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Abstract

Background: Chromatin organization has been increasingly studied in relation with its important influence on
DNA-related metabolic processes such as replication or regulation of gene expression. Since its original design ten
years ago, capture of chromosome conformation (3C) has become an essential tool to investigate the overall
conformation of chromosomes. It relies on the capture of long-range trans and cis interactions of chromosomal
segments whose relative proportions in the final bank reflect their frequencies of interactions, hence their spatial
proximity in a population of cells. The recent coupling of 3C with deep sequencing approaches now allows the
generation of high resolution genome-wide chromosomal contact maps. Different protocols have been used to
generate such maps in various organisms. This includes mammals, drosophila and yeast. The massive amount of raw
data generated by the genomic 3C has to be carefully processed to alleviate the various biases and byproducts
generated by the experiments. Our study aims at proposing a simple normalization procedure to minimize the
influence of these unwanted but inevitable events on the final results.

Results: Careful analysis of the raw data generated previously for budding yeast S. cerevisiae led to the identification of
three main biases affecting the final datasets, including a previously unknown bias resulting from the circularization of
DNA molecules. We then developed a simple normalization procedure to process the data and allow the generation of
a normalized, highly contrasted, chromosomal contact map for S. cerevisiae. The same method was then extended to
the first human genome contact map. Using the normalized data, we revisited the preferential interactions originally
described between subsets of discrete chromosomal features. Notably, the detection of preferential interactions
between tRNA in yeast and CTCF, PolII binding sites in human can vary with the normalization procedure used.

Conclusions: We quantitatively reanalyzed the genomic 3C data obtained for S. cerevisiae, identified some of the
biases inherent to the technique and proposed a simple normalization procedure to analyse them. Such an approach
can be easily generalized for genomic 3C experiments in other organisms. More experiments and analysis will be
necessary to reach optimal resolution and accuracies of the maps generated through these approaches. Working with
cell population presenting highest levels of homogeneity will prove useful in this regards.

Background
Chromosomes from both eukaryotes and prokaryotes
not only convey information through their linear DNA
sequence but also contribute to the regulation of a num-
ber of DNA-related metabolic processes through their
three dimensional arrangements [1-3]. Since an origi-
nal publication by Dekker and co-workers ten years ago,
chromosome conformation capture (3C) technique and
its derivatives have become essential to the investigation
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of chromosome organization [4-6]; for a brief overview
of the various techniques published so far see [7]. The
general principles of these protocols remain the same
and rely on formaldehyde fixation to capture long-range
trans and cis chromosomal interactions in living cells. The
crosslinked cells are incubated with a restriction enzyme
that will cut the DNA in a number of restriction frag-
ments (RFs). Because of the crosslink, several RFs can
be covalently linked within molecular complexes. A liga-
tion step in diluted conditions will favor ligation events
between RFs trapped within the same complex. After a
decrosslinking step, the resulting 3C template consists in
a collection of ligation products of two specific RFs, whose
relative abundance (after normalization) reflects the fre-
quency with which these two chromatin segments were
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crosslinked in the population. The exhaustive analysis of
this collection enables the generation of chromosomal
contact maps, that allows deciphering the average posi-
tioning of loci of interest with respects with each others
within the nucleus. In the past few years, quantifica-
tion of the abundance of ligation products has evolved
from semi-quantitative PCR [4] to deep-sequencing tech-
niques [8]. The later approach now enables genome-wide
analysis of chromosome organization. A typical result of
such experiment is the number of times each pair of
RF is sequenced at the final step. These numbers are
then arranged in a symmetric matrix representing all
the possible pairs of RFs from the genome, generating a
genome-wide contact map. Those matrices represent the
relative frequency of physical interaction for each RF in
the genome with all of the other RFs. Different experi-
mental protocols have been used so far, and genome-wide
contact maps have been obtained for Lymphoblastoid cells
[8,9], mouse [10,11], Schizosaccharomyces pombe [12], S.
cerevisiae [13,14], and fruit fly [15].

3C derived experiments are likely to generate biases
given the complexity of the protocols, and necessitate
a dedicated effort to experimentally identify and limit
the generation of byproducts at each step [16]. How-
ever, it appears impossible to entirely prevent unwanted
DNA molecules to be present in the final banks, and
subsequently in the sequence data. Therefore, these data
need to be carefully processed in order to identify these
sequences, and limit the introduction of biases in the
final analysis. Although not necessarily rewarding, such
(re-)processing is essential not only to accurately analyze
the data from a specific experiment but also to provide
important feedback for the design of future experiments.
For instance, GC content and RF lengths induced biases
present in the Hi-C databank of the Human genome
were recently identified [17]; see also [18]. Here, we have
reassessed the genomic 3C data from the experimental
protocol used to obtain the first comprehensive dataset
in S. cerevisiae in a pioneering study published recently
(Figure 1A; [13]). Using HindIII as 3C restriction enzyme,
the interactions between 4454 sites along the 12 Mbp
yeast genome were mapped and a symmetric matrix of
4454 rows per 4454 columns was generated. A number of
interesting features, some of them expected, such as cen-
tromere clustering resulting from the Rabl configuration,
and others less obvious, such as early replication origins
clustering, were identified from this matrix [13]. Interest-
ingly, the re-analysis of the raw data obtained through this
protocol lead to the characterization of a number of events
and biases unidentified before. Back-and-forth compari-
son between these biases and the protocol steps allowed
us to identify the different sources for these events.

Having properly identified and quantified all these
biases, we developed a normalization procedure which

allows us to correct the data for all those biases at one
time. Overall, and as expected from the original analy-
sis, the conclusions drawn from the corrected maps do
not differ significantly from the original publication. How-
ever, the corrected map gives a more contrasted view
of chromosomal contacts, and present sharper features
when it comes to preferential interactions between telom-
eres or chromosomal arms. It also ponders some of the
conclusions drawn regarding clustering of specific genet-
ics elements, which will be discussed. We then used
this approach on the genomic 3C (Hi-C) human dataset
obtained by Dekker and co-workers [8] and showed that
proper normalisation is a prerequisite to assess relevant
contacts. The methodology described here allows for an
efficient and simple analysis of chromosomal contact-
maps, and is potentially of great convenience to any team
interested to use similar approach.

Results and discussion
Quantification of the ligation products
During the ligation step, one can envision to recover dif-
ferent types of products (Figure 1A, step 3). Firstly, a RF
can simply be circularized on itself (step 3i), resulting in
a loop. Secondly, two consecutive RF on the genome can
be re-assembled together (step 3ii). This type of event will
be designated as a religation event. Note that religation
events are virtually indistinguishable from non-digested
restriction site (RS) given the original sequence is then
restored. A third type of product can be recovered at
this step, especially if the digestion is partially incom-
plete which will always be the case: longer DNA fragments
formed out of two continuous RFs can be circularized
during the ligation step (step 3iii). Finally, two RFs that
are not consecutive on the genome can be ligated together
(step 3iv). These products are the nuggets the experi-
ment is digging for, and will be termed here as long-
range interactions. Long-range interactions can either be
intra or inter-chromosomal. Although inter-chromosomal
events are easily identified through mapping of the pair-
end reads along the genome, intra-chromosomal events
necessitate a more careful examination of the positions
of the sequences. A convenient way to identify the type
of an intra-chromosomal ligation product is to use the
orientation of the sequences obtained from the pair-end
sequencing run. Each RF exhibits two extremities. The
one with the highest coordinate according to the yeast
genome conventional representation is labeled “+” and the
other one “-”. Every ligation event therefore falls within
one of these four categories: -/-, +/+, -/+ and +/- (see
Additional file 1: Figure S1A). Whereas long range interac-
tions should not happen with any preferential orientation
of the fragment extremities, a circularized RF will always
connect its – extremity with its + extremity (Additional
file 1: Figure S1A). The distribution of interaction types
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Figure 1 The different steps of the original genomic 3C experiment in yeast and their associated biases [13]. A) Experimental steps. 1: Yeast
cells are fixed with formaldehyde. 2: the genome is digested using a 6 cutter restriction enzyme (RE1; red double-headed arrows). 3: extraction of
protein/DNA complexes and ligation in diluted conditions that favor DNA-end interactions and religation within the same complex. During this
process, some RF will simply circularize (i), while others will religate in their original orientation (ii). Religation products are also expected between
non-collinear restriction fragments (iii), whereas collinear RF separated by one, or more, RF will also interact together (iv). 4: de-crosslinking and DNA
purification. 5: digestion of DNA products using a frequent 4 cutter restriction enzyme (RE2; black double-headed arrows). 6: DNA is ligated in
diluted conditions, favoring intra-molecular circularization of single DNA molecules. Remaining linear fragments are degraded. 7: DNA circles
containing a RE1 site are re-opened using RE1. 8: short DNA sequences, containing EcoP15I recognition site and a biotinylated nucleotide are added
at both ends of the linear fragments. 9: circularization of linear fragments. 10: EcoP15I digestion of the DNA segments 25 bp apart from the enzyme
recognition site. 11: pull-down of the DNA fragments containing biotinylated nucleotides. 12: amplification of the DNA fragment isolated and
sequencing. B) Pie-chart representation of the different types of events obtained at step 3: religations, long range intra, long range inter, loops (from
50 millions pair-end sequences analyzed from the HindIII-MspI condition A and B experiments). C) Quantification of the fragment length bias. D)
Quantification of the GC bias. E) Quantification of the circularization length bias.



Cournac et al. BMC Genomics 2012, 13:436 Page 4 of 13
http://www.biomedcentral.com/1471-2164/13/436

(+/+, -/-, -/+ and +/-) can be plotted for self-interacting
fragments as well as for contiguous fragments (i.e. sep-
arated by only one RS), and then separated by two,
and more RSs. For the later category no preferential
orientations are distinguishable (Additional file 1: Figure
S1B). A strong enrichment in +/- interactions is observed
for pairs of collinear RFs. This enrichment is due to the
presence of religation events (ii) as well as detection of
sites which escaped the digestion step. The formation
of type (iii) products is revealed by the fact that inter-
actions between contiguous fragments on the genome
are more often found in the -/+ configuration, which
corresponds to a loop, than in a -/- or +/+ configu-
ration. The relative number of those different products
can be represented with a pie chart (Figure 1B). Loops
and religation appear to be very frequent events (about
80% of the original data). Those inevitable byproducts
were removed from all subsequent analysis. In addition,
fragments with no restriction site for the secondary
enzyme and therefore that should not be detected accord-
ing to the experimental protocol were also discarded.
Similarly, fragments whose extremities align ambiguously
along the reference genome were removed as well (see
Methods for details). In total, more than 80% of the initial
raw reads were removed for subsequent analysis, which is
consistent with other experiments in the field, and leaves
room for a lot of improvement.

Identification of major biases in the experimental protocol
Complex protocols involving a large number of steps
are likely to generate biases in the data that has to
be careful sought for. What we call biases here is
a variability which is larger than the expected noise
and can be explained primarily by properties of the
fragment itself. In the following, three major biases
likely to affect the number of detected interactions
between fragment pairs were identified: the length of
RFs, GC content of the paired-end reads, and the length
of DNA segments at the circularization of steps 6
and 9.

The distribution of the number of reads per fragment
as a function of the fragment size L is presented on
Figure 1C. Given the number of positions accessible to fix-
ating agents along a RF increases with its size, one would
expect the interaction probability to increase linearly with
RF size. For RF under 800 bp, the number of reads per
fragment increases, suggesting that indeed the probability
for a cross-linking event to occur depends on the length
of the fragment. However, for longer RFs, a plateau is
reached, suggesting that the maximum probability for at
least one cross-linking event to occur along that length
is reached. In other words, the probability of longer frag-
ments not to be cross-linked at least once is constant and
very small (Methods).

Formaldehyde fixation, which is the first step of 3C
based protocols, therefore introduces a length bias for
sizes under 800bp. In this range, the longer a RF is, the
more likely it will be cross-linked with other RF during the
fixation step.

The distribution of reads per possible interaction
between two RF extremities was plotted as a function of
the GC content of these extremities (Figure 1D). From this
figure one can see that extreme GC content extremities
tend to be under represented in the final interaction reads.
Therefore, the PCR reaction or/and the deep-sequencing
steps can introduce additional biases, notably by favoring
reads with a GC content of about 45%. The bias of GC
content in short reads data from high-throughput DNA
sequencing has indeed been reported (see Figure 2 in
[19]). However, such biases do not appear to affect many
interactions (see Figure 1D).

Quite surprisingly we also identified an original, but ret-
rospectively not unexpected, bias in the two steps involv-
ing circularization of DNA segments (Figure 1A, step 6
and 9). It is known that the mechanical properties of DNA
are such that the length of a fragment can strongly influ-
ence the efficiency of a circularization reaction. If the
fragment is too small, the bending persistence of DNA
is such that both ends cannot be ligated. If the fragment
is two long, the entropic contribution to the free energy
will also disfavor ligation. Here indeed, the distribution
of the sum of the sizes (dA+dB) of two interacting RF A
and B presents a typical circularization efficiency profile,
including an optimal circularization length close to 500 bp
(Figure 1E, [20]).

Intriguingly, a 10.5 bp periodicity of the circulariza-
tion efficiency could be observed for the average num-
ber of circularization events for which dA + dB < 500
bp, overall (i.e for the HindIII-MspI experiment, about
15% of the interactions fall into this category). Such a
periodicity is actually predicted by polymer physics and
results from the natural twist of the double helix which
is 10.5 bp [21]. Here, the phenomenon can be observed
at an unprecedented resolution (see inset of Figure 1E)
and consists in a bias that could affect any experi-
mental procedure involving a circularization through
ligation step.

Due to those various biases, some RFs will be involved
in more interactions than expected, whereas others will
be underrepresented in the final bank (see Additional
file 1: Figure S2). Since this variability results from the
experimental protocol rather than the biological reality,
it is worth minimizing theses effects by either correcting
or normalizing the observed frequencies of interactions
[17,18]. These correspond to two different approaches:
in order to correct the data, one needs to quantify the
biases and then to divide each interaction frequency by
its expected value, knowing the bias. On the other hand,
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Figure 2 Normalized intra-chromosomal contact map of S. cerevisiae. The color scale represents the normalized interaction frequencies
between fragments which is calculated with the Sequential Component Normalization. A) Matrices of the sixteen chromosomes from S. cerevisiae.
The strongest interactions are at the diagonale i.e. for close fragments along the chromosome. B) The normalized interaction score is calculated
with the SCN method and taking into account the effect of the genomic distance. C) Zoom on chromosomes X, XI and XII. Chromosome XII is
spatially segregated in two compartments by the rDNA locus.

no prior knowledge of the bias is needed to normalize the
data: the procedure consists in dividing each interaction
frequency between two fragments by the product of the
sums, or the norms, of the total interaction reads involving
those fragments (see below).

Generation of a normalized contact map through the
“Sequential Component Normalization” (SCN)
methodology
The correction method developed for the human Hi-C
dataset is not readily adaptable to the yeast dataset since
there is an additional circularization bias to the RF length
and GC content bias [17]. A important issue with the
circularization bias is that it is highly non monotonous:
for example, it favors circularization lengths of 261 bp,
but disfavors circularization length of 266 bp and again
favors circularization lengths of 271 bp and so on and
so forth (see inset in Figure 1D). A similar methodol-
ogy that was previously described in [17] was first applied
in order to correct for this bias. However, the nature
of the bias did not allow reaching a satisfying solu-
tion because of the non-monotonous specificity. In the
following, instead of correcting each of the interactions
frequencies individually, contact maps were normalized
globally through what we called the SCN approach, which
can be applied to any genomic contact map and inde-
pendently from the protocol that was used to generate
it. The normalization described below is based on the
interactions exhibited by the entire restriction fragments,
before the second digestion, in order to remain as broadly
generalizable as possible to other experimental protocols.
The reason why we applied normalization on the frag-
ment instead on the extremities is that for each pair of
fragment there are four possibilities to make religation

event. Each of those four possibilities will exhibit a dif-
ferent GC content and a different dA+dB and therefore
the biases described in Figure 1D and 1E, that depends on
the extremities, will be smoothen out when aggregating
the combinations together. This point was also discussed
in the original paper [13]. The advantage of this method
is that it smoothens out all the biases described above
and therefore provides a cleaner view of the frequency
of interaction between any pair of restriction segments
in the genome.

Intra- and inter-chromosomal interactions were treated
separately but using the same procedure. Firstly, normal-
ization will give an equal weight to each fragment in
the contact map. Therefore, RF with very low number
of reads, corresponding to RF that could not be properly
detected, are likely to introduce noise in the normalized
contact map and have to be removed (see Additional file 1:
Figure S3). In order to identify these fragments, we com-
puted the distribution of reads in the contact map (see
Additional file 1: Figure S2B). This distribution is roughly
gaussian, with a long tail corresponding to low interaction
fragments. Based on this distribution, we cut the tail of the
distribution (see Methods for further information).

Once low interacting fragments are removed, we wish
to normalize all rows and columns of the contact map
to one so that the matrix remains symmetric. This was
done through the following simple procedure. Firstly,
each column vector was normalized to one, using the
euclidian norm. Then each line vector of the resulting
matrix was normalized to one. The whole process was
repeated sequentially until the matrix become symmetric
again with each row and each column normalized to one
(Additional file 1: Figure S4 and Methods). Usually, two
or three iterations are sufficient to insure convergence.
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Since it involves a sequential normalization of column
and line vectors of the matrix, this method was named
Sequential Component Normalization (SCN). This nor-
malization can be viewed as a sequence of extensions
and shrinking of interaction vectors so that they tend to
reach the sphere of radius one in the interactions space.
A similar and faster approach is to divide all the matrix
elements cij by the product of the norms of row i and
column j : c∗

ij = cij
|cik ||ckj| . This method yields to a normal-

ized contact map overall very similar to SCN (Additional
file 1: Figures S5 and S6). However since the sum of each
component is not necessarily equal using this method,
it may bias further analysis such as assessing the 3D
colocalization of genomic elements (see below). An alter-
native normalization method has been used so far by
other groups [9], that use the sum of the components
instead of the euclidian norm : c∗

ij = cij∑
k cik

∑
k ckj

. We
noticed that this method yields to a contact map with
lower contrast than the SCN (Additional file 1: Figure
S5 and S6) and therefore recommend SCN use in fur-
ther works. The normalization using the sum will give
more weight to fragments wich makes fewer interac-
tions whereas our normalization will give more weight
to fragments interacting moderately with many frag-
ments. Intra and inter-chromosomal interactions were
separated in two datasets and the corresponding nor-
malized contact matrices between RFs were plotted as a
function of their position along chromosomes (Figure 2A
and 3A, respectively).

S. cerevisiae contact maps after SCN

The normalized maps overall are similar to those observed
before [13]. Since the probability of interaction between
monomers along a polymer is decreasing with the lin-
ear distance between them, the diagonal which represents
neighboring RFs presents the highest interactions score
[4]. In order to increase the contrast and observe inter-
actions between non-adjacent intra-chromosomal RF we
then divided the number of interactions between frag-
ments separated by a genomic distance Dg by the average
interaction count between fragments separated by the
same distance Dg (see Methods). Some features appear
more contrasted with respect to the original analysis,
with a typical X shape pattern centered on the cen-
tromere for each chromosome (Figure 2B). This pattern
reflects the fact that the centromere does not interact
much with the chromosome arms whereas both arms can
interact together. In addition, interactions between RF
located on both arms appear clearly more constrained
when at symmetrical distances from the centromere and
within its vicinity (Figure 2C). In addition, the bipar-
tite structure of chromosome 12 due to the insulating
presence of the nucleolar rDNA repeats remains clearly

apparent [13]. The corrected contact maps for inter-
chromosomal interactions also reveal striking features
(Figure 3A). Centromere clustering is clearly apparent and
results in all the centromeres interacting with each other’s
on the map, as in [13]. The interactions between two
chromosome arms along their length are also extremely
clear. The X shaped patterns at inter-centromeric inter-
actions observed in the matrix indicate that centromeres
are somehow isolated from the rest of the chromoso-
mal arm sequence (see for instance chromosome VII and
chromosome XVI on Figure 3B). This feature is even
more striking when the correlation matrix is drawn sim-
ilarly to [8] (Additional file 1: Figure S7). In this matrix,
each element cij is the Pearson coefficient between the
vectors i and j.

In addition, telomeres are also found to have enriched
contact frequencies (for instance chromosome XIII and
chromosome IV on Figure 3C). To investigate the role of
the chromosomal arm length in the inter-chromosomal
interaction frequencies, all chromosomal arms were
ranked with respect to their length and the correspond-
ing contact maps were drawn (Figure 4A). This layout
conveniently reveals global interaction patterns in respect
to chromosomal arm size: shorter arms tend to interact
with shorter arms whereas longer arms tend to inter-
act with longer arms (from the upper left corner to
the lower right corner). On the contrary, shorter arms
tend to make very few contacts with longer ones (upper
right and lower left corners on Figure 4A). Zooming on
the five shorter arms on the contact map reveals that
the interaction frequencies between subtelomeres from
shorter arms are important, sometimes even more than
centromeres (e.g arms III-L and IX-R, see Figure 4B).
To investigate the arm length relationship with sub-
telomere interactions, we computed the mean inter-
action frequencies between all sub-telomere pairs for
both the normalized and original data. The normalized
data exhibit two types of preferred subtelomeric inter-
actions, one for short and one for long chromosome
arms, whereas the orginal analysis mostly emphasized
short arms interactions (see Additional file 1: Figure S8).
Given that the measurements reflect a population aver-
age, it is impossible to know from this data if all the
telomeres interact preferentially in a similar ways in all
cells taken individually. However, similar preferred inter-
actions have been observed in single cells using flu-
orescent microscopy approaches [22,23] as well as in
recent modeling approaches [24]. In addition, the rDNA
now appears not only as an intra-chromosomal insulator
region, but also modifies the interacting properties of the
two DNA segments it delimits. Whereas a gradual shift
in interaction frequencies from centromere to telomere is
observed for long arms, for chromosome 12 the DNA seg-
ment located between the rDNA and the telomere seems
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Figure 3 Normalized inter-chromosomal contact map of S. cerevisiae. The color scale represents the normalized interaction frequencies
between fragments which is calculated with the Sequential Component Normalization. A) Matrix of the sixteen chromosomes from S. cerevisiae. B)
Zoom on chromosomes VII and XVI. C) Zoom on chromosomes IV and XIII.

Figure 4 Normalized inter-chromosomal contact map of S. cerevisiae. A) Inter-chromosomal contact map of chromosomal arms ranked
according to their size, from the shortest (left) to the longest (right). The white empty squares correspond to specific emphasis on the five shortest
arms (B), and on chromosome XII (C).
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less constrained that the one before the rDNA cluster
(Figure 4C).

Re-assessing the 3D colocalization of genomic elements
The influence of this normalization procedure on the pref-
erential interactions detected previously was addressed.
In the original analysis, receiver operating curve (ROC)
confirmed an expected enrichment of interactions for
centromeres and telomeres resulting from the Rabl con-
figuration [13,23]. More interestingly, early replication
origins [25] were also shown to interact preferentially, a
result experimentally supported [3]. Finally, two preferen-
tial interactions regions where identified for tRNA genes,
one around the spindle pole body (SPB) and one in the
vicinity of thenucleolus [13].

In this paper, we used a different method than the orig-
inally published ROC analysis. The initial ROC analysis
asked the question: among the pool of strong interac-
tions, is there an enrichment in interactions between
two fragments which both carry the genomic object of
interest. We ask the question: among the pool of strong
interactions carrying one feature of interest, is there an
enrichment for interactions with a fragment carrying
the same feature (for details about the implementation,
see Methods). ROC analysis on the normalized data
confirmed the expected centromeres and telomeres
preferential interactions (see Figure 5A). In addition,
enrichment in interactions between early replication
origins was also observed. However, the frequencies
of interactions between restriction fragments contain-
ing tRNA genes did not exhibit significant increase
when using the normalized data (Figure 5B, com-
pare the right panel with the left panel). This was
found to be true for all RFs containing tRNAs or for
RFs containing only tRNAs previously found to inter-
act preferentially with the SPB or with the nucleolus
(see Figure 5B).

The previously described preferential interaction
between tRNA genes was lost because it resulted from
the fact that, without normalization, two fragments inter-
acting overall more with the whole genome will interact
together more frequently than other fragments. This is
actually the case for tRNA fragments (see Additional
file 1: Figure S9). The reason why tRNA bearing RF inter-
act more frequently than others with all other fragments
does not depend on their size, and remain open. A local
improvement in cross-linking efficiency resulting from
the chromatin state and/or presence of protein complexes
is a possibility. Of course, we do not exclude the possi-
bility of actual preferential interactions between tRNA
as observed experimentally [26,27] and suggested by
other approaches [24]. However, more experiments and
higher resolution will be needed to detect those through
genomic 3C approaches.

Normalization of the human genome contact map using
SCN
In order to test how the SCN approach can be applied
to the interaction map of a larger genome, we used the
human genome-wide dataset published in 2009 by Lieber-
man et al. [8]. The restriction enzyme used in this dataset
cuts the human genome over 830,000 times. Therefore,
the number of potential interaction in the experiment is
higher than 340 billion. Since the typical number of reads
obtained in such experiment hardly reaches one billion
[11], the resulting genome wide contact matrix is very
sparsed. In order to get enough information to build a con-
tact map, one can bin the matrix by adding the contacts
over several fragments along the genome together. For
intra-chromosomal interactions, a typical bin size of about
ten fragments is adequate since most of the interaction
detected in such an experiment are intra-chromosomal
and since the number of possible intra-chromosomal
interactions is much lower than the number of possible
inter-chromosomal interactions. For inter-chromosomal
interaction the bin size has to be increased considerably.
We used a bin of one hundred fragments to build the
corresponding contact map for the human genome and
normalized it through the SCN method. The resulting
map clearly shows preferential interactions between small
chromosomes and between the long arm of long chromo-
somes (Additional file 1: Figure S10). Importantly, ROC
curves which are used to determine the genomic elements
enriched at high interaction hotspot strongly depend to
whether or not the data were normalized. We performed
ROC analysis on the binding sites of the CCCTC-binding
factor (CTCF), a zinc finger protein that plays an impor-
tant role in the organization of chromatin by mediating
inter and intra-chromosomal contacts between distant
loci [28,29], PolII, the centromeres and the telomeres. The
results for both raw and normalized data clearly show
that the preferential interactions of CTCF, PolII and cen-
tromeres are only seen on the properly normalized data
(Figure 6).

Conclusions
The method described above consists in an easy and con-
venient way to normalize and represent genomic 3C data.
It is worth recalling that before doing any normaliza-
tion procedure, one has to identify the products and filter
out all those that do not correspond to what is expected
from the experimental protocol. It represents here more
than 90% of the total reads. Depending on the proto-
col used, the biases in the data will vary, generating an
extra number of reads that should not be used in the
analysis. Among those identified in the present study,
the original circularization bias is certainly of importance
for any experimental protocol involving a similar step.
While increasing contrast and visibility of the Rabl yeast
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Figure 5 Receiver operating curves to assess 3D colocalization of genomic elements for the yeast contact map. Receiver operating curves
(ROC) were used to assess 3D colocalization of different genomic elements. Data from Duan et al. [13] (left column) and normalized data (right
column) were used. A) Centromeres, Telomeres, early origins of replication give positive signal with both types of data. B) The group of tRNA was
assessed for 3D colocalization. Two clusters proposed by [13] were assessed with both data: cluster 1 of tRNA genes proposed to colocalize near
rDNA and cluster 2 of tRNA genes proposed to colocalize near centromeres. The data from [13] give a positive signal contrary to the data
normalized with SCN.

genome organization, the procedure described here con-
firms the preferential interactions of specific elements,
such as early replication origins. However, it also revealed
that what could appear like enrichment in interactions
between other elements has to be carefully interpreted.

The SCN normalization procedure proposed here will
be helpful once higher density contact maps of S. cere-
visiae become available, and can be conveniently adapted
to any other organisms. Increasing the resolution of these
contact-maps will likely reveal more features, and can be
addressed either through alternative protocols address-
ing the “invisible” zones of the genome (for instance by
increasing the length of the sequenced reads or using
various restriction enzymes), or through increasing the
number of reads.

Methods
Alignment of the reads on the reference genome
The paired-end sequence reads from banks (SRP002120)
were aligned along the yeast genome of the sequenced

strain S288C (2011-02) with Bowtie2 [30]. Raw data
were converted into fastq files and sent to the aligner.
Only reads exhibiting non-ambiguous alignment on the
genome were retained. This was done by using the pre-
set parameter ”–very-sensitive” and setting a thresh-
old on the mapping quality. The mapping quality Q is
defined as Q = -10 × log10(p) where p is the prob-
ability that the reported position is false. The higher
Q, the more unique is the positioning. Reads with a
score lower than 30 were discarded which means that
there is one in a thousand chance that a reported
position is wrong.

Statistical analysis of the different biases in the contact
frequencies
In the following, we analyzed separately each different
experiment conducted in [13] since different protocols
can produce different results. Notably, the use of the
secondary enzyme (MspI or MseI) change the potential
interactions that can be observed.
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Figure 6 Receiver operating curves to assess 3D colocalization of genomic elements for the human contact map. Receiver operating curves
(ROC) were used to assess 3D colocalization of different genomic elements for the human contacts map of Lieberman et al [8]. Non normalized data
(left column) and normalized data (right column) were used. Only Telomeres give positive signal when using the non normalized data (curves for
Centromeres, PolII are superimposed with the CTCF curve). When using the data normalized with SCN, all genomic elements tested give positive
signal to the ROC test (curve for PolII is superimposed with CTCF curve).

Only the reads exhibiting a position on the genome
reconcilable with the protocol design were retained
(Figure 1A). Firstly, they are expected to map at a distance
of about 20 bp to the nearest Hind III restriction site due
to the use of the enzyme Ecop15I at the step 10 of the
protocol (Figure 1A). We computed the number of read
pairs as a function of the distance between the beginning
of the read to the next RE1 site for each experiment. We
found little difference between condition A and condition
B (conditions A and B differ in the DNA concentration
at the 3C step: A: 0.5 μg/ml, B: 0.3 μg/ml). Whereas
reads from datasets HindIII-MspI-A and HindIII-MseI-
A have maximums for distances equals to 20, 21 and 22
bp, HindIII-MspI-B, HindIII-MseI-B and HindIII-MseI-
uncross-control-B exhibit maximums for distances equals
to 21, 22 and 23 bp (see Additional file 1: Figure S11).
We only kept reads with distance between the beginning
of the read and the next RE1 site equal to 20, 21 and 22
bp for condition A and equals to 21, 22 and 23 bp for
condition B. Secondly, interactions involving fragments
which have no restriction site for the secondary enzyme
or a secondary site with a position located less than 20 bp
from the first restriction site were also discarded. Finally,
interactions corresponding to self-circularization (loops)
and ligation of adjacent fragments (religation events) were
removed from the analysis.

Bias of fragments sizes
The influence of the size of the RF on the observed fre-
quency of interaction was analyzed as followed. Firstly,
the sizes of each fragment were binned into equally
sized windows (bin size: 100 bp). For each bin, the
number of possible fragments Ni was counted according

to the initial distribution of fragment sizes. The num-
ber of detected reads in the experiment Ri is counted for
each bin. Then, the number of reads per fragment ri was
calculated from these two numbers, with ri = Ri/Ni. We
fitted the data points with the following function: f (x) =
A(1 − (1 − pc)x) which is related to the probability that
the fragment is crosslinked at least one time. A is a nor-
malization constant and pc is the probability of crosslink
by base paire (we found A � 4000 and pc � 0.004). The
effect of the fragments size on the number of interaction
reads before and after SCN is represented on Additional
file 1: Figure S12 in the additional documentation.

Bias of GC content
The GC content influence was determined by bin-
ning the GC content of the mean of the two reads
of each interaction (taking the sequence of the 20 bp
before or after the restriction site RE1 according to
the orientation of the read) into equally sized bins
(bin size: 2.5%). For each bin, the number of possi-
ble interactions Ni according to the initial distribution
of GC contents, and the number of detected reads in
the experiment Ri were estimated. These two num-
bers were divided to generate the number of reads
per possible interaction: ri = Ri / Ni.

Bias in the circularization steps
The effect of the lengths of the DNA segment during cir-
cularization steps was analyzed by binning the size of the
circularization segment into equally sized bins (bin size:
1 bp). The lengths were calculated using the coordinates
of the positions of RE1 and RE2 restriction sites (MspI or
MseI) on the reference genome. For each bin, the number
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of possible interactions Ni according to the initial distribu-
tion of segment lengths and the number of detected reads
in the experiment Ri were estimated. These two numbers
were divided to give the number of reads per possible
interaction: ri = Ri/Ni.

Generation of matrices
Before the normalization step, we removed an important
number of restriction fragments that could not be cor-
rectly detected in the experiment. First, non-mappable
fragments were discarded. They correspond to fragments
whose both extremities give ambiguous mapping (i.e the
20 bp sequence of the read can be located in several loci
in the genome due to the presence of repeated sequences).
104 fragments felt into this category, most of them posi-
tioned in the subtelomeric regions of the chromosomes
which are indeed enriched in repeated sequences. Sec-
ond, all RFs that did not present a RE2 site were discarded
(i.e. a MspI site for the experiment carried out with
HindIII and MspI as RE1 and RE2, respectively). Intrigu-
ingly, these fragments are still detected in the experiment
but with a smaller number of reads: Additional file 1:
Figure S2 A represents the distribution of the number of
reads per fragment. Two groups can be distinguished: a
group corresponding to fragments that do not exhibit a
secondary enzyme restriction site (having a number of
reads inferior to 1000) and a second group correspond-
ing to fragments having a RE2 site. Overall, 1217 RFs were
concerned, which left 3098 RFs from the original 4454 for
the MspI-HindIII experiment.

In addition, several RFs still exhibited a very small
number of interaction reads with respect to the aver-
age (less than a few dozens reads re. the HindIII-MspI
experiment), as seen on Additional file 1: Figure S2 B
were the distribution of the euclidian norms of all frag-
ments is plotted. Fragments with a norm under 30
were discarded from the analysis. 168 fragments felt
into this category when considering inter-chromosomal
interactions (see Additional file 1: Figure S2 B) and, in
good agreement with the biases identified above, they
exhibited either low GC content at their extremities, or
the length of the two ligated fragments dA + dB had
disfavored circularization.

Then each column vector was normalized to one, using
the euclidian norm.

Then each line vector of the resulting matrix was nor-
malized to one. The whole process was repeated sequen-
tially until the matrix become symmetric again with each
row and each column normalized to one. Convergence is
not mathematically guaranteed for any matrix. For posi-
tive matrices which we have to deal with, it is generally
attained in two or three iterations. For graphic represen-
tation the matrix was blurred using a convolution matrix,
with as kernel the 3x3 matrix [0.05 0.05 0.05; 0.05 0.05

0.05; 0.05 0.05 0.05]. The convolution was repeated 10
times so that the structures appear clearly.

For the intra-chromosomal interactions, an extra step
was added before normalization to take into account the
effect of the genomic distance. First, we average the num-
ber of reads per possible interaction for every possible
genomic distance. For each bin, the number of possi-
ble interactions Ni according to the initial distribution of
genomic distances was estimated as well as the number
of detected reads in the experiment Ri. Then, these two
numbers were divided to generate the number of reads per
possible interaction: ri = Ri / Ni. Then, we use polynomial
functions to fit the data points (see Additional file 1: Figure
S13). Finally, we divide the number of reads of the exper-
iment for each interaction by the expected value given by
the fit at the genomic distance of the interaction.

This normalization step allows us to see interac-
tions that are stronger than what it was expected
due to the genomic distance effect. The SCN can be
applied subsequently.

Re-assessing the 3D colocalization of genomic elements
We used the statistical tool called Receiver Operat-
ing Curve (ROC) to look for 3D colocalization of sev-
eral genomic elements. We slightly modified the initial
method. We process as follows: first, we selected only
the interactions containing one or two fragments con-
taining the genomic element (centromere, telomeres, early
origins of replication [25] or tRNA) instead of taking
all detected interactions. We ranked the interactions of
this set by p-values for the data of [13] and by the nor-
malized interaction score for the normalized data. A
interaction is labeled “positive” if both fragments con-
tain the genomic element and negative in the other case.
The ROC is generated by traversing the ranked list and
plotting the percentage of positive and negative interac-
tion above the threshold (p-value or normalized interac-
tion score). If a genomic element tends to have strong
interactions then the percentage of the positive interac-
tions would be higher and the corresponding curve will
be above the line x=y. Telomeres regions were deter-
mined as the last ten RF from each arm. Positions of
early origins of replication and tRNA were similar to
those used in [13].

Additional file

Additional file 1: Additional-documentation. This document gives more
information concerning the filtering of fragments and the normalization
procedure.
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