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Ozretić, P.; Yordanov, A.; et al. An

Overview of the Role of Long

Non-Coding RNAs in Human

Choriocarcinoma. Int. J. Mol. Sci.

2021, 22, 6506. https://doi.org/

10.3390/ijms22126506

Academic Editors: Damjan Glavač
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Abstract: Choriocarcinoma (CC), a subtype of trophoblastic disease, is a rare and highly aggressive
neoplasm. There are two main CC subtypes: gestational and non-gestational, (so called when
it develops as a component of a germ cell tumor or is related to a somatic mutation of a poorly
differentiated carcinoma), each with very diverse biological activity. A therapeutic approach is highly
effective in patients with early-stage CC. The advanced stage of the disease also has a good prognosis
with around 95% of patients cured following chemotherapy. However, advancements in diagnosis
and treatment are always needed to improve outcomes for patients with CC. Long non-coding (lnc)
RNAs are non-coding transcripts that are longer than 200 nucleotides. LncRNAs can act as oncogenes
or tumor suppressor genes. Deregulation of their expression has a key role in tumor development,
angiogenesis, differentiation, migration, apoptosis, and proliferation. Furthermore, detection of
cancer-associated lncRNAs in body fluids, such as blood, saliva, and urine of cancer patients, is
emerging as a novel method for cancer diagnosis. Although there is evidence for the potential role of
lncRNAs in a number of cancers of the female genital tract, their role in CC is poorly understood.
This review summarizes the current knowledge of lncRNAs in gestational CC and how this may be
applied to future therapeutic strategies in the treatment of this rare cancer.
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1. Introduction

Choriocarcinoma (CC), a subtype of trophoblastic disease [1], is a rare and highly
aggressive tumor with varied global incidence [2]. CC is histologically characterized by
an admixture of: syncytiotrophoblasts and mononucleated cytotrophoblastic cells. Two
significant CC subtypes, gestational and non-gestational (so called when it develops as a
component of a germ cell tumor or is related to a somatic mutation of a poorly differentiated
carcinoma) (Figure 1), have diverse underlying biologies and clinical outcomes (Table 1) [3].
The former can arise in the uterus and rarely in extrauterine sites following a hydatidiform
mole (50%), a miscarriage or induced abortion (25%), a normal pregnancy (22.5%), or
an ectopic pregnancy (2.5%) [2]. Non-gestational CCs have been shown to arise from
pluripotent germ cells in both male and female gonads, most commonly in the ovary
and retroperitoneum [3–5], or pelvis [6]. Pure CC is exceedingly rare, but focal areas of
CC are seen in approximately 12% of embryonal and teratocarcinomas [7]. Foci of CC
may be present in gestational mixed trophoblastic tumors and in non-gestational mixed
germ cell tumors. Rare cases of extrauterine carcinoma with trophoblastic cells represent
differentiation of pluripotent cells into malignant somatic cells [3].

Figure 1. Representative images of hematoxylin and eosin (H&E) staining in gestational (A,B) and non-gestational (C,D)
choriocarcinoma. Uterine curettage (A,B); (A) low power (40×; scale bar = 500 µm) with abundant decidualized en-
dometrium and blood and two large clusters of choriocarcinoma (*); (B) high power (400×; scale bar = 50 µm) shows
aggregates of large trophoblasts with marked atypia and prominent mitotic figures (arrow) covered by atypical syncy-
tiotrophoblasts. Invasive choriocarcinoma in the ovary (C,D). (C) Component of a germ cell tumor of the ovary with
large and atypical trophloblastic cells with hemorrhage and necrosis (low power 40×; scale bar = 500 µm) associated with
dysgerminoma (not present in the picture). (D) Markedly atypical synciotrophoblasts and cytotrophoblasts (high power
400×; scale bar = 50 µm).

As non-gestational CC has no specific genetic features but has a similar appearance
to gestational CC without any of its special characteristics, hence, we will only focus on
gestational CC, which has unique biological characteristics.
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Table 1. Summary of the features of choriocarcinoma—adapted from Cheung et al. [3].

Types Gestational Choriocarcinoma
Non-Gestational Choriocarcinoma

Germ Cell Tumor Somatic Carcinoma

Incidence Ranges from 1 in Europe to −9.2 in
Asia/40,000 pregnancies

Rare < 1% of all ovarian tumors—children,
young adults but rarely in older adults.

Midline tumors mostly in males
Rare ovarian carcinomas in adults

Origin
It may develop as a complication of

pregnancy, usually following a
complete mole

It arises from primordial germ cells
It arises from differentiation of

pluripotent cells into a
somatic carcinoma

Site Primarily uterus and also intraplacental;
rarely ovary and extrauterine sites

Gonads, midline: pineal gland,
mediastinum, retroperitonum

Lung, gastrointestinal tract, and other
organs, including very rare ovarian

carcinoma and uterine cases in
post-menopause

Histopathology

Mononuclear cytotrophoblast and
intermediate trophoblast and multinucleated
syncytiotrophoblast cells with marked atypia

and mitoses

Mainly in pure form with cyto- and
syncytiotrophoblast or with other

components of germ cell tumors (mixed
germ cell tumor)

Presence hCC-producing
multinucleated giant cells; transition

with co-existing somatic carcinoma of
the particular organ

Cytogenetic features Deletion of 7p12-7q11.2; amplification of
7q21-q31 and loss of 8p12-21 [3] Gain of 12p [3] Unknown

Biochemical features hCG in serum or urine (>10 × 103 mlU/mL) hCG in serum or urine hCG in serum or urine—variable

Molecular markers

Upregulation of TP53, CDKN1A, RB1, EGFR,
ERBB2, c-MYC, BCL2, NANOG, H19 [3,8];

Downregulation of NECC1, TIMP3,
DOC-2/hDab2, RASSF1A, CDKN2A, CDH1,

IGF2, OCT4, SOX2 [3,8];
Mutated genes: NLRP7, ARID1A, SMARCD1,

EP300 [9]

Upregulation of CGB5, CGA, NANOG,
STELLA, GDF3 [3] Upregulation of NANOG [3]

Treatment Chemotherapy Surgery is indicated. Chemotherapy of
different drug regimens is applied

Surgery is indicated. May respond to
chemotherapy but it may not be useful

Prognosis Good Poor Poor

To date, little is known regarding the underlying pathophysiology and oncogenesis in
this malignancy. Gestational CC is likely to arise as a result of aberrations of methylation
during development, rather than from DNA mutations, supporting the hypothesis that it
arises from normally transient early trophoblast cells [10]. At a molecular level, gestational
CC is also characterized by an overexpression of TP53, MDM2, and epidermal growth
factor receptor (EGFR), and downregulation of a number of genes, including NECC1, DOC-
2/hDab2, KRAS, CDH1, CDKN2A, HIC-1, and TIMP3 [8]. Other oncoproteins (BCL-2, c-FMS,
c-ERB-2, and c-MYC) exhibiting synergistic upregulation have also been implicated in the
pathogenesis of CC [8]. Moreover, elevated levels of human leucocyte antigen-G (HLA-G)
in CC may inactivate the local immune system, thus altering the tumor microenvironment
as well as promoting proliferative and metastatic capability of the tumor [8]. Jung et al.
detected driver mutations in gestational CC, most of which were chromatin remodeling
gene mutations (ARID1A, SMARCD1, and EP300) [9]. A heterozygous germline mutation
was also found in the NLRP7 gene, which has been studied extensively in relation to
gestational trophoblastic disease, with mutations of this gene having been reported in 50%
of complete hydatidiform moles with high risk of evolving to CC [11]. Moreover, NLRP7
has been shown to be involved in placental development by demonstrating its effects on
trophoblast proliferation, differentiation, migration, invasion, and apoptosis [12].

A therapeutic approach is highly effective in patients with early-stage CC, and the
advanced stage of the disease also has a good prognosis, with around 95% of patients
being cured with chemotherapy. However, advances in diagnosis and treatment are always
needed to improve outcomes for patients with CC [13].
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Although the vast majority of the human genome is transcribed, only 2% of all the
transcribed genes are protein-coding genes. There has been speculation over the role of non-
coding RNA (ncRNA), ranging from junk transcripts to master epigenetic regulators. Long
non-coding RNAs (lncRNAs) are a particular class of ncRNAs that have been increasingly
recognized as having a fundamental regulatory role in both health and disease [14–17].
LncRNA transcripts are involved in transcriptional regulation, subcellular localization,
and epigenetic remodeling. Dysregulated lncRNAs have been associated with cancer
through either up- or downregulation of specific lncRNAs occurring relative to the adjacent
normal tissue [18]. Therefore, these lncRNAs behave like oncogenes or tumor suppressor
genes. For instance, overexpression of the HOTAIR lncRNA correlates with cancers that are
more aggressive [19–25], whereas MEG3 lncRNA may act as a tumor suppressor and its
downregulation has been associated with the development of a variety of human cancer
involving the liver, breast, uterus, and ovary [26]. LncRNAs can also contribute to the
cellular fate programs in cancer stem cells, which are involved in tumorigenesis and
therapy resistance [27]. OCT4 is a stemness-related transcription factor, which regulates
the expression of both the lncRNAs NEAT1 and MALAT1 to promote the progress of lung
cancer [28]. Moreover, NEAT1 leads to stem-like phenotypes in NSCLC, TNBC, and GBM
cells [29–31]. The lncRNA B4GALT1-AS1 recruits the yes-associated protein (YAP) to the
nucleus, a potent oncogene related to several oncogenic programs, including stemness.
This enhances its transcriptional activity, thus further promoting stemness in colon cancer
cells [32,33]. Another example has been shown in glioma, where the lncRNA SNHG20
enhances stemness by activating the PI3K/Akt/mTOR signaling pathway [34].

Detection of lncRNAs associated with cancer in body fluids (i.e., blood, saliva, urine,
etc.) is a valuable method not only for more effective cancer diagnosis, but possibly also
for earlier detection of cancers and for use as therapeutic targets. Furthermore, using body
fluids to detect circulating lncRNAs is much less invasive when compared to collecting
biopsies [35].

Recently, Hosseini et al. published a comprehensive overview on the potential roles of
lncRNAs in several cancers of the female reproductive system [36]. However, their role in
CC is relatively poorly established. In this review, we summarize the current knowledge of
lncRNA function and how this may be applied to future therapeutic strategies, specifically
in the management of gestational CC.

2. Biological Characteristics of LncRNAs and Their Molecular Functions

LncRNAs are regulatory transcripts that are over 200 nucleotides long. These are
mainly transcribed by RNA polymerase II, typically by a 5′7-methylguanosine cap and a 3′

poly (A) tail similar to messenger RNAs [37]. Non-coding transcripts (>200 nucleotides)
which are generated from introns, exons, intergenic regions, telomeres, enhancers, or pro-
moters are considered as different classes of lncRNAs (Table 2) [38–42]. Characteristically,
lncRNAs are able to shuttle to numerous subcellular locations. There are very different
levels of accumulation in the nucleus of certain lncRNAs when compared to cytoplasmic
levels, while there is equal distribution for other lncRNAs [43]. LncRNAs are cell type
dependent and the precise number of lncRNAs generated from the human genome is
estimated to be very high (tens of thousands and up to more than one hundred thousand
transcripts) [44,45]. Although most of these transcripts have not been studied, there is evi-
dence that lncRNAs are able to regulate gene expression networks via the control of nuclear
architecture and transcription in the nucleus, as well as the modulation of mRNA stability,
together with translation and post-translational modifications in the cytoplasm [46]. This
occurs mainly using four functional modes of action (Table 3) [47–54].
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Table 2. Classification of lncRNAs.

Genomic Location Description Example

Intergenic transcripts originated from intergenic loci; that is, located
between two protein-coding genes XIST, NEAT1, PANDAR, BGLT3

Intronic transcripts originated from introns of protein-coding genes NDM29, IRAIN, EGOT

Sense
transcripts originated from the sense strand of
protein-coding genes, containing exons from

protein-coding genes
SNHG3, SRA, RUNXOR

Antisense transcripts originated from the antisense strand of
protein-coding genes SNHG6, HOXA-AS2, ZEB2-AS1

Enhancer
transcripts, found in both polyadenylated or

non-polyadenylated forms, bi-directionally expressed at
active enhancer regions of the genome

DLX6-AS1, Alpha-250/Alpha-280,
LUNAR1

Promoter transcripts derived from gene promoter regions in the
opposite direction to the paired coding RNA DBET, pancIl17d, HIF2PUT

Table 3. Molecular functions of lncRNAs.

Mechanism Type Mode of Function Examples Reference

Signal
Serves as a molecular signal to
reflect development or disease

status

XIST is typically transcribed by the inactive
X chromosome; can be used to indicate X

chromosome inactivation
[47,48]

Decoy

Sequestering regulatory factors
(transcription factors, chromatin

modifiers, miRNAs, etc.)
modulate transcription

PANDAR inhibits proptosis by directly
sequestering NF-YA. H19 acts as ceRNAs *

both for miR-17-5p in thyroid cancer and for
miR-152 in breast cancer

[49–51]

Guide
Essential for the proper

localization of proteins to their
site-specific reaction

MEG3 guides PRC2 and forms a complex
with DNA [52]

Scaffold
Provides platforms to assist in

the assembly of regulatory
complexes

HOTAIR interacts with polycomb repressive
complex 2 (PRC2) to recruit EZH2 to

promote H3K27 trimethylation or LSD1 to
demethylate H3K4me2

[53,54]

* ceRNAs: competing endogenous RNAs regulate other RNA transcripts by competing for shared miRNAs.

At the molecular level, the production of lncRNAs can act as a “signal” in response to
a significant biological event, such as DNA damage. LncRNA transcripts can also regulate
downstream functions that are related to other functional models. LncRNAs may also be-
have as a “decoy” through interaction with proteins and/or other RNA molecules, directly
interfering with protein/genomic DNA, protein–protein, or RNA–RNA interactions. The
decoy function of lncRNAs may sequester miRNA, preventing miRNA-mediated silencing
of target mRNA. This is known as the miRNA sponging effect by lncRNAs. In addition,
lncRNAs can serve as “guides” facilitating the recruitment of protein complexes to ge-
nomic loci. The lncRNA “scaffolds” act as the nucleation point, leading to the formation of
protein complexes, or else mediate interaction between the different protein complexes [55].
Additionally, lncRNAs are involved in cancer chemoresistance [56,57].

3. Dysregulated lncRNAs in Choriocarcinoma

LncRNAs are crucial molecules in different biological processes and play an integral
part in gene expression and its regulation. While there is still a lack of understanding
of the function of lncRNAs, there is evidence that they are involved in the initiation and
progression of a number of cancers [58,59]. LncRNAs, by acting as tumor suppressor genes
or oncogenes, play a critical physiological role in apoptosis, invasion, metastasis, and
cell proliferation in several cancers. LncRNAs are also involved in the pathogenesis of
cancers of the female reproductive system (ovarian, uterine, vaginal, cervical, and vulvar
cancers) [36]. However, to date, only a few studies address the role of lncRNA in CC.
Novel mechanistic insights into how gene expression is specifically regulated by lncRNAs,
contributing to CC formation, are outlined below. Table 4 summarizes the functions of the
main lncRNAs implicated in CC.
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Table 4. LncRNAs with a role in choriocarcinoma.

LncRNA Locus Role Molecular
Functions Target Pathway Sources

MALAT1 11q13.1 Oncogene Sponge of miR-218 Unknown Three CC cell lines, JEG-3, JAR, and BeWo cells, and a
normal cell line human trophoblast cells (HT cells) [60]

H19 11p15.5 Oncogene Unknown PI3K/AKT/mTOR [61]
Placenta, androgenetic moles, and choriocarcinoma [62];
CC cell line JEG-3, including MTX- and 5-FU-resistant

variants [61]

MEG3 14q32.3 Tumor
suppressor Unknown Unknown Placenta; 4 cell-lines associated with pregnancy,

including HTR-8/SVneo, JEG-3, WISH, and HUVEC [63]

PCA3 9q21-22 Oncogene Sponge of
miR-106b Unknown Three CC cell lines, JAR, BeWo, and JEG-3, and the

human chorionic trophoblast cell HTR-8 [64]

LINC00261 20p11.21 Tumor
suppressor Unknown Unknown Sixty CC tissues and 60 adjacent non-cancerous tissues; 3

CC cell lines, namely, BeWo CCL-98, JEG-3, and JAR [65]

OGFRP1 22q13.2 Oncogene Unknown AKT/mTOR Two CC cell lines, JEG-3 and JAR [66]

MIR503HG and
LINC00629 Xq26 Tumor

suppressor Unknown Unknown RNA samples from a commercial normal human tissue
panel and 18 cancer cell lines, JEG-3 cell line [67]

3.1. MALAT1

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), or, as it is also
known, non-coding nuclear-enriched abundant transcript 2 (NEAT2), is a lncRNA which is
8000 nt long and is located on chr11q13.1 [68]. It has been shown to be involved in several
physiological regulatory processes, including nuclear organization, epigenetic modifica-
tion of gene expression, and alternative splicing via the modulation of phosphorylation
of the SR splicing factor. It is also directly related to various pathological processes in
non-communicable diseases, such as diabetes, and even in cancer [69]. The upregula-
tion of MALAT1 has been observed in different cancer types, including endometrial and
cervical cancer, where there is an association with increased tumorigenesis and reduced
survival [70–72]. In gastric cancer, it has been demonstrated that MALAT1 can enhance
SOX2 mRNA stability, thus promoting stemness in cancer cells [27]. In CC, MALAT1 might
also promote tumor growth via miR-218-mediated FBXW8 regulation [60]. This suggests
that it could be therapeutically targeted in human CC.

3.2. H19

H19 is a paternally imprinted gene, which encodes a 2300 nt long lncRNA. It is located
on chromosome 11p15.5 and was identified from the transcription of the H19/insulin-like
factor 2 gene cluster [73,74]. It has been shown that H19 is upregulated only during the
early stages of embryogenesis, and is downregulated after birth [75]. Hao et al. suggested
that H19 may act as a tumor suppressor gene [76], however, other studies reported an
increased expression in several cancers [77,78]. H19 regulates the expression of some
cancer-related proteins, such as the ubiquitin ligase E3 family, calneuron 1 and retinoblas-
toma tumor suppressor (RB1) [79], and alpha-4, beta-3, and beta-5 integrins [80]. The
dysregulation of H19 in gynecological cancers (ovarian, endometrial, and cervical cancer)
is associated with several molecular pathways that are normally disrupted in cancer [36].
In CC, there is an abnormal expression of H19 where it plays an important role in tumor
development [62]. Yu et al. investigated the role of H19 in CC cells which are resistant
to drugs and demonstrated that H19, through the regulation of the PI3K/AKT/mTOR
pathway, results in drug resistance together with increased proliferative, migratory, and
invasive ability of CC cells [61]. This suggests H19 may be a potential therapeutic target for
the treatment of drug-resistant CC.

3.3. MEG3

Maternally expressed gene 3 (MEG3) is a lncRNA which is 1600 nt long. It is located
at the locus of DLK1-MEG3 on human chromosome 14q32.3 [81]. MEG3 is ubiquitously
expressed in normal tissue and loss of its expression has been reported in various cancers,
suggesting MEG3 can behave as a tumor suppressor. When compared to normal tissue,
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there is a decreased expression of MEG3 in ovarian cancer. MEG3 overexpression causes
anti-proliferative and cytotoxic effects in the OVCAR3 ovarian cancer cell line [26,81].
Likewise, MEG3 is also downregulated in cervical cancer when compared to the adjacent
normal tissues, and there is a negative correlation with tumor size, FIGO stage, lymphatic
metastases, infection with human papilloma virus (HPV), and miR-21 expression [82].
Furthermore, cervical cancer cells undergo increased apoptosis and growth suppression
after MEG3 upregulation, confirming its role in tumor suppression in this type of cancer.
Zhang et al. reported that CC progression in the human JEG-3 cell line was directly linked
to a reduction in MEG3 levels [63].

3.4. PCA3

Prostate cancer antigen 3 (PCA3) is a lncRNA that is located on chromosome 9q21-22
in the antisense direction in intron 6 of the prune homolog 2 gene (PRUNE2 or BMCC1) [83].
PCA3 is significantly upregulated in prostate cancer [84,85]. Increased expression of PCA3
increases the proliferative, invasive, and migratory ability of prostate cancer cells and it is
currently used as a diagnostic tool in managing prostate cancer [86,87]. Quek et al. also
found increased expression of PCA3 in epithelial ovarian cancer [88]. The expression of
PCA3 is upregulated in CC cells [64]. Furthermore, through sponging miR-106b, PCA3
promotes the expression of MMP2, thus facilitating the proliferation, invasion, migration,
and epithelial–mesenchymal transition of CC cells in vitro, suggesting that PCA3 may
contribute to the progression of CC by acting as a competitive endogenous RNA (ceRNA)
against miR-106b.

3.5. LINC00261

The long intergenic non-coding RNA 00261 (LINC00261) is a lncRNA located on
chromosome 20p11.21. Initially, it was found to be differentially expressed in pancreatic
and gastric cancers [89,90]. Repression of LINC00261 results in increased cell proliferation,
invasion, migration, and chemoresistance in multiple cancers. This suggests that it plays a
tumor suppressor role [91–93]. LINC00261 is downregulated in both CC tissues and cell
lines [65]. Furthermore, overexpression of LINC00261 causes a reduction in cell prolifera-
tion, migration, and invasion, and promotes apoptosis in CC JEG-3 and JAR cells. These
findings highlight that LINC00261 may play an important role in the early diagnosis and
management of CC.

3.6. OGFRP1

Long non-coding RNA OGFRP1 (OGFRP1) is a novel lncRNA located on chromosome
22q13.2, and is involved in autophagy regulation in human coronary artery endothelial
cells (HCAECs) [94]. It also plays a regulatory role in the proliferative and invasive
capacity of various hepatocellular carcinoma (HCC) cell lines, albeit with varying effects
in different HCC cell lines [95]. Increased expression of OGFRP1 has been reported in
cervical cancer with subsequent silencing, resulting in the loss of proliferative and invasive
capacities of cervical carcinoma cells [96]. These results suggest that in cervical carcinoma,
OGFRP1 might display oncogenic properties. The oncogenic role of OGFRP1 in CC cells
was recently reported by Meng and Xue [66]. Downregulation of OGFRP1 inhibited cell
cycle progression, proliferation, and invasion of JEG-3 and JAR cells and also induced
apoptosis through the AKT/mTOR pathway. Even though further research is required to
fully understand the role OGFRP1 plays in tumorigenesis, it appears that OGFRP1 may be
an important therapeutic target in CC.

3.7. MIR503HG and LINC00629

MIR503HG and LINC00629 genes, described as long intergenic non-coding RNAs
(lincRNAs), are located on Xq26. The same region contains other genes, which are related
to the reproductive system, and fetal/placental development [97,98]. Whilst MIR503HG
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expression appears to be restricted to the placenta, LINC00629 is highly expressed in the
placenta as well as reproductive organs [67].

Analysis of RNA-sequencing data sets in colorectal cancer tissues showed an upregula-
tion of MIR503HG [99]. Moreover, Chung et al. found that MIR503HG is one of the top five
non-coding genes, with high levels of expression in anaplastic large-cell lymphoma [100].
In contrast, MIR503HG is downregulated in hepatocellular carcinoma [101] and oral squa-
mous cell carcinoma [102]. Fu et al. showed that MIR503HG suppresses cell invasion and
migration via the miR-103/OLFM4 axis in TNBC [103].

LINC00629 is downregulated in gastric cancer and RNA LINC00629 suppresses the
progression of this cancer through the upregulation of AQP4, via the competitive binding
to miR-196b-5p [104]. Together with MIR503HG2, several LINC00629 isoforms restrain the
migration and invasion potential of the JEG-3 tumor cell line. This indicates a potential role
for MIR503HG and LINC00629 in tumorigenesis involving the human reproductive system.

From a treatment perspective, the presence of CpG islands in the promotor regions
of both lincRNAs is very interesting since the silencing of promoter regions by DNA
methylation is typical of cancer and the subsequent reactivation with DNA demethylating
agents could be important in CC treatment. In this regard, Muys et al. demonstrated
that overexpression of MIR503HG2 together with the three new exon LINC00629 isoforms
decreases the migration and invasion potential of the JEG-3 cell line, indicating a possible
role for MIR503HG and LINC00629 in CC therapy [67].

4. Clinical Applications of lncRNAs in Choriocarcinoma

Given that lncRNAs can be detected in almost all tissues and body fluids, including
peripheral blood, and are not easily degraded by RNases, they can be more sensitive and
specific than DNA, proteins, and protein-coding RNAs in the diagnosis of tumors [105,106].
Thus, lncRNAs can be potentially utilized as novel non-invasive biomarkers in cancer
diagnosis [107]. Even though there has been increasing interest in the study of lncRNAs in
gynecological cancers, research is still preliminary. The association of many dysregulated
lncRNAs with clinical features leads to the design of novel biomarkers for diagnosis and
management of patients with gynecological cancers, ultimately attaining better progno-
sis [36]. Whether lncRNAs will be also beneficial in the early detection of CC needs to
be investigated. Currently, there is no evidence that lncRNAs are used as biomarkers for
diagnosis and prognosis of patients with CC. Moreover, given the rarity of the tumor,
we hope that these molecules may be used in the future to distinguish gestational CC
from non-gestational tumors in an easier and quicker way than the current state-of-the-art
methods (biopsy and microsatellite analysis).

5. LncRNAs as Therapeutic Targets

LncRNA transcripts have been described as architectural RNAs, molecular scaffolds,
and can function as regulatory molecules. They are involved in epigenetic modification,
post-transcriptional regulation, mRNA stability, and translation. They may also act as
“sponges” for mature miRNAs, whereby they inhibit their activity [108]. Interestingly,
most lncRNAs are expressed in a cell type- and tissue-specific manner, and in this respect,
lncRNAs lend themselves as potentially important therapeutic targets. Specifically, lncRNA
targeted therapy, unlike chemotherapeutic regimens, needs to hinder the signaling path-
ways in which lncRNA plays an important role in tumor development and progression,
whilst aiming to avoid the adverse effects on normal cells. There may also be a potential role
of lncRNA as biomarkers for disease management, including non-invasive screening [109].

Recent advances utilize CRISPR technology and oligonucleotide-based therapy to
modify gene expression. These approaches may be pivotal for developing novel therapeutic
approaches aiming at interfering with oncogenic lncRNAs [110].

The use of RNA interference (RNAi) to modulate gene expression has been success-
fully used to silence lncRNA in vivo [111]. Advancements in RNAi have led to Food and
Drug Administration (FDA) approval of lipid nanoparticles (LNPs) which contain short
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interfering RNA (siRNA) that is being used to treat hereditary amyloidosis in adults [112].
However, to successfully modulate lncRNA, prior knowledge of lncRNA cellular local-
ization is required. Furthermore, successful implementation requires ensuring that the
interfering molecules are stable and, most importantly, their immunogenicity and toxicity
is minimal. To ensure stability and avoid enzymatic degradation of RNAi drugs, two modi-
fications have been successfully carried out involving the phosphorothioate backbone [113]
and the 2′-O-methyl sugar [114].

LncRNAs associated with cancer can also be modulated by using antisense oligonu-
cleotides (ASOs). ASOs are single stranded with a central native or chemically modified
DNA stretch, flanked on either side by RNA nucleotides. DNA forms RNA/DNA het-
eroduplex with target lncRNA, which is cleaved by endogenous RNaseH1 [115]. ASOs
have been successfully used to alter mRNA expression as part of the treatment of various
diseases, including different types of cancer where lncRNAs are highly expressed [116,117].
Various designs of ASOs are utilized via diverse modes of action, including antagonist to
NATs (antagoNAT), locked nucleic acid GapmeRs (LNAGapmeRs), and mixmers.

Advances in genomic interference methods, with superior specificity when com-
pared to RNAi, have been developed recently. CRISPR interference (CRISPRi) using
CRISPR-Cas9 and CRISPR-Cas13 led to the successful silencing of transcriptionally active
lncRNA-expressing sites. In the CRISPR-Cas9 approach, nucleotides devoid of nucleolytic
activity, termed dead-Cas9, are fused to transcriptional repressors. Transcriptional silenc-
ing is achieved because, via guide RNAs, this fusion protein is targeted to a specific gene
promoter [118]. The development of guide RNAs targeting the promoters of thousands of
lncRNAs in the human genome together with CRISPRi enabled the selective inactivation of
lncRNA genes in human cancer cell lines. Liu et al. further underscored tissue specificity of
lncRNA by identifying approximately 500 lncRNAs in only one cell type [119]. Therefore,
it is possible to achieve transcriptional silencing of lncRNAs via CRISPR-based approaches,
however, several challenges limit their immediate use for therapeutic targeting [120–123].
Major limitations include delivery methods (viral and non-viral vectors), with viral vectors
limited in the size of the cargo they are able to deliver to the cells of interest [124–127]. Re-
gardless of the current limitations, the future undoubtedly looks bright for CRISPR-directed
lncRNA therapies.

6. Future Directions and Conclusions

LncRNAs acting as tumor biomarkers have been shown to have an important role
in the diagnosis and management of a number of cancers. Studies on the relationship
between lncRNAs and gynecological cancer are still at the preliminary stages. Even though
different lncRNAs seem to have oncogenic or tumor suppressive roles in CC (Figure 2), the
exact underlying molecular mechanism of lncRNAs in CC is largely unknown. A number
of lncRNAs could be associated with tumorigeneses, invasion, and stemness, leading to
therapy resistance in CC. Currently, research is still in the early stages of characterizing
the wide range of roles lncRNAs may play in CC pathogenesis. Therefore, more detailed
investigation of lncRNAs in CC is needed. This may revolutionize our understanding
of CC and result in advances in management, beyond the state of the art. In this regard,
molecular tools including ASOs, siRNAs, and CRISPR technology could be used in the
future development of RNA-based therapeutics targeting oncogenic lncRNAs.



Int. J. Mol. Sci. 2021, 22, 6506 10 of 16

Figure 2. Long non-coding RNAs (lncRNAs) mediate various biological processes to regulate the
progression of gestational CC. Certain representative lncRNAs function as oncogenes or tumor
suppressors in specific biological processes of gestational CC.
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