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Abstract

Rationale: Interpretation of spirometry is influenced by inherent
limitations and by the normal or predicted reference values used.
For example, traditional spirometric parameters such as “distal”
airflows do not provide sufficient differentiating capacity, especially
for mixed patterns or small airway disease.

Objectives: We assessed the utility of an alternative spirometric
parameter (area under the expiratory flow-volume curve [AEX]) in
differentiating between normal, obstruction, restriction, and mixed
patterns, as well as in severity stratification of traditional functional
impairments.

Methods: We analyzed 15,308 spirometry tests in subjects who had
same-day lung volume assessments in a pulmonary function
laboratory. Using Global Lung Initiative predicted values and
standard criteria for pulmonary function impairment, we assessed
the diagnostic performance of AEX in best-split partition and
artificial neural network models.

Results: The average square root AEX values were 3.32, 1.81,
2.30, and 1.64 L-s~*° in normal, obstruction, restriction, and

mixed patterns, respectively. As such, in combination with
traditional spirometric measurements, the square root of

AEX differentiated well between normal, obstruction, restriction,
and mixed defects. Using forced expiratory volume in 1

second (FEV)), forced vital capacity (FVC), and FEV/FVC z-
scores plus the square root of AEX in a machine learning
algorithm, diagnostic categorization of ventilatory impairments
was accomplished with very low rates of misclassification (<9%).
Especially for mixed ventilatory patterns, the neural network
model performed best in improving the rates of diagnostic
misclassification.

Conclusions: Using a novel approach to lung function
assessment in combination with traditional spirometric
measurements, AEX differentiates well between normal,
obstruction, restriction and mixed impairments, potentially
obviating the need for more complex lung volume-based
determinations.
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Interpretation of pulmonary function tests
(PFTs) is essentially based on comparing
measured flows or volumes against their
predicted values derived from healthy

individuals from similar populations (1-3).

Generally, forced vital capacity (FVC),
forced expiratory volume in 1 second
(FEV,), FEV,/FVC ratio, and total

lung capacity (TLC; obtained by body
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plethysmography, gas dilution, or other
methods) are the key variables used to
interpret pulmonary function. Measuring or
computing residual volume (RV), functional
residual capacity (FRC), and TLC is
technically complicated and more
challenging. Although this may limit the
use of these tests in clinical practice, in
particular situations they become essential

for characterizing the physiological state or
impairment (4).

For each lung function measurement or
calculated parameter, values at the fifth
percentile from healthy sex- and race-
referenced individuals define what is
considered the lower limit of normal (LLN)
(1, 5). This approach, similar to the one
using the z-scores or “standardized”
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ORIGINAL RESEARCH

variables (i.e., the number of standard
deviations away from the mean), assumes
that the parameters are part of a normal
distribution, which is, in fact, rarely the case.
When the frequency distribution is skewed,
a nonparametric technique such as the 95th-
percentile method can be used instead (6).
Nevertheless, unlike percent predicted
values, z-scores are free from bias induced
by age, height, sex, ethnicity, or race and
therefore are particularly useful in defining
the LLNs and increasingly recommended in
the interpretation of PFTs (2).

Two of the most widely used predictive
equations are represented by the Third
National Health and Nutrition Examination
Survey (7) and by predicted reference values
for spirometry derived and published
by the Global Lung Initiative (GLI) (2).
The latter equations are updated and
more comprehensive than previous
prediction sets and are recommended for
implementation in PFT laboratories
worldwide; yet, significant adoption
variability persists. In addition, significant
variability remains in the way PFTs are
interpreted, including the best way to define
ventilatory impairments beyond obstruction
and (possible) restriction.

To address these shortcomings, to
potentially enhance the diagnostic accuracy
and value of PFTs, and to determine which
patients need additional lung volume
determinations, in this study, we evaluated the
utility of an alternative spirometric parameter
called the “area under the expiratory flow-
volume curve” (AEX) (8-11). The AEX is the
actual integral function of the variable flow (on
the y-axis) versus expiratory volume (on the x-
axis) during a forced exhalation maneuver
from TLC to RV and is expressed in L*-s~
(Figure 1). In this study, AEX was obtained
from the proprietary software algorithm of the
spirometry equipment’s manufacturer. We
have previously shown that, in the absence of
AEX, several computations based on
instantaneous flows may be very close AEX
approximations, which could be useful in
interpreting observed functional impairment
and could potentially be valuable as surrogate
measurements (12).

1

Methods

This data set included a cohort of 15,308
consecutive, best-trial, acceptable,
prebronchodilator spirometry tests
performed in the Cleveland Clinic PFT

Flow (L/s)
A

Volume (L)

Figure 1. Depiction of the area under the expiratory flow—volume curve (AEX; in L2-s7"), the integral
function of instantaneous flows against expired volume during a forced respiratory maneuver.

AEX=area under the expiratory flow—volume curve.

Laboratory. The extraction criteria were 1)
prespecified time period of 10 years, 2)
spirometry tests with available AEX values
(the largest value was extracted), and 3) all
consecutive tests done in adult subjects
who underwent same-day spirometry

and lung volume testing by either body
plethysmography (13) or a helium dilution
technique (14).

Spirometry was performed following
the American Thoracic Society (ATS)
standards (1, 5, 15). Body plethysmography
and helium dilution techniques were used to
assess lung volumes per ATS/European
Respiratory Society (ERS) standards and
criteria (1, 4, 6). Spirometry, body
plethysmography, and helium dilution
technique determinations were performed
using a Jaeger Master Lab Pro system.
Reference values from the GLI were used for
spirometry interpretation (2). For lung
volumes, the reference values used were
those of Crapo and colleagues (16).
Diagnostic performance of AEX was
assessed by the test’s receiver operating
characteristic curve, accuracy, and
reclassification rates. As per the ATS/ERS
simplified diagnostic algorithm (6), normal
pattern was defined by normal FVC and
normal FEV,/FVC ratio (FVC > FVCyxn
and FEV,/EVC > FEV,/EVCn);
obstruction was diagnosed either as FEV,/
FVC< FEVI/FVCLLN and FVC > FVCLLN
or as FEV,/FVC=FEV,/FVCrn,

FVC <FVCppy, and TLC>TLCyn. A
diagnosis of restriction was based on FEV,/
FVC=FEV,/FVC;;x, FVC < FVCy;y, and
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TLC < TLCyyn, whereas a mixed defect
was diagnosed if the following conditions
were met: FEV/FVC <FEV,/FVCyn,
FVC< FVCLLN, and TLC < TLCLLN.

Of note, the interpretation of PFTs was
based, in our study and per ATS/ERS
recommendations, on both spirometry and
lung volumes, the latter being considered the
gold standard and necessary differentiator
test in a great number of situations.

The AEX (Figure 1) was computed by
the available PFT software as the integral
function of the exhalation phase of the
flow-volume curve. The largest AEX value
of all prebronchodilator trials has been
selected. For several analyses and models,
owing to its nongaussian distribution,
the square root of AEX (Sqrt AEX)
was used.

We built several models that evaluated
the relationships between AEX and
inspiratory capacity (IC), FRC, RV, and
TLC. We were especially interested in
assessing AEX against indices of gas
trapping and hyperinflation, such as FRC/
TLC or RV/TLC and IC/TLC (“inspiratory
fraction”), which can only be derived from
lung volume testing. The IC/TLC was shown
in prior investigations to be an independent
predictor of respiratory and all-cause
mortality in subjects with chronic
obstructive pulmonary disease.
Furthermore, we resorted to several
recursive partitioning models with 33%
holdback for validation, by which we
performed the interactive best-split
procedure of the functional diagnostic
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Table 1. Demographic characteristics and pulmonary function test measurements

(N=15,308)

Parameter Mean + SD Median 25th-75th IQR
Age, yr 56+ 14 57 47 to 67
Height, cm 168 =10 168 161 to 175
Weight, kg 81+ 21 79 66 to 94
Body surface area, m? 1.9+0.2 1.9 1.7 10 2.0
Body mass index, kg/m? 28+7 28 24 to 32
FET, s 12.19 + 3.06 12.86 9.52 to 14.93
PEF, L 5.07+2.49 4.84 3.07 t0 6.76
FVC, L 2.94+1.07 2.81 2.14 to 3.59
FVC z-score —-1.69 = 1.61 —1.56 —2.65 to —0.61
FEV4, L 1.87 £0.95 1.77 1.09 to 2.49
FEV, z-score —2.50+1.8 —-2.37 —-3.8t0 —1.13
FEVg, L 2.55+1.02 2.40 1.81 to 3.07
FEV4/FVC 0.62+0.19 0.62 0.47 t0 0.78
FEV4/FVC z-score —2.31+3.35 —-1.59 —4.4 10 0.12
FEV./FEVg 0.65+0.16 0.70 0.51 to 0.79
TLC, L 5.52+1.74 5.30 4.26 to 6.57
RV, L 2.49+1.42 2.07 1.46 to 3.18
RV/TLC 0.43+0.15 0.41 0.32 to 0.54
IC, L 2.13+0.83 2.03 1.52 to 2.63
IC/TLC 0.40+0.12 0.41 0.30 to 0.49

Definition of abbreviations: FET =forced expiratory time; FEV, = forced expiratory volume in 1 second;
FEVg =forced expiratory volume in 6 seconds; FVC =forced vital capacity; IC = inspiratory capacity;
IQR =interquartile range; PEF =peak expiratory flow; RV =residual volume; SD = standard deviation;

TLC =total lung capacity.

categories as nominal variables. For the
recursive partitioning, the following
factors were used: FEV,, FVC, and FEV,/
FVC percent predicted; FEV,, FVC, and

FEV,/FVC z-scores (all determined by race,
sex, age, and height); actual FEV,/FVC; and
(Sqrt) AEX. We found that the neural
network models using Sqrt AEX, FEV|,

FVC, and FEV,/FVC z-scores performed
best (i.e., highest R* and area under the
receiver operating characteristic curve,
dominant pattern probability or density
>50%, minimized misclassification rates,
and square root mean error).

Given the collinearity that may exist
between various functional parameters, we
used neural networks (machine learning
algorithms) that could dynamically adjust
for the relationship between variables,
whereas typical regression assumes
complete independence or noncollinearity
of the inputs. Neural networks can
efficiently and flexibly model nonlinear
response surfaces. The developed neural
networks had the following parameters as
inputs: AEX or Sqrt AEX, percent predicted
or z-scores of FEV, and FVC. Output was
represented by the functional pattern (based
on the classification as normal, obstruction,
restriction, or mixed defect). Neural
networks were designed with two “hidden”
layers, each with three sigmoidal, three
linear, and three gaussian distribution
nodes, squared penalty method, and up to
50 iteration tours (to avoid overfitting).
Internal validation was performed with
a random holdback method at a rate of
33%. Statistical significance was set at
P < 0.05. Analyses were performed using
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Figure 2. Box-and-whisker plots of the square root of the area under the expiratory flow—volume curve (Sqrt AEX) for Global Lung Initiative (GLI)-defined
obstruction, restriction, mixed ventilatory defects, or normal patterns. The numbers associated with the box plots illustrate the mean Sqgrt AEX values of each
group. Tukey-Kramer and Welch analysis of variance test P < 0.0001; in-between group P values are shown on the graph. Horizontal gray line: average Sqrt
AEX for the entire cohort. *Denotes that small airway disease was not considered as a separate disease category. Color codes: green =normal;

red = obstruction; blue = restriction; purple = mixed ventilatory defect (all patterns as determined by GLI predictive equations for spirometry).
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JMP Prol4 software (SAS Institute).

The study received Institutional Review Board
approvals (Cleveland Clinic IRB EX#0504
and EX#19-1129; Emory IRB #00049576/
Atlanta VA R&D Ioachimescu-002).

Results

We analyzed a total of 15,308 consecutive
PFTs. Fifty-one percent of the subjects
tested were men. Eighty-six percent were
(self-identified) white, and 13% were
African American. Only 62 subjects self-
identified as Hispanic; nevertheless, GLI
equations include Hispanic individuals in
the same category as white individuals (2).
The mean age * standard deviation of the
analyzed subjects was 56 = 14 years. The
helium dilution technique was used to
measure lung volumes in 40% of the
patients (n=8,501), whereas body
plethysmography was used in the remaining
60% (n=12,752).

The main anthropometric and
functional parameters of the patients tested
are shown in Table 1. By using the
manufacturer’s proprietary software, the
largest acceptable digitally obtained AEX
was analyzed (Figure 1).

Using GLI predictive spirometric
equations, obstruction was present in 42.6%
of the tests. Among those with obstruction,
the severity was deemed mild in 7%,
moderate in 14%, moderately severe in 14%,
severe in 22%, and very severe in 43%.
Restriction was confirmed by lung volume
testing in 16.5% of the tests, whereas a mixed
ventilatory pattern was found in 4.5% of the
data set.

The mean Sqrt AEX values were 3.32,
1.81, 2.30, and 1.64 L-sec” °® in normal,
obstruction, restriction, and mixed patterns,
respectively; all between-group differences
were statistically significant at P <0.0011
levels (Figure 2). The mean Sqrt AEX values
were 2.97, 2.30, 1.92, 1.46, and 0.98
L-sec °? in mild, moderate, moderately
severe, severe, and very severe obstruction,
respectively; all between-group differences
were significant at P < 0.0001.

To assess the ability of AEX to avoid
lung volume testing (at least in some cases),
we explored the relationship between AEX
and IC, IC/TLC, or RV/TLC. As such, in
a linear model, the Sqrt AEX was able
to predict with good accuracy the IC
(Figure 3A). A third-degree polynomial
relationship between IC/TLC and Sqrt

A IC = 0.8813641 + 0.5467329*Sqrt AEX
Correlation=0.72, R2=0.52, RMSE=0.59, n=15,308, p<0.0001
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Figure 3. (A) Bivariate linear fit of inspiratory capacity (IC) by the square root of the area under the
expiratory flow—volume curve (Sgrt AEX). The 50% ellipses are shown for the different Global Lung
Initiative (GLI)-defined patterns. (B) Bivariate cubic fit of Sqrt AEX by IC/total lung capacity (TLC). (C)
Bivariate quartic fit of residual volume (RV)/TLC ratio by Sgrt AEX. Color codes: green = normal pattern;
red = obstruction; blue = restriction; purple = mixed ventilatory defect; light green = small airway disease
(all using GLI reference equations). RMSE =root mean square error.
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AEX (Figure 3B) explained approximately
two-thirds of the parameter’s variance
(R*=0.62), whereas a quartic fit (fourth-
degree polynomial fit) between RV/TLC and
Sqrt AEX explained up to three-fourths of
the variance (R*=0.74) (Figure 3C). As
shown in Figures 3A-3C, our cohort
included a significant number of patients
with very severe obstruction and air
trapping, the majority of them being part of
a severe emphysema trial.

A simple best-split partition of the
diagnostic categories by using FVC and
FEV, GLI z-scores (sex, race, height, and age
adjusted) and Sqrt AEX led to a slightly
better model performance (AR*=0.01-0.02
and lower misclassification rates) than that
of the one based on Sqrt AEX plus GLI-
based percent predicted FEV, and FVC. In
Figure 4, we show the expected probabilities
of various patterns by using the indicated
algorithm in this sample. The model was
developed on the basis of 66.6% of the data
set (R®=0.47) and validated on the basis of
33.3% of the tests (R*>=0.46). The area
under the receiver operating characteristic
curve values in both training and validation
sets were as follows: 0.98 (in obstruction,
restriction, and mixed patterns) and 0.99 (in
normal tests).

We also used machine learning (neural
network) models to predict the type of GLI-
defined ventilatory impairments or patterns
(Figure 5). We used as inputs FEV;, FVC,
and FEV,/FVC ratio z-scores (per GLI

equations), with or without Sqrt AEX.

The model using all four variables showed
better performance in differentiating
various ventilatory patterns (i.e., lower
misclassification rates against standard
classifications based on FVC, FEV,/FVC,
and TLC): 8.7% in the training set and
8.4% in the validation set. The lowest
concordance rate was for mixed ventilatory
defects (48-53%), most of which were
misclassified as obstructive patterns. The
addition of Sqrt AEX to FEV,, FVC, and
FEV,/FVC ratio z-scores (based on GLI
equations) improved overall diagnostic
performance by a relatively modest AR* of
0.01, but, more important, it improved
mixed pattern misclassification rates by
approximately 20% and 22% in the
derivation and validation sets, respectively.

Discussion

The main finding of this study in a large
sample of PFTs is that, in combination with
traditional spirometric parameters such as
FEV,, FVC, and FEV,/FVC ratio z-scores,
AEX performs well in stratifying, both
clinically and statistically, the main types
and degrees of physiologic derangement,
with low overall rates of misclassification
(<9%) compared with traditional PFT
diagnostic categories.

The appeal of such a parameter is based
on the limitations of current interpretive

strategies for PFTs. For example, an
obstructive ventilatory defect is currently
defined by the ATS/ERS Task Force for
Standardization of Lung Function Testing
(6) as a reduced FEV,/FVC ratio (i.e., below
the fifth percentile of the predicted value).
However, it is well known that the earliest
changes associated with airflow obstruction
in small airways can be seen in the last
portion of the flow-volume diagram (with a
“concave” or “coved” appearance of the
curve), even when the initial portion of
FEV is still normal. As another limitation of
current interpretive strategies, a restrictive
ventilatory defect is defined as having a TLC
below the LLN or the fifth percentile of the
predicted value, together with a normal
FEV,/FVC ratio. Volumes are typically
determined either by gas dilution

(e.g., helium method) or by body
plethysmography techniques. In practice,
spirometry is commonly able to “suggest”
restriction, recognizing that a low FVC can
reflect either true restriction, airflow
obstruction with excessive air trapping and
secondary capacity reduction, or early
termination of the expiratory effort during
the spirometric maneuvers. On this basis, we
know that spirometry is generally not able to
definitively rule in or rule out restriction,
and lung volume determination is generally
required (17). Furthermore, a mixed
ventilatory defect is characterized by both
obstruction and restriction and defined
functionally when both FEV,/FVC and TLC

’ All Tests ‘
FVC z score FVC z score
<-1.65 >-1.65
FEV, z score FEV, z score FEV, z score FEV, z score
<—-4.33 >-4.33 <-1.81 >-1.81
Sart AEX Sqrt AEX Sart AEX Sart AEX Sqrt AEX Sart AEX Sqrt AEX Sart AEX

<1.43 >1.43 <1.25 >1.25 <1.59 >1.59 <2.40 >2.40

Normal 0.0 0.0 0.0 0.1 3.2 7.6 75.2 79.3

Pattern  Obstruction 84.7 64.0 64.8 38.5 96.8 92.4 24.6 20.7

Probability
(%) Restriction 5.7 21.3 252 52.6 0.0 0.0 0.1 0.0
Mixed 9.6 14.5 10.1 8.9 0.0 0.0 0.0 0.0

Figure 4. Seven-split partition as a proposed pulmonary function test interpretation algorithm based on forced vital capacity (FVC) z-score, forced expiratory
volume in 1 second (FEV) z-score, and the square root of the area under the expiratory flow—volume curve (Sqart AEX). Pattern probability or density refers to
the percentage of subjects with the actual spirometric diagnostic categories.
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Model Performance (Training Set)

Model Performance (Validation Set)

essurss | aue
R2

R? 0.949 0.949
RMSE 0.245 RMSE 0.244
Misclassification Rate 8.7% Misclassification Rate 8.4%
AUROC ranges (by patterns) 0.97-0.99 AUROC ranges (by patterns) 0.97-0.99
Observations 10,203 Observations 5,104
Confusion Matrix (Training Set) Confusion Matrix (Validation Set)
Actual Predicted Rate Actual Predicted Rate
Pattern (GLI) Normal Obstruction  Restriction Mixed Pattern (GLI) Normal Obstruction Restriction Mixed
Normal 0.997 0.03 0.000 0.000 Normal 0.995 0.005 0.000 0.000
Obstruction 0.003 0.912 0.068 0.018 Obstruction 0.03 0.909 0.070 0.019
Restriction 0.000 0.106 0.893 0.000 Restriction 0.003 0.089 0.907 0.001
Mixed 0.000 0.514 0.005 0.481 Mixed 0.000 0.458 0.013 0.530

Figure 5. Machine learning (neural network) model predicting the type of Global Lung Initiative (GLI)-defined ventilatory impairment (output), using forced
expiratory volume in 1 second (FEV,), forced vital capacity (FVC), and FEV/FVC z-scores (GLI predicted) and square root transformation of the area under
the expiratory flow—volume curve (Sqart AEX) as inputs. The middle portion of the figure shows the architecture of the neural network, with three inputs, one
output, and two layers of intermediary or “hidden” nodes (three linear, three sigmoidal, and three normal distributions). The model showed high performance
in differentiating among various ventilatory impairment patterns (R%=0.949), with low misclassification rates. The confusion or reclassification matrix

summarizes the accuracy and misclassification rates of the model in each actual category. AUROC = area under the receiver operating characteristic curve;

RMSE =root mean square error.

are below the fifth percentiles of their
predicted values or LLN. As such, because
obstructive and restrictive defects can both
present with reduced FVC, the presence of a
restrictive component in a patient with
airflow limitation (“obstructed”) cannot
always be inferred from the FEV; and
FEV,/FVC ratio.

To date, several studies have addressed
the possible utility of AEX (8, 11, 18-22).
Bunn and colleagues assessed the use of an
analog version of AEX and compared it
with predicted values based on peak
expiratory flow and FVC (8, 18). This was,
in fact, almost identical to what we
described later as AEX; (12). Most studies
have addressed pediatric testing (because
younger subjects may encounter difficulty
comprehending or following instructions),
bronchodilator or bronchoconstrictor
responses, assessment of “airway patency,”
or AEX used as a surrogate marker for
FEV, (also in children) (10, 11, 20-22).
Vermaak and colleagues examined the AEX
in 60 adult South African subjects without a

history of lung disease and derived AEX
predictive equations; the study lacked a
validation group (19). Four decades
later, other authors found that digitally
obtained AEX correlated well with
hyperinflation in subjects with chronic
obstructive pulmonary disease (23),
confirming the utility of AEX as a global
functional respiratory parameter. Our
group is currently in the process of
validating predictive equations for

AEX, which will allow us in the

future to determine age, height, sex, and
height-determined AEX z-scores,
potentially useful in further refinements of
diagnostic classifications and severity
stratification.

Extending these prior studies that
examined AEX in narrow clinical settings or
in much smaller populations, in several
investigations conducted by our group (9,
12), we have used digital AEX or its
approximations as global spirometric
measurements of ventilatory impairment in
large samples of adults. In these subjects, we

loachimescu and Stoller: Area Under the Expiratory Flow-Volume Curve

validated the existence of obstruction,
mixed, or restrictive ventilatory defects
by using the gold standard test (i.e.,
lung volume determination by body
plethysmography or by the helium
dilution method).

Several limitations of the present study
warrant comment. The equations derived
(e.g., Figures 3 and 5) are based on a
hypothesis-generating set and require
validation in an independent, external data
set. In addition, the effort to find a better
standard for ventilatory impairments such
as obstruction, restriction, mixed patterns,
or even small airway disease has inherent
limitations. For example, the newly
proposed measurement may correlate
poorly with “imperfect” traditional
parameters; it can have significant
dependencies (e.g., to FVC) and/or wide
coefficients of variation. In this setting, there
is still a need to derive and to validate
normative data for AEX, a parameter likely
influenced by sex, race, height, and possibly
even by weight.
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The appeal of using neural networks
that use spirometric parameters stems from
their extraordinary ability in the areas of
information processing, their nonlinearity
and noise acceptance, and acquisition
(“machine learning”) and generalization
capabilities beyond visible or observable
patterns. In contrast to the traditional tools,
they offer model-free, adaptive parallel
processing and great tolerance for errors,
outliers, and data artifacts, which makes
them also ideal for normative data
derivation in different populations.

Conclusions

spirometry. We found that, in combination
with other spirometric measurements, the
use of AEX is able to differentiate

among traditional diagnostic patterns
(normal, obstruction, restriction, or mixed
defects). In addition, the AEX could predict
with reasonable accuracy IC, IC/TLC, and
RV/TLC, potentially obviating the need for
more advanced lung function testing such as
body plethysmography or gas dilution
methods to diagnose hyperinflation,
restriction, or mixed defects. Last, using
machine learning algorithms with
spirometric inputs such as FEV;, FVC,
and FEV,/FVC ratio z-scores in addition

model against traditional functional
categories could potentially be employed
in epidemiological or population

screening studies, in which lung volume
determination by body plethysmography or
other methods is not practical and
spirometry is often the only available testing
modality. Further study is needed to validate
these findings in larger, independent

data sets and to better characterize the
relationship between AEX profiles and
specific disease endophenotypes. l
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