 
difficult to control and makes it easier for the level-set curve to stop at the actual boundary of the tooth. 

Gan et al. [21] introduced intensity information to distinguish teeth from alveolar bone. However, for malocclusions, such as tooth 
rotation and displacement, the roots and alveolar bone often have close contact and similar image intensity, which results in edge 
leakage and causes a risk that the alveolar bone may not surround the root in the 3D dental model and may cause tooth loss after 
orthodontic treatment. The local intensity fitting coefficient can enhance the feature weight at the tooth boundary according to the 
similarity of the tooth and alveolar bone intensities and perform an edge-based distance constraint through the boundary confidence 
coefficient. Fig. 5 shows that the method proposed in this paper can accurately distinguish the close contact between the root and 
alveolar bone caused by tooth rotation and displacement and achieve similar results to manual segmentation. 

Xie’s method can accurately and effectively split teeth [35]. However, at the location of severe dental crowding or large splitting of 
the tooth root, this can result in inaccurate ellipse prior detection, resulting in an error in the segmentation result, as shown in Fig. 6. 
The proposed interdental curve segmentation lines can ensure independence between teeth in the process of tooth segmentation and 
can effectively separate neighbouring teeth under complex structural interference. In addition, Xie’s method occasionally cannot 
distinguish between closely touched teeth and alveolar bones. This paper proposes two coefficients that can optimise the edge indi-
cator and obtain satisfactory segmentation results. Fig. 7 shows that the segmentation results without using the two optimised co-
efficients had an apparent boundary leakage error caused by the close contact between the tooth and alveolar bone. The segmentation 
results obtained using the two optimised coefficients were similar to the manual segmentation results. 

The proposed method accurately separates and segments neighbouring teeth even in the presence of complex structural in-
terferences. It also achieves stable and precise tooth segmentation under conditions of tooth rotation and displacement caused by 
dental crowding and enables the reconstruction of a stable 3D dental model. Fig. 8 shows the precise segmentation of both the upper 
and lower jaw teeth using the proposed method. Even in cases of complex structural interference between the impacted teeth and their 
adjacent teeth, this method consistently distinguishes between them and achieves high-precision tooth segmentation. Fig. 9 shows the 
segmentation results for tooth rotation and displacement caused by dental crowding. 

3.2. Quantitative results 

In this study, the performance of the proposed method was compared with that of three other methods in terms of five metrics. 

Fig. 4. The first to third rows represent the segmentation results of Gan et al. [5], the segmentation results of the proposed method, and the result of 
manual segmentation. 
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Fig. 10 shows the quantitative results of Gan et al. [5], Gan et al. [21], Xie et al. [35], and the proposed method for the four types of 
teeth. The results showed that the segmentation performance of the proposed method was better than that of Gan’s [5] method for four 
types of teeth. Compared with the segmentation results of Gan et al. [21], the proposed method achieved significantly better seg-
mentation results for the incisors, canines, and premolars. Xie’s method [35] achieved satisfactory results for canine teeth. However, 
for complex structural interference between adjacent teeth, the prior elliptical detection is not always accurate in the position of close 
contact of the incisors or furcated molars, which leads to a decrease in accuracy and a more significant standard deviation. Although 
not significantly advantageous under the indicators of volume differences and the Dice similarity coefficient, the results of the method 
used in this study have significant advantages in terms of the distance between tooth centroids. Compared with the other methods, the 
values of the DTC indicators for the four types of teeth were reduced, which indicated that the results of the proposed method had more 
minor deviations in terms of tooth orientation and strong stability. Owing to the importance of tooth orientation in reflecting 
anatomical information, the proposed method has clinical significance [5,21,35]. Table 1 presents detailed data for the quantitative 
segmentation accuracy of teeth using the presented method. Table 2 and Table 3 respectively provide detailed data for the quantitative 

Fig. 5. The first to third rows represent the segmentation results of Gan et al. [21], the proposed method results, and the result of manual 
segmentation. 

Fig. 6. The first to third rows represent the segmentation results of Xie et al. [35], where the ellipse in the figure represents a prior ellipse for tooth 
segmentation, the segmentation results of the proposed method, where the curve in the figure represents the curve segmentation lines between 
neighbouring teeth, and the result of manual segmentation, respectively. 
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Fig. 7. Comparison of segmentation results with and without two optimization coefficients in the edge indicator. The first row shows the seg-
mentation results without using two optimization coefficients, and the second row shows the results using two optimization coefficients. The third 
row shows the manual segmentation. 

Fig. 8. (a) Results of tooth segmentation (maxillary slices and mandible slices), (b) 3D dental model reconstruction of the upper jaw, and (c) 3D 
dental model reconstruction of the lower jaw, characterized by complex structural interferences between impacted teeth and their adjacent teeth. 
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segmentation accuracy of upper jaw teeth and lower jaw teeth using the presented method. (p < 0.05, t-test). 

4. Discussion 

Complete 3D dental information is essential for orthodontic diagnosis and treatment planning in digital and quasi-medical med-
icine. CBCT is the only source of root data and segmenting teeth using CBCT is an essential step in constructing a complete 3D dental 
model. Although many studies have been conducted on tooth segmentation, research on tooth segmentation in complex oral condi-
tions, such as complex structural interference between adjacent teeth or tooth rotation and displacement caused by dental crowding, is 
rare. However, patients requiring CBCT imaging often experience dental problems. In response to these challenges, the proposed 
method can accurately separate neighbouring teeth with complex structural interference, providing doctors with more accurate data 
on tooth boundary structures in clinical orthodontics, and is more robust than other methods. Patients’ teeth typically undergo 
crowding, which can potentially result in tooth rotation and displacement, resulting in close contact between the root and alveolar 
bone. However, existing methods often cannot accurately distinguish between the root and the alveolar bone, resulting in the 
reconstructed root not being enveloped by the alveolar bone. In orthodontic treatment, the alveolar bone should be reconstructed and 
reshaped based on plasticity to achieve tooth correction. The proposed method can accurately distinguish the close contact between 

Fig. 9. (a) Results of tooth segmentation under malocclusion (maxillary slices and mandible slices), and (b) 3D dental model reconstruction of the 
upper jaw, featuring tooth rotation and displacement caused by dental crowding, and (c) 3D dental model reconstruction of the lower jaw, featuring 
tooth rotation and displacement caused by mild dental crowding. 
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the root and alveolar bone caused by tooth rotation and displacement and ensure that the reconstructed root is not exposed. 
First, global convex segmentation was used to segment the bony tissue in the CBCT images to reduce the influence of soft tissue and 

air on segmentation. 
Second, the primary objective of this step was to separate the neighbouring teeth accurately. Xia et al. proposed extracting the 

interdental straight segmentation lines of neighbouring teeth using Radon transform [29]. However, this method cannot accurately 
separate two adhered teeth with complex structural interference. Dental problems are commonly encountered in clinical practice. The 
advantage of the proposed method is that it extends the straight interdental segmentation line to select appropriate segmentation 
points. The interdental curve segmentation line connected by these points has flexible and versatile characteristics and can more 
accurately separate neighbouring teeth under complex structural interference. 

Third, local-level sets were used to separate individual teeth. Because the segmentation results are affected by noise in the CBCT 
images, a Gaussian filter is used to smooth the images to effectively address noise and inhomogeneous intensity. However, it is difficult 
to determine the Gaussian filter scale. In this experiment, the multiscale Gaussian filter effectively obtained the gradient information of 

Fig. 10. Quantitative comparison of segmentation accuracy, (a) volume difference, (b) Dice similarity coefficient, (c) average symmetric surface 
distance, (d) maximum symmetric surface distance, and (e) distance of tooth centroids. 
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an image at different scales to maintain the actual gradient. However, the tooth boundaries in CBCT images were blurred, making it 
difficult to segment individual teeth. Gan et al. developed a hybrid level-set model to extract accurate tooth contours [5]. Wang et al. 
proposed a new method that uses a variational level-set formulation to accurately segment tooth roots [31]. This novel hybrid level set 
model is composed of a local LLIF energy term, a shape prior constraint energy term with adaptive weights, and an RD regularisation 

Table 1 
Quantitative segmentation accuracy of the presented method.  

Teeth (p < 0.05, t-test) Approach VD (mm3) DSC (%) ASSD (mm) MSSD (mm) DTC (mm) 

Incisor Gan’s method [5] 41.27 ± 4.95 90.11 ± 2.10 0.27 ± 0.03 1.33 ± 0.37 1.17 ± 0.16  
Gan’s method [21] 43.41 ± 8.66 89.89 ± 2.83 0.29 ± 0.05 1.29 ± 0.77 1.21 ± 0.15  
Xie’s method [35] 33.93 ± 3.20 92.27 ± 2.47 0.23 ± 0.02 1.08 ± 0.51 0.91 ± 0.13  
Proposed method 33.57 ± 4.04 92.30 ± 1.90 0.23 ± 0.03 1.06 ± 0.45 0.66 ± 0.12 

Canine Gan’s method [5] 40.61 ± 9.03 89.27 ± 1.87 0.35 ± 0.05 1.24 ± 0.50 1.14 ± 0.13  
Gan’s method [21] 41.13 ± 7.03 90.49 ± 1.56 0.27 ± 0.03 0.97 ± 0.40 1.14 ± 0.14  
Xie’s method [35] 29.05 ± 2.24 93.45 ± 1.33 0.20 ± 0.01 0.85 ± 0.31 0.65 ± 0.16  
Proposed method 29.09 ± 2.92 93.47 ± 1.42 0.20 ± 0.01 0.88 ± 0.37 0.61 ± 0.15 

Premolar Gan’s method [5] 43.75 ± 6.26 88.59 ± 1.53 0.39 ± 0.06 1.50 ± 0.54 1.26 ± 0.17  
Gan’s method [21] 40.51 ± 7.98 92.29 ± 2.24 0.28 ± 0.03 1.21 ± 0.62 0.90 ± 0.15  
Xie’s method [35] 35.10 ± 8.79 93.01 ± 3.14 0.28 ± 0.07 1.21 ± 0.68 0.96 ± 0.17  
Proposed method 33.89 ± 7.62 93.24 ± 2.11 0.24 ± 0.07 1.19 ± 0.63 0.87 ± 0.17 

Molar Gan’s method [5] 59.03 ± 12.16 89.60 ± 1.84 0.40 ± 0.17 2.37 ± 0.68 1.24 ± 0.19  
Gan’s method [21] 35.07 ± 5.62 94.37 ± 1.79 0.30 ± 0.04 1.53 ± 0.82 0.82 ± 0.17  
Xie’s method [35] 35.04 ± 6.80 93.72 ± 1.87 0.29 ± 0.05 1.53 ± 0.80 0.88 ± 0.15  
Proposed method 34.83 ± 6.01 93.89 ± 1.85 0.29 ± 0.05 l.52 ± 0.59 0.80 ± 0.10  

Table 2 
Quantitative segmentation accuracy of upper jaw teeth.  

Upper jaw teeth (p < 0.05, t-test) Approach VD (mm3) DSC (%) ASSD (mm) MSSD (mm) DTC (mm) 

Incisor Gan’s method [5] 41.14 ± 4.87 90.35 ± 1.95 0.26 ± 0.03 1.28 ± 0.35 1.15 ± 0.17  
Gan’s method [21] 42.85 ± 8.01 90.02 ± 2.78 0.29 ± 0.05 1.28 ± 0.71 1.20 ± 0.16  
Xie’s method [35] 33.80 ± 3.12 92.39 ± 2.57 0.22 ± 0.02 1.07 ± 0.53 0.90 ± 0.13  
Proposed method 33.53 ± 4.10 92.51 ± 1.93 0.22 ± 0.03 1.05 ± 0.45 0.65 ± 0.11 

Canine Gan’s method [5] 39.50 ± 9.06 89.40 ± 1.80 0.33 ± 0.05 1.22 ± 0.49 1.13 ± 0.14  
Gan’s method [21] 40.70 ± 7.08 90.53 ± 1.48 0.26 ± 0.03 0.96 ± 0.43 1.13 ± 0.14  
Xie’s method [35] 28.86 ± 2.37 93.50 ± 1.39 0.20 ± 0.01 0.84 ± 0.33 0.64 ± 0.15  
Proposed method 29.02 ± 3.13 93.51 ± 1.51 0.20 ± 0.01 0.86 ± 0.34 0.60 ± 0.14 

Premolar Gan’s method [5] 43.49 ± 6.15 88.63 ± 1.50 0.38 ± 0.05 1.48 ± 0.53 1.24 ± 0.19  
Gan’s method [21] 40.61 ± 8.32 92.34 ± 2.32 0.27 ± 0.03 1.18 ± 0.62 0.88 ± 0.12  
Xie’s method [35] 35.69 ± 8.27 93.09 ± 3.29 0.27 ± 0.08 1.19 ± 0.67 0.95 ± 0.16  
Proposed method 33.78 ± 7.46 93.30 ± 1.79 0.23 ± 0.08 1.16 ± 0.64 0.86 ± 0.16 

Molar Gan’s method [5] 58.34 ± 12.21 89.67 ± 1.87 0.39 ± 0.17 2.31 ± 0.64 1.24 ± 0.18  
Gan’s method [21] 34.81 ± 5.89 94.57 ± 1.73 0.30 ± 0.04 1.52 ± 0.79 0.81 ± 0.15  
Xie’s method [35] 34.81 ± 6.71 93.82 ± 1.90 0.29 ± 0.05 1.52 ± 0.78 0.86 ± 0.16  
Proposed method 34.36 ± 6.19 93.95 ± 1.84 0.29 ± 0.04 1.52 ± 0.61 0.80 ± 0.11  

Table 3 
Quantitative segmentation accuracy of lower jaw teeth.  

Lower jaw teeth (p < 0.05, t-test) Approach VD (mm3) DSC (%) ASSD (mm) MSSD (mm) DTC (mm) 

Incisor Gan’s method [5] 41.47 ± 5.08 89.93 ± 2.29 0.28 ± 0.03 1.36 ± 0.38 1.18 ± 0.16  
Gan’s method [21] 43.69 ± 9.12 89.81 ± 2.85 0.29 ± 0.04 1.31 ± 0.83 1.22 ± 0.15  
Xie’s method [35] 34.06 ± 3.29 92.08 ± 2.38 0.23 ± 0.03 1.10 ± 0.49 0.91 ± 0.12  
Proposed method 33.64 ± 4.26 92.19 ± 1.79 0.23 ± 0.03 1.08 ± 0.44 0.67 ± 0.12 

Canine Gan’s method [5] 41.85 ± 9.38 89.14 ± 1.92 0.36 ± 0.04 1.26 ± 0.51 1.14 ± 0.13  
Gan’s method [21] 41.40 ± 6.91 90.44 ± 1.61 0.27 ± 0.03 0.99 ± 0.36 1.15 ± 0.13  
Xie’s method [35] 29.18 ± 2.20 93.39 ± 1.28 0.20 ± 0.01 0.85 ± 0.30 0.65 ± 0.16  
Proposed method 29.18 ± 2.80 93.39 ± 1.37 0.20 ± 0.01 0.90 ± 0.40 0.61 ± 0.16 

Premolar Gan’s method [5] 43.94 ± 5.64 88.54 ± 1.55 0.39 ± 0.07 1.51 ± 0.56 1.27 ± 0.16  
Gan’s method [21] 40.37 ± 7.52 92.25 ± 2.18 0.28 ± 0.03 1.26 ± 0.61 0.91 ± 0.17  
Xie’s method [35] 34.76 ± 9.25 92.97 ± 2.98 0.29 ± 0.07 1.23 ± 0.69 0.97 ± 0.17  
Proposed method 33.95 ± 7.81 93.17 ± 2.58 0.25 ± 0.06 1.23 ± 0.63 0.88 ± 0.17 

Molar Gan’s method [5] 59.67 ± 11.95 89.54 ± 1.81 0.41 ± 0.16 2.43 ± 0.71 1.24 ± 0.19  
Gan’s method [21] 35.46 ± 5.49 94.22 ± 1.81 0.31 ± 0.04 1.54 ± 0.84 0.83 ± 0.20  
Xie’s method [35] 35.32 ± 6.95 93.64 ± 1.81 0.29 ± 0.05 1.54 ± 0.81 0.90 ± 0.14  
Proposed method 35.41 ± 5.83 93.84 ± 1.86 0.29 ± 0.05 1.53 ± 0.57 0.81 ± 0.10  
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energy term, which the LLIF energy term aids in overcoming edge blurring and inhomogeneous intensity. The RD energy term is used 
to effectively regulate the level set evolution. Although these methods can overcome the problems of blurred edges and inhomoge-
neous intensity to some extent, they cannot effectively distinguish teeth with similar intensities from the alveolar bone. Gan et al. 
introduced image intensity information as an edge indicator [21]. Based on the theory that the image intensity of the tooth is slightly 
higher than that of the surrounding bony tissue, a geodesic active contour model with a shape prior constraint is guided by an edge 
indicator to distinguish the root from the adjacent alveolar bone. However, the image intensities of the two are very similar when they 
are in close contact, and Gan’s method is still impractical for distinguishing them. However, in clinical dentistry, tooth alignment often 
involves rotation and displacement, resulting in close contact between the root and alveolar bone. Using previous methods to segment 
teeth may not accurately detect both, resulting in the reconstructed root not being enveloped by the alveolar bone, thus increasing the 
risk of orthodontic treatment. Therefore, the two optimization factors proposed in this paper can enhance the feature weight at the 
tooth boundary, apply edge constraints, and more effectively distinguish teeth with similar image intensities and close contact with the 
alveolar bone. 

In addition, Xie et al. proposed an automatic tooth segmentation model combining deep learning and level-set methods [35], using 
the deep learning method to detect the position and size of each tooth and generate an ellipse from the detected boundary box as a 
priori. This method adapts better to the tooth shape and reduces the accumulated error to a certain extent. However, elliptical priors 
exhibit poor adaptability to teeth with complex structures. In clinical practice, teeth often exhibit complex oral conditions resulting in 
errors in elliptical priors and inaccurate segmentation results. This causes a significant deviation in the tooth direction; therefore, the 
segmentation accuracy under the DTC indicator was unsatisfactory. In this study, interdental curve segmentation lines were con-
structed to separate neighbouring teeth under complex structural interference before independent tooth segmentation. This can 
eliminate segmentation errors caused by inaccurate elliptical priors and avoid detecting the roots of different teeth in the same tooth. 
In addition, teeth in close contact with the alveolar bone are not easily distinguishable using Xie’s method. Therefore, the two opti-
mization factors proposed in this study can guide the level-set curve to easily evolve to the actual boundary of the tooth, effectively 
control the deviation of the tooth direction, and achieve significant advantages under DTC indicators. 

Accurate tooth segmentation from CBCT images is essential in building a complete 3D dental model. This can assist dentists in 
understanding the shape and structure of teeth and improve treatment efficiency, which is vital in clinical practice. Accurate tooth 
segmentation under conditions of complex structural interference between adjacent teeth or tooth rotation and displacement caused 
by dental crowding can be achieved by applying this solution, and the segmentation results can be used to reconstruct a high-precision 
and complete 3D dental model. 

Finally, our study had some limitations. We focused exclusively on tooth segmentation in dental CT images acquired from subjects’ 
teeth in the open-bite position. Notably, the proposed method may not accurately segment images containing metallic artefacts. These 
complex scenarios can also provide directions for future research. 

5. Conclusion 

This study developed a method for accurate tooth segmentation from CBCT images of complex oral conditions, such as complex 
structural interference between adjacent teeth, tooth rotation, and displacement caused by dental crowding. First, global convex 
segmentation was performed on each CBCT image. Thereafter, a method for constructing flexible and curved segmentation lines 
between neighbouring teeth that can accurately detect neighbouring teeth boundaries, even in scenarios characterised by complex 
structural interference between adjacent teeth, was used. Compared with previous methods, this method is more accurate and robust. 
A local level-set model based on edge features was used to achieve high-precision segmentation of independent teeth. This paper 
proposes two coefficients for optimising the edge indicator that can adaptively adjust the edge indicator weights based on different 
structures at the tooth boundary. In the case of close contact between the root and alveolar bone caused by tooth rotation and 
displacement, the level-set curve can be guided to evolve to the actual tooth boundary, achieving precise differentiation between the 
two. The experimental results showed that the average Dice similarity coefficient values for the incisors, canines, premolars, and 
molars were 93.30%, 93.47%, 93.24%, and 93.89%, respectively. The tooth centroids were 0.66, 0.61, 0.87, and 0.80 mm, respec-
tively, using the method proposed in this study. In addition, this method is simple and effective, without relying on many annotated 
datasets, and a complete 3D dental model with high accuracy and stability can be constructed, which will benefit computer-aided 
dental treatment. 
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