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Background: 5-Methylcytidine (m5C) is themost commonRNAmodification and plays an
important role in multiple tumors including cervical cancer (CC). We aimed to develop a
novel gene signature by identifying m5C modification subtypes of CC to better predict the
prognosis of patients.

Methods: We obtained the expression of 13 m5C regulatory factors from The Cancer
Genome Atlas (TCGA all set, 257 patients) to determine m5Cmodification subtypes by the
“nonnegative matrix factorization” (NMF). Then the “limma” package was used to identify
differentially expressed genes (DEGs) between different subtypes. According to these
DEGs, we performedCox regression and Kaplan-Meier (KM) survival analysis to establish a
novel gene signature in TCGA training set (128 patients). We also verified the risk prediction
effect of gene signature in TCGA test set (129 patients), TCGA all set (257 patients) and
GSE44001 (300 patients). Furthermore, a nomogram including this gene signature and
clinicopathological parameters was established to predict the individual survival rate.
Finally, the expression and function of these signature genes were explored by qRT-
PCR, immunohistochemistry (IHC) and proliferation, colony formation, migration and
invasion assays.

Results: Based on consistent clustering of 13 m5C-modified genes, CC was divided into
two subtypes (C1 and C2) and the C1 subtype had a worse prognosis. The 4-gene
signature comprising FNDC3A, VEGFA, OPN3 and CPE was constructed. In TCGA
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training set and three validation sets, we found the prognosis of patients in the low-risk
group was much better than that in the high-risk group. A nomogram incorporating the
gene signature and T stage was constructed, and the calibration plot suggested that it
could accurately predict the survival rate. The expression levels of FNDC3A, VEGFA, OPN3
and CPE were all high in cervical cancer tissues. Downregulation of FNDC3A, VEGFA or
CPE expression suppressed the proliferation, migration and invasion of SiHa cells.

Conclusions: Two m5C modification subtypes of CC were identified and then a 4-gene
signature was established, which provide new feasible methods for clinical risk
assessment and targeted therapies for CC.

Keywords: cervical cancer, m5C modification, signature, prognosis, TCGA

INTRODUCTION

It is estimated that 310,000 people die of CC every year worldwide,
CC is fourthmost common cause of cancer-related death in women
and constitutes a major public health problem (Bray et al., 2018;
Arbyn et al., 2020). Every 2 min, one woman dies of CC (Knaul
et al., 2019). Human papillomavirus (HPV) infection is a major risk
factor for CC, with approximately 90% of cases occurring in low-
income and middle-income countries lacking organized screening
andHPV vaccination programs (Lagheden et al., 2018; Cohen et al.,
2019). For underdeveloped countries, the scarcity of resources and
infrastructure limits disease prevention and treatment plans, even
no prevention and treatment options are available in some areas.
Patients with CC often have social difficulties, constipation,
diarrhea, severe lymphedema, menopausal symptoms and major
financial problems (Cohen et al., 2019). So it is necessary to
improve the diagnosis and treatment methods which need to
show cost-effective patient-centered improvements compared
with the current strategies (Seol et al., 2014). At present, the
conventional treatment of CC includes radiotherapy,
chemotherapy and surgery. However, patients with advanced-
stage disease are prone to resistance to radiotherapy and
chemotherapy. Although immunotherapy is becoming an
effective adjuvant therapy, most therapeutic vaccines are still in
the early experimental stage (Alldredge and Tewari, 2016).
Therefore, it is urgent to determine new prognostic indicators
and treatment options to improve the survival rate of patients
with CC.

In recent years, the epigenetic modification of RNA has become
a focus of research; the dynamic regulation and disturbance of
these RNA modifications are also significantly related to the
occurrence, maintenance and progression of tumors (Han et al.,
2020). RNA contains several dynamicmodifications, includingN6-
methyladenosine, 5-methylcytosine and N7-methylguanosine
(Schumann et al., 2020; Song et al., 2020; Tang et al., 2021).
m5C existing in mRNAs, tRNAs, rRNAs and ncRNAs, is
involved in RNA stability and translation efficiency (Squires
et al., 2012). Currently, 13 regulatory factors are involved in the
process of m5C methylation. The dynamic modification of m5C is
regulated by writers (methyltransferase), readers (binding protein),
and erasers (demethylase) (Chen et al., 2019). “Writer” complexes,
including NOP2, NSUN2, NSUN3, NSUN4, NSUN5, NSUN6,

NSUN7, DNMT1, DNMT3A, DNMT3B and TRDMT1, increase
methylation at the RNA C5 site (Bohnsack et al., 2019). “Reader”
protein ALYREF could recognize and bind to methylated RNA,
and “Eraser” protein TET2 could change the modification of m5C
by demethylation (Yang et al., 2017). However, the function and
molecular mechanism of m5C-related regulators in CC remain
unknown.

In this study, we classified CC subtypes according to these 13
currently reported m5C regulatory factors, further explored
DEGs in different CC subtypes, and finally identified a 4-gene
signature that could predict the prognosis of CC patients.

MATERIALS AND METHODS

Data Download and Preprocessing
Patients with no survival time available and follow-up time of less
than 1 month or more than 120 months were excluded, then
mRNA data and clinical information of 257 CC patients were
downloaded from the TCGA database. The clinical statistical
information of the TCGA all set is shown in Additional file 1:
Supplementary Table S1. Another dataset GSE44001 consisting
of 300 CC patient with associated prognostic information was
obtained from the Gene Expression Omnibus (GEO) database.

Determination of m5CModification Subtype
First, we extracted 13 m5C regulatory factors from the TCGA
expression matrix. Based on consistent clustering of these 13
genes, 257 CC samples were clustered by the “NMF” method,
which was used to select the standard “brunet” option for 50
iterations. The number of clusters k was set at 2 to 10 and the
average contour width of the common member matrix was
determined by the “NMF” package. The minimum member of
each subclass was set to 10. According to cophenetic, rss and
silhouette, the optimal number of clusters was determined. KM
analysis was used to analyze the difference in prognosis between
different subtypes of the patients using the “survival” package and
heatmaps were drawn using the “pheatmap” package.

Assessment of Immune Infiltration
In order to identify the immune infiltration differences between
different m5C modification subtypes, we used “MCPcounter”
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package to evaluate the score of 10 immune cells and the score of
28 immune cells were evaluated by the “single sample Gene set
enrichment analysis (ssGSEA)”method in the “gene set variation
analysis (GSVA)" package (Charoentong et al., 2017). Besides, we
analyzed the mRNA level differences of 13 m5c-related genes
between different subtypes.

Identification and GO/KEGG Annotation of
m5c Subtype-Related Differentially
Expressed Genes
The “limma” package was used to calculate the DEGs between
different m5C modification subtypes, and the filter was applied
according to the thresholds FDR <0.05 and |log2FC| > log2 (1.5).
Furthermore, 601 upregulated DEGs and 113 downregulated
DEGs were analyzed by the “WebGestalt” package for Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) annotation.

Construction of a Novel Gene Signature
Based on m5c Subtype-Related DEGs
Under the premise there is no preference in the distribution of
clinical characteristics of the grouped samples, a total of 257
patients in TCGA all set were randomly divided into training set
(n � 128) and test set (n � 129). The TCGA training set and
TCGA test set were evaluated by Chi-square test, the sample
information is shown in Additional file 1: Supplementary Table
S2. In addition, we also used the TCGA all set (n � 257) and
GSE44001 set (n � 300) as validation set for subsequent
verification. In the training set, a univariate Cox regression
analysis was conducted by the “survival coxph function”
package using the 714 DEGs and survival data, p < 0.01 was
selected as the threshold for filtering. Next, we used the “glmnet”
package for the least absolute shrinkage and selection operator
(LASSO) regression to further compress the screened genes to
reduce the number of genes, and finally a novel gene signature
was established. LASSO retains the advantages of subset
shrinkage, and is a biased estimate for processing data with
multicollinearity. Based on the LASSO regression results, we
developed a prognostic risk score formula, which was
calculated as follows:

Risk score (patient) � Σi Coefficient(mRNAi)
× Expression (mRNAi)

Validation of the Gene Signature
We calculated the risk score of each sample depending on the
signature gene and drew the risk score distribution of the sample
in the TCGA training set. Furthermore, we used the “timeROC”
package to perform receiver operating characteristic (ROC)
analysis to explore the prediction accuracy of 1 year, 3 years
and 5 years survival rates. Finally, we calculated the risk score
and divided the samples with risk score greater than zero into the
high-risk group and samples with risk score less than zero into the
low-risk group to draw KM curves. To determine the robustness

of the signature, we used the same coefficient to perform the same
analysis used for the TCGA test set, TCGA all set and external
validation data set GSE44001.

Gene Set Variation Analysis
We selected the corresponding gene expression profiles of these
samples for ssGSEA via the “GSVA” R package to observe the
relationship between the risk score and the KEGG pathway. We
calculated the score of each sample in different KEGG pathway
and obtained the ssGSEA score of each sample. Next, we
calculated the correlation between these pathways and the risk
score and selected pathways with a correlation greater than 0.4.
Finally, the top 18 KEGG pathways were selected and clustered
according to their enrichment score.

Univariate and Multivariate Cox Analysis of
the Signature and Construction of a
Nomogram
To identify the independence of the gene signature in clinical
parameters, we used univariate and multivariate Cox regression
to analyze the hazard ratio (HR), 95% confidence interval (CI) of
HR and p value in the TCGA all set. We systematically analyzed
the clinical information of TCGA patient records, including age,
T stage, N stage, FIGO stage, grade, chemotherapy and risk score.
According to the results of univariate and multivariate Cox
analyses, we constructed a nomogram with the T stage and
risk score for predicting survival outcomes (1 year, 3 years and
5 years). Then we performed the calibration curve by the “rms”
package to determine the consistency between the actual survival
rates and the nomogram-predicted rates. In order to evaluate the
reliability of the nomogram, we performed DCA (decision curve
analysis) using the “rmda” package. DCA analysis is a method
that can assess whether the nomogram improves clinical
decision-making. This method can tell us whether it is
beneficial to use the model to make clinical decisions, or
which of the two models will lead to better decisions.

Tissue Specimens
Fresh adjacent normal tissues and CC tissues were obtained from
the Chinese Academy of Medical Sciences and the CAMS &
PUMC Medical College. All patients were not treated
preoperatively and signed informed consent forms provided by
the Cancer Hospital, CAMS & PUMC. The normal surgical
margin tissue and the morphology of the primary tumor area
were immediately excised from each patient by an experienced
pathologist and stored in liquid nitrogen. The study was approved
by the Ethics Committee of the Cancer Institute (Hospital),
CAMS & PUMC (20/207–2,403).

Cell Culture and Transfection
The human CC cell line SiHa was provided by the Cell Resource
Center, IBMS, CAMS/PUMC. The cell lines were cultured in
DMEM medium supplemented with 10% fetal bovine serum
(Invitrogen, San Diego, CA) at 37 °C and 5% CO2 in a
humidified incubator. Human specific siRNA sequences are
shown in Additional file 1: Supplementary Table S3. The
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transfection method was described in our previous article (Cao
et al., 2018).

Real-Time Quantitative Polymerase Chain
Reaction
Total RNA was extracted using RNApure Tissue & Cell Kit
(Cwbiotech, Beijing, China). Isolated RNA was used as a
template for reverse transcription reactions using HiFiScript
cDNA Synthesis Kit (Cwbiotech, Beijing, China). Real-time
quantitative PCR analysis was performed using SYBR® Fast
qPCR Mix (TaKaRa, Shiga, Japan) and a CFX96 Real-Time
System (Bio-Rad, California, United States of America). The
primer sequences are shown in Additional file 1:
Supplementary Table S4. GAPDH served as the internal
control.

Western Blotting and
Immunohistochemistry Analysis
Western blotting and IHC analysis were performed as described
previously (Cao et al., 2018). The antibodies used were as follows:
anti-FNDC3A antibody (Abcam, Cambridge, United Kingdom),
anti-VEGFA antibody (Proteintech, Wuhan, China), anti-OPN3
antibody (Affinity Biosciences, Cincinnati, United States), and
anti-CPE antibody (Proteintech, Wuhan, China). The IHC
quantization analysis was calculated by ImageJ software and
statistically analyzed in three random fields. Data are shown as
mean ± SEM.

Cell Viability Assays
Cells were inoculated into 96-well plates at a concentration of
2000 cells per well. According to the manufacturer’s directions,
cell viability was determined by the Cell Counting Kit-8 (CCK-8,
Dojindo, Japan). The absorbance was measured at 450 nm by an
automatic microplate reader (BioTek, Winooski, United States).
Measurements were taken every 24 h for seven consecutive days.

Colony Formation Assay
SiHa cells treated with siRNA were plated in 6-well plates at a
density of 500 cells per well. After overnight incubation, the cells
were cultured for 14 days to form colonies, fixed with methanol
and stained with crystal violet. The data represent the mean ± SD
of three independent experiments.

Cell Migration and Invasion Assays
700 μL DMEM medium supplemented with 20% serum was
added to the lower chamber of the Transwell plates, and
1×105 suspended cells were added to the upper compartment.
For the invasion experiment, 50 μL Matrigel was added to the
membrane of the upper chamber. The Transwell plates were
incubated in a carbon dioxide incubator for 16 h in the migration
experiment and for 24 h in the invasion experiment. Then, we
removed the chamber, washed the cells once with PBS, fixed the
cells with solution (methanol: acetone � 1:1) for 30 min, and then
stained them with 0.5% crystal violet for 30 min. The chamber
was washed with PBS, and then the upper cells were carefully

removed, sealed with neutral gum and photographed for
counting.

Statistical Analysis
R software 3.5.3 and SPSS 22.0 software (SPSS Inc. Chicago,
United States) were used for all statistical analyses. p < 0.05 was
taken as the probability value to establish statistical significance.
Chi-square test was used for statistics of multiple categories,
Student’s t-test was used to determine the significance of
differences between two groups, and ANOVA was used for
comparisons among more than two groups.

RESULTS

Determination of m5CModification Subtype
To clearly illustrate the process of our research, a flow chart is
shown in Figure 1.

We extracted mRNA levels of 13 m5C regulatory factors from
the expression matrix of the TCGA. Then, 257 CC samples were
clustered by “NMF” package. The optimal number of clusters was
determined according to cophenetic, rss and silhouette analyses,
the optimal number of clusters was 2 (Figures 2A,B). The
expression levels of m5C methylation-related genes in the C1
and C2 subtypes were significantly different (Figure 2C). The KM
curve revealed that overall survival (OS) rates of the C1 and C2
subtypes were significantly different (p < 0.05), and the prognosis
of the C1 group was worse than that of the C2 group (Figure 2D).

Immune Infiltration Analysis of m5C
Modification Subtype
Due to the significant difference in the prognosis of CC patients
with two m5C modification subtypes, we next explored the
difference in immune cell infiltration between C1 and C2
subtypes. The ssGSEA score suggested that levels of activated
CD8 T cells, central memory CD4 T cells, CD56 bright natural
killer cells, macrophages, MDSCs and neutrophils were markedly
different between two subtypes, and the MCPcounter score
indicated that the infiltration levels of CD8 T cells, NK cells,
neutrophils, endothelial cells and fibroblasts were significantly
different (Figures 3A,B). Furthermore, we also analyzed the
expression of 13 genes between two subtypes. The expression
of eight genes in C1 and C2 subtypes was substantially different;
but no difference was found in NOP2, NSUN4, NSUN7,
TRDMT1 and DNMT3A expression (Figure 3C). The above
results indicated that there are significant differences in the
immune infiltration of C1 and C2 subtypes, while the
expression of most m5C regulatory factors in the two is also
different.

Screening DEGs Between m5C Subtypes
and Functional Analysis
DEGs between C1 and C2 subtypes consisted of 601 upregulated
and 113 downregulated genes. The volcanic map of representative
DEGs is represented in Figure 4A. Detailed information about
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these DEGs is represented in Additional file 2: Supplementary
Table S5. We selected 50 genes with the most prominent changes
in expression (upregulated and downregulated), as shown in the
heat map (Figure 4B).

Next, 601 upregulated DEGs were analyzed by GO function
and KEGG pathway enrichment annotation. For the GO
function analysis of the upregulated DEGs, 493 gene
ontologies were annotated to biological process, 88 to cellular
component and 81 to molecular function with significant
differences (p < 0.05). The top 10 annotations are shown in
Figures 4C–E. For the KEGG pathway enrichment analysis of
upregulated DEGs, the top 10 KEGG pathways annotated are
shown in Figure 4F, including adherens junction, ECM-
receptor interaction, amoebiasis, focal adhesion, human
papillomavirus infection, PI3K-Akt signaling pathway, and
pathways in cancer. More detailed information can be found
in Additional file 3: Supplementary Table S6. For CC
downregulated DEGs, the results of GO function and KEGG

pathway enrichment analysis are shown in Additional file 4:
Supplementary Table S7.

Construction and Evaluation of the Gene
Signature in the TCGA Training Set
First, 257 samples in the TCGA-CC dataset were divided into a
training set and a test set. The training set consisted of 128
samples, and the test set consisted of 129 samples. The statistical
results showed that our groups had no preference, and there was
no significant difference between the training set and the test set
(Additional file 1: Supplementary Table S2).

Using the training set data, a univariate Cox proportional
hazards regression analysis was conducted by the “survival coxph
function” package for DEGs (714 genes) and the survival data,
and p < 0.01 was selected as the threshold for filtering. Finally, 27
genes were selected, and the univariate Cox analysis results are
shown in Figure 5A. Next, we used LASSO regression to further

FIGURE 1 | Flow chart for the research.
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compress these 27 genes to reduce the number of genes in the risk
signature. We performed 10-fold cross validation to construct the
model and analyzed the confidence intervals under each lambda,
as shown in Figure 5B. We selected the following four final genes
with lambda � 0.09,009,939: FNDC3A, VEGFA, OPN3 and CPE.

The KM curves all showed that a higher mRNA level of those
four genes indicated worse prognosis in the TCGA training set
(Additional file 5: Supplementary Figure S1, p < 0.05). The final
4-gene signature formula was as follows:

Risk score � 0.3,250,335*FNDC3A (mRNA level)＋
0.2,821,988*VEGFA (mRNA level)＋0.3,133,706*OPN3(mRNA
level)＋0.1,857,458*CPE (mRNA level).

We calculated the risk score of each sample according to
the mRNA level of the signature gene in the training set, and
the proportion of deaths in the high-risk group was
significantly higher than in the low-risk group. This
demonstrated that the risk score is a critical prognostic
factor. Consequently, with the increase in risk score, the

FIGURE 2 | Determination of m5C modification subtype. (A) Consensus map for NMF clustering. (B) The cophenetic, rss and silhouette distribution when the
number of clusters k was set as 2 to 10. The cophenetic correlation is used to reflect the stability of cluster obtained from NMF, we select k value where the magnitude of
the cophenetic correlation coefficient begins to fall. The “rss” refers to residual sum of squares, a smaller value represents the effect of model clustering. Silhouette is used
to study the distance between clusters of clustering results, When the silhouette value is closer to 1, the clustering is more reasonable. According to cophenetic, rss
and silhouette, the optimal number of clusters was two under comprehensive consideration. (C) m5c methylation-related gene cluster maps. (D) KM survival curves of
m5C modification subtypes. Time: years.
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mRNA levels of FNDC3A, VEGFA, OPN3 and CPE were
upregulated (Figure 5C). To investigate the diagnostic
accuracy of the risk signature, the AUC of the time-
dependent receiver operating characteristic (ROC) curves
was computed. The AUC values of the signature for
predicting 1 year, 3 years and 5 years survival rates were
0.74, 0.76 and 0.80 (Figure 5D). The KM curve suggested that

patients with higher risk score had worse prognosis than those
with lower risk score (Figure 5E, p < 0.001).

Validation of the 4-Gene Signature
To determine the robustness of the model, we used the TCGA test
set (n � 129) with the same model and coefficient as the training
set to calculate the risk score of each sample and drew the risk

FIGURE 3 | Immune infiltration analysis of the m5C modification subtype. (A) Comparison of ssGSEA immune score between C1 and C2 subtypes in the TCGA all
set. (B) Comparison of MCPcounter immune score between two subtypes in the TCGA all set. (C) Expression differences of 13 genes related to m5C modification
between two subtypes.
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FIGURE 4 | Screening DEGs between m5C subtypes and functional analysis. (A) Volcano map of DEGs between the C1 and C2 subtypes. (B) Heat map of DEGs
between the C1 and C2 subtypes. (C–E) The results of GO enrichment analysis of the upregulated DEGs are shown by bubble chart: (C) biological processes, (D) cell
composition and (E) molecular function. (F) KEGG enrichment analysis of upregulated DEGs.
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FIGURE 5 | Construction and evaluation of the gene signature in the TCGA training set. (A) 27 DEGs were identified by univariate Cox analysis. (B) LASSO Cox
regression. (C) Risk score distribution in the TCGA training set. (D) ROC curves were used to assess the efficiency of the risk signature for predicting 1 year, 3 years and
5 years survival rates in the TCGA training set. (E) The KM survival curves of the low-risk group and the high-risk group in the TCGA training set. Time: years.
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FIGURE 6 | Validation of the gene signature in the TCGA all set and the GSE44001 external validation set. (A) Risk score distribution in the TCGA all set. (B) ROC
curves were used to assess the efficiency of the gene signature for predicting 1 year, 3 years and 5 years survival rates in the TCGA all set. (C) The KM survival curves of
the low-risk group and the high-risk group in the TCGA all set. (D) Risk score distribution in the validation set GSE44001, the survival time of validation set GSE44001 is
progression free survival (PFS) time. (E)ROC curves were used to assess the efficiency of the gene signature for predicting 1 year, 3 years and 5 years survival rates
in the validation set GSE44001. (F) The KM survival curves of the low-risk group and the high-risk group in the validation set GSE44001. Time: years.
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score distribution of the patients. Then, we performed ROC
analysis on the prognostic classification of the risk score and
analyzed the classification efficiency of 1 year, 3 years and 5 years
survival rates. Finally, we divided the samples with risk score into
high-risk group (n � 65) and low-risk group (n � 64) to perform
the KM survival analysis. Importantly, the results of the above
analysis were consistent with the performance of the TCGA
training set (Additional file 6: Supplementary Figure S2).

In addition, we determined the robustness of the signature
in the TCGA all set (Figures 6A–C) and the external
validation dataset GSE44001 (Figures 6D,E). The
proportion of deaths in the high-risk group was
significantly higher than in the low-risk group, which was
consistent with the performance of the TCGA training set.
The AUC values of the signature showed that the risk score
was a good prognostic factor. Finally, the KM curve also

FIGURE 7 | Assessment of the OS rate of the high-risk and low-risk groups based on different clinical subgroups. (A) Age>60 subgroup. (B) Age≤60 subgroup. (C)
T1+T2 stage subgroup. (D) T3+T4 Stage subgroup. (E) N0 Stage subgroup. (F) N1 Stage subgroup. (G) M0 Stage subgroup. (H) M1 Stage subgroup. (I)Ⅰ+Ⅱ Stage
subgroup. (J)Ⅲ+Ⅳ Stage subgroup. (K) G1+G2 subgroup. (L) G3+G4 subgroup. (M) Recurrence_ Yes subgroup. (N) Recurrence_No subgroup. (O) Chemotherapy
_Yes subgroup. (P) Chemotherapy_No subgroup. Time: days.
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FIGURE 8 | The relationship between risk score and KEGG pathways. (A) Correlation coefficient clustering between KEGG pathways and risk score with a risk
score correlation greater than 0.4. (B) GSVA revealed KEGG pathways associated with the risk score. The horizontal axis represents the sample, and the risk score
increases from left to right.
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FIGURE 9 | Construction and evaluation of a nomogram. (A) Univariate Cox regression analysis of clinical characteristics and risk score. (B) Multivariate Cox
analysis of clinical characteristics and risk score. (C) A nomogram for predicting the 1 year, 3 years and 5 years survival rates of CC patients was established. (D) 1 year, 3
years, and 5 years survival rate calibration curves of the line chart. (E) The DCA of the nomogram.
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showed that there were consistent differences between the
high-risk and low-risk groups.

Assessment of the OS Rate of the High-Risk
and Low-Risk Groups Based on Different
Clinical Subgroups
Furthermore, we performed KM survival analysis according to
age, grade, stage, recurrence and chemotherapy treatment in the
TCGA all set. For the patients in age < � 60, T1+T2 Stage, T3+T4
Stage, N0 Stage, N1 Stage, M0 Stage,Ⅰ+Ⅱ Stage, Ⅲ+Ⅳ Stage,
G1+G2, G3+G4, Recurrence _ No and Chemotherapy _ Yes
subgroup, the OS interval of patients in the high-risk group was
significantly shorter than that of patients in the low-risk group
(p < 0.05). Only in the age >60, M1, Recurrence _ Yes or
Chemotherapy _ No subgroup was the OS interval of patients
not different between the high- and low-risk groups (p > 0.05).
The above findings further showed that the risk signature still has
good predictive ability among different clinical subgroups
(Figure 7).

The Relationship Between Risk Score and
KEGG Pathway
To observe the relationship between risk score and the KEGG
pathway, we selected the gene expression profiles corresponding to
these samples for ssGSEA using the “GSVA” R package. The score
of each sample in different KEGG pathway were calculated, and the
ssGSEA score of each KEGG pathway corresponding to each
sample were obtained. The correlation between these pathways
and risk score was further calculated, and the function with
correlation greater than 0.4 was selected (Figure 8A). Fifteen
pathways were positively correlated with the risk score, and
three pathways were negatively correlated with the risk score.
The top 18 KEGG pathways were selected and clustered
according to their enrichment score, as shown in Figure 8B.
We can find that KEGG_MTOR_SIGNALING_PATHWAY,
KEGG_ECM_RECEPTOR_INTERACTION, KEGG_FOCAL_
ADHESION, KEGG _TGF_BETA_SIGNALING_PATHWAY,
KEGG_ADHERENS_JUNCTION, KEGG_ PATHWAYS_IN_
CANCER and other tumor-related pathways were activated
with increasing risk score.

Construction and Evaluation of a
Nomogram
To identify the independence of the 4-gene signature in clinical
parameters, we used univariate and multivariate Cox regression
to analyze the related HR, 95%CI of HR and p value in the clinical
information of the TCGA all set. The clinical data of patients were
analyzed systematically, including age, T stage, N stage, FIGO
stage, grade, chemotherapy and risk score (Figures 9A,B). In the
TCGA all set, the risk score was an independent prognostic factor.
Therefore, the 4-gene signature has good predictive performance
and clinical application value.

According to the results of univariate and multivariate Cox
regression analyses, we constructed a nomogram with clinical

features, T stage and risk score (Figure 9C). We found that the
risk score had the greatest impact on survival prediction, indicating
that the risk score is indispensable in the nomogram. Furthermore,
we used the calibration curve to evaluate the prediction accuracy of
the signature, as shown in Figure 9D. The prediction calibration
curves of the three calibration points for 1 year, 3 years and 5 years
survival rates were close to the standard curves, indicating that the
signature had good prediction performance. In addition, DCA
showed that the benefits of the risk score and nomogram were
significantly higher than those of the extreme curves. The
nomogram curve was higher than that of the risk score, which
indicated that the nomogram had good reliability (Figure 9E).

Signature Gene Expression Was
Upregulated in Cervical Cancer
In order to explore the difference in protein expression of
signature genes, we used IHC to detect 6 normal and 21
tumor tissues. The IHC quantization analysis was calculated
by ImageJ software and statistically analyzed in three random
fields. The results showed that the protein expression levels of the
four signature genes in tumor were higher than those in normal
(Figure 10A). At the same time, we conducted qRT-PCR
experiments in 10 normal and 12 tumor tissues to explore the
differences in the transcription level of those four genes. It
showed that the mRNA levels of the four model genes were
significantly increased in tumor tissues, indicating that the
expression of model genes in tumor tissues may be
abnormally activated (Figure 10B).

FNDC3A, VEGFA or CPE Promoted the
Proliferation, Invasion andMigration of SiHa
Cells
To clarify the functional role of FNDC3A, VEGFA, OPN3 and
CPE in CC cells, we applied human-specific siRNA to decrease
their protein expression (Figure 11A). The CCK-8 assay was
applied to detect cell proliferation. The downregulation of
FNDC3A, VEGFA or CPE expression significantly suppressed
the proliferation (Figure 11B) and colony formation capacity of
SiHa cells (Figure 11C). Transwell assays were applied to detect
the invasion and migration ability of SiHa cells in vitro, and the
number of cells that passed through the polycarbonate membrane
was smaller in the FNDC3A, VEGFA or CPE siRNA group than
in the negative control group, indicating that FNDC3A, VEGFA
or CPE could significantly promote the invasion and migration of
SiHa cells (Figure 11D). Downregulation of OPN3 expression
had no significant effect on the proliferation, colony formation
ability, invasion and migration of SiHa cells.

DISCUSSION

m5C is common methylation modification in eukaryotic RNA,
which can promote the regulation of nuclear mRNA through the
methyltransferase NSUN2 and the binding protein ALYREF and
participates in the splicing and protein translation process of
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several mRNAs (Yang et al., 2017). It was reported that m5C
methylation of the 3′-UTR contributes to an increase in mRNA
stability (Zhang et al., 2012); tRNA occurs most frequently on
cytosine of the variable arm and C38 of the anticodon ring (Agris,
2008; Trixl and Lusser, 2019), which can maintain the thermal
stability of the tRNA secondary structure and improve the
recognition ability of codons. Besides, the rRNA of all
organisms is modified by m5C, methylation sites of human
and yeast 28S rRNA, M5C2870 and M5C2278, are critical for
protein translation (Sharma and Lafontaine, 2015). In addition,
modification of m5C can also be detected in noncoding RNAs,
such as lncRNAs, erRNAs, and vtRNAs (Amort et al., 2013;
David et al., 2017).

m5C modification plays an important role in the development
of tumors, such as that of NSUN family proteins (RNA m5C
methyltransferase). Compared with normal human tissues and
cells, the expression of NSUN2 is increased in a variety of tumor
tissues, and NSUN2 is considered to be an effective prognostic
marker for some cancers, such as squamous cell carcinomas and
colon carcinomas (Frye and Watt, 2006). In breast cancer cells,
NSUN6 can form a complex with the proteins LLGL2 and

lncRNA Maya, which inactivates the kinase Hippo/MST1
through methylation of Hippo/MST1, resulting in promotion
of tumor metastasis (Li et al., 2017). However, the role and
mechanism of m5C RNA modification in the prognosis of CC
have not been studied.

We hypothesized that m5C RNA modification-related genes
have broad prospects in the prognostic evaluation of CC. First, we
extracted the mRNA levels of 13 m5C regulatory factors from the
TCGA expression matrix for clustering and obtained two
subtypes of CC, C1 and C2. Next, we identified the differences
in the immune infiltration levels between the two molecular
subtypes. We screened DEGs between the C1 and C2 subtypes
and obtained 601 upregulated genes and 113 downregulated
genes. Next, we divided the TCGA all set (257 samples) into a
training set and a test set. In the TCGA training set, we used
univariate Cox regression and LASSO regression analysis to
establish a 4-gene signature comprising FNDC3A, VEGFA,
OPN3 and CPE. Then, we conducted risk distribution
analysis, ROC, curve analysis and survival analysis in the
TCGA training set, the TCGA test set, the TCGA all set and
the GSE44001 data set to verify our signature. Furthermore, we

FIGURE 10 | Signature gene expression was upregulated in CC. (A) IHC analysis of FNDC3A, VEGFA, OPN3 and CPE protein levels in tumor and normal tissues.
Scale bar � 50 μm ***p < 0.001. (B) qRT-PCR analysis of FNDC3A, VEGFA, OPN3 and CPE mRNA levels in tumor and normal tissues. *, p < 0.05. **, p < 0.01. ***, p <
0.001.
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FIGURE 11 | FNDC3A, VEGFA or CPE promoted the proliferation, invasion and migration of SiHa cells. (A)Western blotting analysis of FNDC3A, VEGFA, OPN3 or
CPE expression in SiHa cells transfected with their siRNA. (B) Cell proliferation abilities were detected by CCK-8. (C) Colony number were detected. (D) Cell migration
and invasion abilities were evaluated by Transwell assay. NC: Negative Control. **, p < 0.01; ***, p < 0.001.
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found that in most clinical feature subgroups, the OS interval of
patients in the high-risk group was significantly shorter than that
of patients in the low-risk group (p < 0.05). In addition, we proved
that the risk score was an independent risk factor and constructed
an effective nomogram to predict the 1 year, 3 years and 5 years
survival rates of CC patients.

To explore the function of signature genes and their
prognostic correlation in CC patients, we carried out qRT-
PCR and IHC experiments and found that the mRNA levels
and protein expression of those genes were all higher in
cervical cancer tissues than in normal tissues. In addition,
downregulation of FNDC3A, VEGFA or CPE expression
suppressed the proliferation, migration and invasion of
SiHa cells in vitro. KM survival analysis showed that high
expression of the four hub genes was a risk factor for CC
patients. FNDC3A can be used as a prognostic marker for
colorectal cancer and is highly expressed in colon cancer
tissues, and high expression of FNDC3A increases the
mortality rate of colon cancer patients (Meyer et al., 2012;
Wuensch et al., 2019). In multiple myeloma, high expression
of FNDC3A can lead to ROS accumulation, ATP deficiency
and cell death in multiple myeloma cells. VEGFA can be used
as a prognostic biomarker for head and neck squamous cell
carcinoma, esophageal squamous cell carcinoma,
glioblastoma and papillary thyroid carcinoma (He et al.,
2020; Stuchi et al., 2020; Yang et al., 2020; Zheng and Tao,
2020). Downregulation of VEGFA expression can inhibit the
proliferation, angiogenesis and metastasis of osteosarcoma
cells, ovarian cancer and lung squamous cell carcinoma
(Chen et al., 2020a; Chen et al., 2020b; Li et al., 2020; Qin
et al., 2020). Upregulation of VEGFA expression can promote
the proliferation, angiogenesis and metastasis of gastric
cancer cells and breast cancer cells (Chen et al., 2020a;
Wang et al., 2020). OPN3 can be used as a prognostic
biomarker for lung adenocarcinoma. With the increase in
OPN3 expression, the mortality rate of lung adenocarcinoma
patients increases, and the survival time decreases (Wang
et al., 2019). It has been reported that the OPN3 gene
enhances the metastasis of lung adenocarcinoma, and its
overexpression promotes epithelial-mesenchymal transition
(Xu et al., 2020). In lung carcinoids, patients with high OPN3
expression are more likely to experience relapse and
metastasis (Miyanaga et al., 2020). In addition, OPN3 can
also sensitize liver cancer cells to 5-fluorouracil treatment by
regulating the apoptosis pathway (Jiao et al., 2012). In a
recent study, CPE was used to predict recurrence of early
lung adenocarcinoma (Jones et al., 2021). In addition, CPE
expression was upregulated in patients with extranasal nodal
natural killer cell/T cell lymphoma (NKTCL) after cytarabine
chemotherapy and could be used as a chemotherapy index for
NKTCL patients (Gong et al., 2018).

In summary, we developed a novel 4-gene signature based on
m5c modification, which had good AUC in the training set and
three validation sets. Based on the signature, we constructed an
effective nomogram to predict the 1 year, 3 years and 5 years
survival rates of CC patients. We suggested using this classifier
as a molecular diagnostic test to evaluate the prognostic risk of

CC patients. Furthermore, we found that three of the signature
genes (FNDC3A, VEGFA or CPE) function as oncogenes to
promote the proliferation, invasion and migration of cervical
cancer cells and could be potential therapeutic targets for CC.
The advantage of this study is that we identified a prognostic 4-
gene signature with a relatively high AUC in the training and
three validation datasets, which can accurately predict survival
rates. Then we explored the expression and function of the
signature genes to explore the potential of these genes as
therapeutic targets. The limitation of this study is that we
should further carry out animal experiments to verify the
function of model genes, in addition, the molecular
mechanisms of model genes regulating the progression of CC
still need to be further explored.
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