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Slowdown of growth controls
cellular differentiation
Jatin Narula1,†, Anna Kuchina2,†, Fang Zhang2, Masaya Fujita3, Gürol M Süel2 & Oleg A Igoshin1,*

Abstract

How can changes in growth rate affect the regulatory networks
behavior and the outcomes of cellular differentiation? We
address this question by focusing on starvation response in
sporulating Bacillus subtilis. We show that the activity of sporula-
tion master regulator Spo0A increases with decreasing cellular
growth rate. Using a mathematical model of the phosphorelay—
the network controlling Spo0A—we predict that this increase in
Spo0A activity can be explained by the phosphorelay protein
accumulation and lengthening of the period between chromo-
somal replication events caused by growth slowdown. As a
result, only cells growing slower than a certain rate reach
threshold Spo0A activity necessary for sporulation. This growth
threshold model accurately predicts cell fates and explains the
distribution of sporulation deferral times. We confirm our predic-
tions experimentally and show that the concentration rather
than activity of phosphorelay proteins is affected by the growth
slowdown. We conclude that sensing the growth rates enables
cells to indirectly detect starvation without the need for evaluat-
ing specific stress signals.
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Introduction

Stress response networks in bacteria need to be able to sense envi-

ronmental conditions to activate the appropriate response for their

survival (Taylor & Zhulin, 1999; Storz et al, 2011). Many stress

response networks sense and respond specifically to a particular

environmental signal by employing a sensor protein that binds a

specific signaling molecule and transduces this information to

downstream network components (Laub & Goulian, 2007).

However, some stress conditions, such as starvation, can be

triggered by a wide range of environmental perturbations and there-

fore are hard to define in terms of the level of a single metabolite

(Peterson et al, 2005). As a result, responding to starvation requires

a gene regulatory network that can detect the availability of a

variety of nutrients and integrate this information into the

cellular response. Conversion of this type of multi-nutrient

information into cellular responses is a complex task. Even for the

best studied model systems, we do not fully understand how gene

regulatory networks control bacterial cell survival in response to

starvation.

Bacillus subtilis cells survive prolonged starvation by differentiat-

ing into stress-resistant and metabolically inert spores (Fig 1A;

Higgins & Dworkin, 2012). This differentiation program, known as

sporulation, is controlled by the master regulator Spo0A (0A) which

is active in its phosphorylated (0A~P) form (Errington, 2003). 0A

activity itself is regulated by a complex network known as the

sporulation phosphorelay—a more complex version of the bacterial

two-component regulatory systems (Burbulys et al, 1991). This

phosphorelay (Fig 1B) consists of the major sporulation kinase KinA

that autophosphorylates and indirectly transfers the phosphoryl

group to 0A via the intermediate proteins Spo0F (0F) and

Spo0B (0B).

The expression levels of kinA, 0F, and 0A are regulated by 0A~P

via direct and indirect transcriptional feedback (Predich et al, 1992;

Fujita & Sadaie, 1998). Crucially, autophosphorylation of KinA can

be blocked by high levels of 0F (Fig 1B) through a substrate inhibi-

tion mechanism (Grimshaw et al, 1998; Chastanet et al, 2010; Narula

et al, 2015). This substrate inhibition forms part of a negative feed-

back loop in the phosphorelay. Recently, we showed that this nega-

tive feedback allows cells to respond to transient gene dosage

imbalance during DNA replication with a pulsatile activation of 0A

(Narula et al, 2015). Due to the widely conserved arrangement of 0F

(326° -oriC proximal) and kinA (126°-ter proximal) genes on the chro-

mosomes in B. subtilis and other sporulating bacteria, 0F gene is

replicated before that of kinA, leading to a transient decrease in the

kinA:0F gene dosage ratio. Completion of DNA replication returns

the ratio to 1:1 and triggers the phosphorelay to respond with a pulse

of 0A~P. Thus, in every cell cycle of starving B. subtilis cells, comple-

tion of the DNA replication is followed by a pulse of 0A~P (Fig 1A).

The decision to sporulate is based on the amplitude of the 0A~P
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pulse. Low-amplitude 0A~P pulses allow cells to divide medially and

continue growth (Fig 1A—left), whereas when this amplitude

exceeds a threshold (Fig 1A—right), cells divide asymmetrically and

commit to sporulation (Fujita & Losick, 2005; Veening et al, 2009;

Eswaramoorthy et al, 2010a; Narula et al, 2012).

Despite these developments in the understanding of the phospho-

relay dynamics, the relationship between starvation and the ampli-

tude of 0A~P pulses remains unclear. It has been suggested that a

multi-protein phosphorelay, offering multiple entry points for puta-

tive starvation signals, is well suited for proper 0A activity regula-

tion (Hoch, 1993; Ireton et al, 1993). However, it is unclear how the

design of the phosphorelay enables it to combine information about

several different essential nutrients (Dawes & Mandelstam, 1970),

evaluate the starvation level, and correctly time the cell-fate deci-

sion to allow complete execution of a multistage sporulation

program. As a result, the central question of how B. subtilis sporula-

tion program senses nutrient levels remains open.

Here, we identify and explore the correlation between cell

growth rates and amplitudes of 0A~P pulses. Using a combination

of mathematical modeling and quantitative single-cell experiments,

we uncover the mechanistic basis of this correlation. Further, we

demonstrate that this relationship represents a strikingly simple way

for the sporulation network to sense and integrate information

about nutrient in order to decide between continuing vegetative

growth and committing to sporulation.

Results

0A~P pulse amplitudes are correlated with cell growth rate

To understand the dynamics of the B. subtilis starvation response,

we used time-lapse microscopy to track single cells as they grow

and sporulate in nutrient-limited media. In these conditions,

B. subtilis cells do not sporulate immediately upon exposure to star-

vation. Instead, cells proceed with multiple rounds of vegetative

division before eventually dividing asymmetrically and forming a

spore. During this multi-cycle progression toward spore formation,

cell growth rate (inferred from cell elongation rate) gradually

decreases (Fig 1C).

To understand 0A activity dynamics in single cells during this

period, we used fluorescent reporters to measure gene expression

from 0A~P-regulated promoters for 0A and spo0F (P0A and P0F; see

Materials and Methods). As expected from prior work, our measure-

ments revealed that 0A activity (defined as the production rate of

fluorescent reporter proteins) pulses during every cell cycle in star-

vation conditions (Fig 1E). P0F promoter activity similarly pulses

once every cell cycle in starvation conditions (Fig EV1A–C). In

contrast, measurements of the production rate of a fluorescent

protein, YFP, expressed from an IPTG-inducible promoter (Phsp)

under different inducer concentration in starving cells showed no

pulses (Fig EV1D–F). Our measurements further show that 0A activ-

ity pulse amplitudes increase gradually over multiple cell cycles.

Notably, this increase in amplitudes coincides with the decrease in

cell growth rate (compare Fig 1C and E). Quantification of this rela-

tionship using a Spearman’s rank correlation showed a highly

significant anti-correlation between 0A activity pulse amplitudes

and cell growth rate (q = �0.8, P-value = 4e-64, N = 307; Fig 1F).

Moreover, as expected the cells that end up as spores (red dots on

Fig 1F) have the highest 0A~P peaks and correspondingly slowest

growth rates.

What can explain this correlation? Given that the amplitude of

the Spo0A~P peaks is determined by the phosphorelay, one can
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Figure 1. Decision making during Bacillus subtilis sporulation.

A Sporulation commitment depends on the amplitude of a cell-cycle-
coordinated pulse of the sporulation master regulator Spo0A~P (0A~P).
Yellow bars indicate the DNA replication phase.

B The sporulation phosphorelay network that controls 0A~P formation (see
text for details).

C–E Single-cell time-lapse microscopy using a P0A-cfp reporter for 0A~P. (C)
Cell length (green) and its cell growth rate, that is, cell-cycle-averaged
log-derivative, (gray), for a single cell traced over multiple cell cycles in
starvation media. Expression level of P0A-cfp (D) increases in non-
monotonic fashion. Its promoter activity (defined as production rate, an
indicator of 0A~P level) shows pulses with an increased amplitudes that
is coordinated with a decrease in growth rate (E). In (C–E), vertical
dashed lines indicate cell divisions.

F Measurements of P0A-yfp promoter activity show that 0A~P pulse
amplitudes and growth rates are anti-correlated. Each dot corresponds
to ranked measurements of the P0A-yfp promoter activity pulse
amplitude and growth rate of an individual cell cycle. Red and gray dots
indicate cell cycles that end in sporulation and vegetative division,
respectively. The resulting Spearman’s rank correlation q = �0.8, P-
value < 10�60, N = 307.

G Two hypothetical mechanisms behind the observed correlation.
Starvation may be detected by the sporulation network via growth rate
modulation of phosphorelay concentrations or by modulation of
phosphorelay activity by growth-rate-correlated signal/metabolite.

Source data are available online for this figure.
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propose two (non-mutually exclusive) mechanisms (Fig 1G). In the

first one, slowdown of growth directly affects the concentrations of

phosphorelay proteins through growth-dependent changes in DNA

replication, dilution, cell volume, and transcription/translation rates

(Bipatnath et al, 1998; Klumpp et al, 2009). As a result, slowdown

of growth could increase concentrations of phosphorelay proteins

and lead to higher 0A activity. This type of indirect sensing is partic-

ularly appealing since it bypasses the need for any dedicated

metabolite sensing. In the second mechanism, growth slowdown is

correlated with accumulation of a certain intracellular signaling

molecule (“unknown starvation signal”) which activates one of the

phosphorelay components and leads to Spo0A~P accumulation. For

example, it has been suggested that the autophosphorylation activ-

ity of KinA may be modulated by the binding of ATP and NAD+ to

its PAS-A domain (Stephenson & Hoch, 2001; Kolodkin-Gal et al,

2013) although other studies indicate that the PAS domain is

dispensable for the autophosphorylation activity (Eswaramoorthy

et al, 2009; Winnen et al, 2013). The correlation of starvation signal

with growth implies that the starvation signal regulates cell growth

or that cell growth controls accumulation of the starvation signal or

that both starvation signal and growth rate are controlled by a

common upstream signal. In the following subsections, we evaluate

the importance of these hypothetical mechanisms using a combina-

tion of mathematical modeling and single-cell experiments.

Decrease in growth rate leads to accumulation of stable proteins

As cell volume increases exponentially, growth rate acts as an effec-

tive first-order degradation constant of all cellular proteins

(Appendix Text A1). As a result, a decrease in the rate of growth

leads to accumulation of constitutively produced proteins. For

example, if a stable protein is produced at a constant rate of 10

molecules per min in a cell with 60 min generation time, its steady-

state concentration would be 600 molecules/cell. If cell growth

decreased to a generation time of 300 min, the concentration would

increase to 3,000 molecules/cell. If on top of this, cell volume

decreases for slower-growing cells, as is the case for starving

B. subtilis cells, then that would further increase the concentration

of the corresponding proteins. Combining these two effects into a

simple mathematical model, we would predict the following

dependence of concentration C on growth rate l (see Appendix Text

A1 for derivation):

CðlÞ ¼ P

VðlÞðkdeg þ lÞ (1)

Here, V(l) is a growth-rate-dependent cell volume, kdeg is

the rate of protein degradation or deactivation and P is a rate of

protein production which for simplicity is assumed to be growth

independent.

To test this model experimentally, we measured the single-cell

level of a fluorescent reporter protein of cells growing with different

rates and compared the results to the predictions of our equa-

tion (1). Phosphorelay proteins have been shown to accumulate as

cells slow down their growth in starvation (Veening et al, 2008;

Eswaramoorthy et al, 2010b; Levine et al, 2012), but feedback loops

from 0A~P do not allow us to separate the direct effects of growth

rate slowdown from the effects of increased 0A~P. Therefore, we

chose to test equation (1) by measuring the growth rate-dependent

change in the level of a stable fluorescent protein, YFP, expressed

from an IPTG-inducible promoter (Phsp) under different inducer

concentrations in starving B. subtilis. The results demonstrate that a

decrease in growth rate during starvation can increase the level of

stable proteins severalfold and that relative increase is independent

of the rate of production as data collapses upon normalization

(Fig 2A). When these results are compared to the model, we can see

that the trend can be fitted to equation (1) leading to the value of

kdeg = 0.12/h (about 6-h half-life).

Accumulation of phosphorelay proteins with growth slowdown is
sufficient to explain observed increase in 0A~P levels

To understand how growth rate affects the amplitude of 0A~P

pulses, we employed a detailed mathematical model of the sporula-

tion phosphorelay that we have recently developed (Narula et al,

2015). This model successfully explained both the mechanism and

timing of 0A~P pulsing but postulated an increase in KinA autophos-

phorylation rate to explain the increase in pulse amplitudes during

starvation. Here, we instead chose to keep all the biochemical rate

constants (including KinA autophosphorylation rate) fixed and

instead study the effects of reduction of the dilution rate and cell

volume on 0A~P pulsing.

Our model simulations showed that these effects lead to increased

0A~P amplitudes as growth slows down and cell cycles get longer

(Fig 2B). The results indicate that growth affects 0A~P pulsing in two

major ways. At high growth rates, the DNA replication period takes

all or most of the cell-cycle time and leaves little time for the kinA:0F

gene dosage to be at a 1:1 ratio which in our model corresponds to

the time of 0A~P pulsatile increase. As a result of subsequent round

of DNA replication, gene kinA:0F dosage ratio returns to a 1:2 ratio

and the pulses are cut short before reaching their maximal amplitude.

At lower growth rates, each pulse reaches its peak amplitude before

being brought down by the negative feedback in the network. More-

over, the decreases in cell volume and dilution rate at these lower

growth rates lead to an increase in phosphorelay protein concentra-

tions and consequently higher 0A~P pulse amplitudes (Fig 2B).

To determine how the increase in phosphorelay protein levels

affects 0A~P and identify the phosphorelay proteins that play the

most significant role in this increase, we performed a sensitivity

analysis of our model. To this end, we chose to computationally

change the production rates of individual phosphorelay proteins and

examine how this affects 0A~P pulse amplitudes (Fig 2C). Our model

indicated that pulse amplitudes are most sensitive to KinA (~25%

change in peak 0A~P with 10% change in KinA). Increasing 0F also

has a strong effect; however, in contrast to KinA, 0F decreases pulse

amplitudes (increase in 0F by 10% decreases 0A~P peak by ~18%).

Thus, our mathematical model predicts that a slowdown of cell

growth over multiple cell cycles leads to a gradual increase in 0A~P

peak levels (Fig 2D, solid line) mainly due to an increase in KinA

concentration with decrease in cell volume and dilution.

Comparison of the model predictions (Fig 2D, solid line) with

experimental data from time-lapse microscopy (Fig 2D, dots)

showed that the effects of growth slowdown are sufficient to explain

observed increases in peak amplitudes. The ultrasensitive depen-

dence of 0A~P pulse amplitudes on growth rate is consistent with

the trends in the data. Moreover, examining the distribution of
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0A~P peak activity and growth rate in the single-cell data (Fig 2D,

histograms on the axes), we can see that values for sporulating and

non-sporulating cells are well separated. This supports our

hypothesis that the slowdown of growth can act as a starvation

signal and control the sporulation decision.

Since a 0A activity threshold is known to control sporulation cell

fate (Chung et al, 1994; Fujita et al, 2005; Narula et al, 2012), we

expect from the results in Fig 2D that this threshold would corre-

spond to a threshold growth rate below which cells will sporulate.

To test this, we constructed a cell-fate classifier by performing logis-

tic regression to estimate the probability of sporulation as a function

of peak P0A promoter activity or as a function of growth rate. Our

results demonstrated an ultrasensitive dependence of the probability

of sporulation on both metrics (Fig EV2). This observed ultrasensi-

tive dependence allows us to define a threshold value for P0A
promoter activity above which cells sporulate with at least 50%

probability. Similarly, we can estimate a threshold growth rate

below which cells sporulate. We can use these thresholds to predict

whether a given cell cycle will end up producing a spore based on

P0A promoter activity being above threshold (or, growth rate being

below its respective the threshold). We found that the resulting

predictions work very well, producing an accuracy of 85% for P0A
promoter activity and 81% for growth rate.

Analysis of the relationship between growth rates of mother–

daughter pairs and daughter cell fates showed that mother and

daughter growth rates are weakly correlated (q = 0.41,

P-value = 4.5e-14, Npair = 312; Fig EV3A), suggesting that slow-

growing mothers produce slow-growing daughter cells that are

likely to sporulate. Furthermore, the correlation between sister cell

growth rates is also quite weak (q = 0.36, P-value = 4e-06,

Npair = 156; Fig EV3B), indicating that there is a large chance that

only one daughter cell will sporulate. The same growth threshold

calculated in Fig 2D is able to accurately distinguish sister pairs with

asymmetric fates and pairs with symmetric cell fates. Thus, the

heterogeneity of growth during starvation has a significant impact

on the cell fates adopted by sister cells, but the growth threshold

model is still able to determine sporulation cell fate. Altogether, this

analysis confirms that growth rate is indeed an accurate predictor of

cell fate.

To test the robustness of growth rate as a cell-fate predictor for

sporulation, we examined how the threshold value of this predictor

affects its accuracy. We varied the growth rate threshold value

(Fig 2E) to calculate the receiver operating characteristic (ROC)

curve that provides the relation between false-positive rate (fraction

of cells below growth rate threshold that remain vegetative) and

true-positive rate (fraction of cells below growth rate threshold that

sporulate). The overall goodness of a predictor is usually character-

ized by the area under the ROC curve (AUC; Fig 2E—shaded

region). An AUC of 1 represents a perfect predictor, whereas AUC of

0.5 means the cell-fate prediction is no better than random (Hosmer

& Lemeshow, 2000). In our case, the area is 0.91 indicating that

growth rate is a highly robust predictor of sporulation. Thus, we

conclude that a simple growth rate threshold (Fig 2D, green vertical

line) is an accurate and robust predictor of sporulation cell fate.

Growth slowdown dynamics control sporulation deferral

In order to further test the effectiveness of growth rate as a predictor

of cell fates, we investigated whether the multi-cell cycle deferral of

sporulation can be explained simply by the dynamics of growth

slowdown. To test this hypothesis, we tracked lineages of
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Figure 2. Decrease in growth rate affects 0A~P levels and controls cell
fate.

A Fold change in Phsp-yfp fluorescence levels as a function of growth rate for
different IPTG inducer concentrations. Black line represents a model fit for
the effect of growth rate on the concentration of stable proteins.

B Model time course of 0A~P during starvation showing cell-cycle-
coordinated pulsing. Upper and lower panels show the growth rate (input)
and 0A~P response (output), respectively. Yellow bars and dashed lines
represent DNA replication periods and cell division, respectively. The effect
of growth rate on protein levels was modeled following the results shown
in (A). The simulation predicts that 0A~P pulse amplitudes increase with
decreasing cell growth rate.

C Sensitivity of the growth rate—0A~P pulse amplitude relationship to
changes in the gene expression of phosphorelay components. Model
simulations showed that 0A~P pulse amplitudes were most sensitive to
changes in the production rate of kinase KinA. Increase in 0F caused a
significant decrease in 0A~P pulse amplitude. 0A~P was found to be
relatively insensitive to changes in other phosphorelay components.

D Measurements of P0A-yfp promoter activity confirm that 0A activity pulse
amplitudes increase as growth rate decreases during starvation. Each dot
corresponds to a single cell cycle. Gray and red dots correspond to cell cycles
that end in vegetative division and spores, respectively. Solid lines show the
model predictions. Panels to the right and bottom show histograms of P0A-
yfp promoter activity and (growth rate)�1 for cell cycles that end in
vegetative division (gray) and spores (red) for each strain. Vertical green
lines show the thresholds that can be used to predict cell fate in each case.

E Receiver operating characteristic (ROC) curve for growth-based cell-fate
prediction. Blue line shows the relation between false-positive rate and
true-positive rate for different values of growth rate threshold. The black
dot marks the optimal growth rate threshold that minimizes classification
error. The high area under the ROC curve (AUC = 0.91) indicates that
growth rate is a highly robust predictor of sporulation.

Source data are available online for this figure.
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sporulating cells (Fig 3A) to determine the fraction of cells that

sporulated in each generation (Fig 3B, red dots). We found that the

fraction of cells that decide to sporulate gradually increased from

~10% in the first generation to about ~65% in the fourth generation

and remained approximately constant thereafter. To determine

whether the growth rate threshold can explain this sporulation

deferral, we quantified the distribution of cell growth rates for each

generation of cells (Fig 3C) and calculated the fraction of cells with

a growth rate below the sporulation threshold determined in Fig 2C.

The resulting prediction is in good agreement with experimentally

observed fractions (Fig 3B).

Next, we perturbed growth dynamics with nutrient addition to

test the ability of the growth threshold model to explain cell-fate

decisions in different conditions. Based on a simple population

dynamics model, we expected that the addition of a relatively small

dose of nutrients to the medium at the start of the experiment would

delay the onset of starvation but lead to a faster decrease in cell

growth rates once the increasing cell population had depleted the

additional nutrients (see Appendix Fig S1, Appendix Text A2). In

agreement with this model, experimental results (Fig 3D–F) showed

that the addition of 0.0025% glucose indeed made the cells grow

faster initially, followed by a rapid decrease in growth rate. Our

model posits that the growth rate threshold is a function of

biochemical parameters of the phosphorelay and not affected by

nutrient addition. Accordingly, we used the same threshold as

before to calculate fractions of cells that should sporulate in each

generation. The results are in excellent agreement with the observa-

tions (Fig 3E), confirming that the dynamics of cell growth slow-

down control the deferral of sporulation. Notably, the same

threshold value robustly predicts fates of cells sporulating early and

late in our experiment regardless of initial nutrient addition. This

observation calls into question direct modulation of phosphorelay

protein activity by metabolites and instead further reinforces the

idea that cell growth rate is the primary signal that determines cell

fate during starvation.

In light of these results, we reasoned that if cell growth rate

controls the cell-fate decision, selective induction of 0A~P pulses

under conditions of very low growth rates should lead to immediate

and synchronized sporulation without any significant deferral. To

test this idea, we used an engineered strain iTrans-0F (Fig 4A) in

which we translocated the native copy of 0F from its oriC-proximal

location to the terminus and integrated an additional IPTG-inducible

copy of 0F close to the chromosome origin (Narula et al, 2015). In

the wild-type strain, the kinA:0F gene dosage ratio decreases to 1:2

during DNA replication and then increases to 1:1 once replication is

completed. These changes in kinA:0F gene dosage lead to a 0A~P

decrease followed by an overshoot pulse of 0A activity. In iTrans-0F

strain, the pulsing becomes IPTG dependent. Without IPTG, the

inducible oriC-proximal copy of 0F is inactive, kinA:0F gene dosage

ratio remains 1:1 and DNA replication cannot trigger 0A~P pulses in

this strain. As a result, this strain does not produce 0A~P pulses and

does not sporulate without IPTG. Our modeling results predict that

high levels of 0F induction in this strain result in 0F overexpression,

which inhibits KinA autophosphorylation and 0A activation. In

contrast, at low level, induction of 0F from the oriC-proximal locus

introduces a transient imbalance of gene dosage during DNA repli-

cation and thereby rescues 0A~P pulsing (Fig 4B). Moreover, we

found that in iTrans-0F upon 0F induction, 0A~P pulse amplitudes

increase gradually over multiple cell cycles as a function of cell

growth rate similar to WT (compare Figs 2B and 4B). The model

also showed that if induction of 0F from the oriC-proximal locus is

delayed until growth has slowed down, 0A~P amplitudes increase

immediately without the multi-cell-cycle delay (Fig 4C). Thus, we
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Figure 3. Growth slowdown controls sporulation deferral.

A On normal sporulation media (resuspension media—RM) plates,
sporulation timing (spores are marked by red dots) is heterogeneous and
unsynchronized as demonstrated by a sample lineage.

B Predictions of fraction of cells sporulating in each generation based on a
growth rate threshold (black line) show good agreement with observed
(red dots) fraction of sporulating cells for each generation. The growth
rate threshold used was the same as threshold estimated from Fig 2D.

C Distributions of growth rates in each cell cycle during starvation in RM.
Box plots indicate median growth rate (red line), 25–75% quintile (blue
box), and the range (black whiskers) of growth rates for each generation.

D–F Same panels as (A–C) but with 0.0025% of glucose is added to the plates.
(D) Sample lineage shows that addition of a small amount of glucose
delays sporulation for several generations but decreases the
heterogeneity in sporulation timing. (E) Growth threshold model with
the same growth rate threshold as (B) shows excellent agreement
between predicted (black line) and observed (red dots) fraction of
sporulating cells. (F) Addition of the glucose increases the initial cell
growth rate and delays the onset of starvation, but the resulting increase
in cell number exhausts the nutrients leading to sharper decrease in
growth rates.

Source data are available online for this figure.
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expect that cells should sporulate immediately upon delayed induc-

tion of 0F.

We tested this prediction by varying the timing of IPTG addition

for the iTrans-0F strain. As shown in Fig 4D and E, our measure-

ments confirmed that 0A~P pulse amplitudes increase gradually if

IPTG is added at the start of starvation, whereas they increase

rapidly if IPTG is added at later times after the growth rate has fallen

below the sporulation threshold. Further, sporulation was deferred

and its deferral was heterogeneous when IPTG was added early

(Fig 4F and I). In contrast, as predicted, when IPTG was added late,

cells sporulated immediately upon IPTG addition without any defer-

ral in a highly synchronized fashion (Fig 4G and I). Crucially, the

timing of IPTG addition affected the 0A activity dynamics but not

the average growth dynamics (Fig 4H), which rules out the possibil-

ity that 0A~P controls changes in growth rather than growth control-

ling 0A~P.

Altogether, these results provide further support for the hypothe-

sis that slowdown of growth during starvation is the primary signal

for sporulation and that it controls cell fate by modulating the ampli-

tude of 0A~P pulse amplitudes.

KinA activity does not depend on the growth rate

Our results thus far indicate that the growth slowdown-mediated

increase in the concentration of stable proteins like KinA (Fig 2A)

combined with the predicted ultrasensitive dependence of 0A~P on

KinA concentration (Fig 2C) is sufficient to explain the observed

correlation between growth rate and sporulation decision (Fig 2D).

Previous studies have also shown that no signals external to the

phosphorelay are essential for KinA to be able to activate sporula-

tion (Eswaramoorthy et al, 2011; Devi et al, 2015). However,

neither of these results is sufficient to exclude the possibility that in

addition to these effects, KinA activity is also modulated by an

unknown nonessential signal that is correlated with growth rate. To

check for this possibility, we need to see whether the amount of

KinA required for sporulation would be the same or different at dif-

ferent growth rates. However, in wild-type cells these effects are

inseparable because of the one-to-one relationship between KinA

level and growth rate under the feedback regulation of phosphorelay

(Predich et al, 1992; Fujita & Sadaie, 1998).

To circumvent this problem, we can use an engineered strain in

which transcription of kinA is independent of 0A activity. To this

end, we can use a strain in which KinA is externally controlled by
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Figure 4. Selective exposure to slow growth eliminates sporulation
deferral.

A Arrangement of kinA and 0F on the chromosome in the wild-type and
iTrans-0F strains. In the iTrans-0F strain, 0A~P pulsing is only observed
when the oriC-proximal Phsp-0F is induced with IPTG.

B, C Timing of induction of the oriC-proximal copy of 0F affects 0A~P pulsing
in the iTrans-0F strain. Mathematical modeling results predict that if the
oriC-proximal Phsp-0F is induced at the start of starvation (B), pulse
amplitudes increase gradually over multiple cell cycles similar to WT. If
Phsp-0F is induced later during starvation (C), when growth is slow, 0A~P
pulse amplitudes increase immediately without a multi-cell-cycle delay.
Yellow bars and dashed lines represent DNA replication periods and cell
division, respectively.

D, E Experimental measurements of P0A activity show that both early and late
induction of the oriC-proximal Phsp-0F rescue 0A activity pulsing. These
measurements also confirm that early induction leads to a gradual
increase in 0A activity pulse amplitudes (D) and late induction leads to
an immediate switch from no pulsing to high amplitudes (E).

F, G Timing of the induction of 0F induction affects timing of sporulation in
the iTrans-0F strain. Example lineage trees of the iTrans-0F strain show
that sporulation timing (spores are marked by red dots) is heterogeneous
and unsynchronized when the oriC-proximal Phsp-0F is induced early at
T0 (F) and well synchronized when 0F is induced late at T36 (G).

H Measurements of growth rate show that slowdown of growth during
starvation is noisy but is not affected by whether 0F is induced early (T0
—gray) or late (T36—orange). Dots and error bars show means and
standard deviations of growth rates for each generation, respectively.
Note that it takes ~5 generations for the mean growth rate to cross the
threshold growth rate below which cells sporulate.

I Histograms of the number of generations for which cells defer
sporulation after 0F induction in the iTrans-0F strain. Gray and orange
histograms show sporulation deferral for early (T0) and late (T36)
induction, respectively.

Source data are available online for this figure.
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inducible promoter. Crucially, simulations of our mathematical

model of the phosphorelay show that 0A~P-KinA feedback is not

essential for pulsing as long as inducible KinA gene is integrated in

the terminus-proximal locus (Fig EV4). Thus, we can use an indu-

cible system to do this test without affecting the pulsatile nature of

0A~P activation. For each fixed inducer concentration, our model

shows that the cellular concentration of KinA increases with

decreasing growth rate (similar to the increase in YFP shown in

Fig 2A). As a result, for each fixed inducer concentration there will

be a KinA threshold and a growth rate threshold for sporulation.

Examining how these thresholds depend on the KinA induction level

would allow us to test whether KinA activity is also modulated by

some unknown starvation signal. Our modeling results predict that

if KinA is activated by a growth-rate-correlated signal, different

threshold levels of KinA will be required to reach the same

threshold level of 0A~P. Therefore, we expect that KinA threshold

would be higher for faster-growing cells (Figs 5A and EV4F) as

compared to slower-growing cells. In contrast, if the growth

rate only controls KinA concentration, the same threshold level of

KinA is expected across all the different growth rates (Figs 5B and

EV4G).

Following this rationale, we tested the two hypotheses by using a

strain in which a functional KinA-GFP fusion protein is expressed

from an IPTG-inducible promoter (Phsp). GFP intensity measure-

ments gave us information about single-cell KinA levels, whereas

tracking cell length in time-lapse movies allowed us to compute

single-cell growth rates. These measurements confirm that KinA

levels are indeed sensitive to growth rate and that the resulting growth

rate threshold depends on the inducer level (i.e., expression rate from

the Phsp promoter; Fig EV5A). Moreover, the growth-dependent
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Figure 5. Decrease in growth rate affects 0A~P levels and controls cell fate.

A Standard hypothesis for the relationship between starvation, 0A~P, and sporulation cell fate. Starvation affects cell growth and an unknown signal that controls 0A
activation by KinA. Growth rate and unknown signal level are interrelated since they both depend on starvation. Under this hypothesis, the minimum level of KinA
necessary to make cells sporulate is a function of the unknown signal level (middle panel) and by extension the growth rate (right panel). This hypothesis predicts
that changes in KinA production rate using an IPTG-inducible system should lead to a change in both the KinA threshold and growth rate threshold for sporulation
(red dots).

B Alternative hypothesis: Signals controlling KinA activity play a negligible role in determining 0A activation and sporulation cell fate. Under this hypothesis, the KinA
threshold for sporulation is independent of the unknown signal level (middle panel) and by extension the growth rate (right panel). This hypothesis predicts that
changes in KinA production rate using an IPTG-inducible system should lead to a change in the growth rate threshold for sporulation but not the KinA threshold
(red dots).

C, D Logistic regression curves indicating the probability of producing a spore as predicted using measurements of KinA-GFP level (C) and growth rate (D).
E KinA and growth rate thresholds for sporulation in the Phsp-KinA and WT strains. KinA and growth rate thresholds were calculated using the results of the logistic

regression in (C, D), respectively. Significance of IPTG dependence of KinA and growth thresholds was determined by logistic regression of pooled data
(Npooled = 547) and applying a t-test to determine whether the regression coefficient for IPTG level is zero (see Materials and Methods for details). Note that the
KinA threshold does not depend on IPTG level (P-value for IPTG coefficient = 0.70784, Npooled = 547), whereas the growth rate threshold decreases with increasing
IPTG (P-value for IPTG coefficient = 2.601e-26, Npooled = 547) as predicted by the alternative hypothesis in (B). Error bars show standard errors.

Source data are available online for this figure.
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increase in KinA-GFP levels is well matched by model (see

equation 1) for protein accumulation.

Next, using the same procedure employed in Fig 2D, we

performed logistic regression on the data for the inducible KinA

strain to estimate the probability of sporulation as a function of

KinA-GFP level or as a function of growth rate. Our results showed

an ultrasensitive dependence of the probability of sporulation on

both metrics irrespective of the IPTG level used (Figs 5C and D, and

EV5B and C). Using these ultrasensitive functions, we identified

threshold values for KinA-GFP above which and growth thresholds

below which cells sporulate with at least 50% probability

(Fig EV5B). Comparing the two types of thresholds for different

IPTG concentrations (Fig 5E), we found that the growth rate thres-

hold for sporulation increases as a function of IPTG, whereas the

KinA-GFP threshold does not depend on IPTG level. Notably, the

severalfold increase in the growth rate threshold as a function of

increase in kinA expression rate (Fig 5E) indicates that cells are able

to sporulate at dramatically different levels of starvation. However,

the constant KinA threshold across these different levels of starvation

indicates that KinA activity does not change across these conditions.

Thus, our measurements showed that the threshold amount of

KinA level necessary to trigger sporulation was not dependent on

the level of IPTG. To determine whether the same KinA threshold

also controls sporulation in the wild-type strain, we applied the

same logistic regression analysis used above to a strain in which a

KinA-GFP fusion protein is expressed from its native promoter

(Fig EV5). Data for this strain showed an ultrasensitive dependence

of probability of sporulation on both KinA-GFP levels and growth

rates similar to the inducible strain (Figs 5C and D, and EV5B and

C). Further, we found that threshold level of KinA for this wild-type

strain is the same as that for the IPTG-inducible strain (Fig 5E).

An alternative explanation for the growth dependence of sporula-

tion is that slowdown of growth leads to accumulation of KinA but

does not affect highly unstable negative regulators of KinA like Sda.

To examine whether the growth dependence of cell fate results from

relative changes in the amounts of KinA and Sda, we constructed an

sda-deletion strain and tested its 0A activity and growth rate

response. As shown in Fig EV6, the sda-deletion strain still shows

pulsing and Dsda cells sporulate once cell growth is below a thres-

hold similar to wild-type cells. Comparing the sda-deletion strain to

wild type, we found no statistically significant difference in the

growth rate threshold required to trigger sporulation. This result

demonstrates the limited role of Sda in modulating the growth

dependence of sporulation in our conditions.

These results imply that KinA activity is not growth rate depen-

dent in our experimental conditions (Fig 5A) and plays no role in

controlling sporulation. Instead, these results show that sporulation

is triggered by an increase in KinA concentration due to slowdown

in growth rate, but independent of any signals modulating KinA

activity (Fig 5B).

Discussion

Previous studies of B. subtilis sporulation have primarily focused on

identifying specific environmental and metabolic signal molecules

that regulate the phosphorelay response. Here, taking a different

approach, we have focused on the role of cell growth in determining

the phosphorelay response and found that it actually plays a major

part in controlling the response to starvation and the sporulation

decision.

Our results show that the amplitude of 0A~P pulses increases as

cell growth rate decreases. This inverse dependence can be mecha-

nistically understood using two observations about the phosphorelay

network controlling 0A~P: (i) The concentration of the cytosolic

kinase KinA is the rate-limiting factor that determines 0A~P pulse

amplitude (Eswaramoorthy et al, 2010a; Levine et al, 2012; Narula

et al, 2012) and (ii) the concentration of KinA, a stable protein,

increases as growth slows down. Here, by using a mathematical

model to study the combined effect of these two, we were able to

demonstrate how slowdown of growth leads to accumulation of

KinA which in turn increases 0A~P amplitudes and consequently

sporulation. Crucially, our results show that growth slowdown is

unaffected in the absence of pulsing which suggests that growth rate

does not depend on 0A~P levels. Moreover, since a 0A~P threshold

is known to control sporulation cell fate (Fujita et al, 2005; Narula

et al, 2012), we found that there is a corresponding threshold growth

rate below which cells sporulate. This growth threshold depends on

the KinA production rate and can be increased severalfold with an

increase in kinA expression rate. Nevertheless, the same level of

KinA triggers sporulation regardless of conditions. Taken together,

these results suggest that not only does cell growth play a major role

in determining 0A activity and cell fate, but it might be the primary

signal by which cells gauge their starvation level.

This role of growth in determining cell fate offers fresh insight into

the variability of sporulation timing during starvation. Several recent

reports have shown that B. subtilis cells can defer sporulation for

multiple generations during starvation and that this deferral period is

highly heterogeneous (Chastanet et al, 2010; de Jong et al, 2010;

Levine et al, 2012). In agreement with these reports, our results show

that sister cells frequently adopt different cell fates during starvation

(Fig 3A). It has been suggested that this heterogeneity is the result of

the stochasticity of gene expression. However, our results show that

while gene expression stochasticity may play a role, the heterogeneity

of sporulation timing can be largely explained by the variability of

cell growth rates during starvation. We have shown that the gradual

but noisy decrease in growth rate during starvation is the reason

sporulation is delayed. Perturbation of the dynamics of growth rate

slowdown can increase or decrease the deferral of sporulation. More-

over, the selective exposure of the phosphorelay to slow growth elim-

inates the deferral entirely.

The reliability of growth rate as a predictor of cell fate also calls

into question previous suggestions that the phosphorelay is a

“noise generator” that creates heterogeneity in 0A activity levels

and sporulation timing as part of a bet-hedging strategy (Chastanet

et al, 2010). Instead, our results suggest that at least in our condi-

tions, heterogeneity in 0A activity, cell fate, and sporulation timing

is the result of growth rate variability, that is, the noise is gener-

ated upstream of the phosphorelay. Why growth rates are so vari-

able in starvation conditions remains an open question, but the

fact that growth rates of sister cells are only weakly correlated

(Fig EV3B) suggests that some sort of intrinsic noise is the driver

of this heterogeneity. Notably, it has been recently shown that

stochastic fluctuations in concentrations of rate-limiting metabolic

enzymes can result in growth rate heterogeneity (Kiviet et al,

2014). A similar mechanism may be responsible for the growth
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heterogeneity in our experiments; however, this is a subject for

future studies.

A key open question in the field of Bacillus subtilis sporulation

that we address here is: How do cells sense and integrate the

environmental cues that trigger spore formation? Previous studies

have proposed that starvation signals control sporulation by acting

on three PAS repeats in the KinA N-terminal sensor domain to

control KinA autophosphorylation (Stephenson & Hoch, 2001;

Wang et al, 2001; Kolodkin-Gal et al, 2013). However, more recent

studies suggest that the major role of the N-terminal PAS domain

is to form a stable tetramer as an active form and the kinase is

constitutively active regardless of culture conditions (Eswaramoorthy

et al, 2009, 2011; Eswaramoorthy & Fujita, 2010). Moreover, as

shown previously (Eswaramoorthy et al, 2010a; Narula et al, 2012)

and recapitulated by our results here, KinA induction can override

starvation requirements and force even cells that are not starving to

sporulate. These results together with our observation that the KinA

concentration necessary to trigger sporulation does not depend on

growth rate (Fig 5E), indicate that at least in our experimental

conditions KinA activity is mainly unmodulated and that growth-

dependent increase in KinA is the primary signal for sporulation.

These results clearly establish the key role played by cell

growth rate in determining the starvation response. However, we

can not rule out that, under different conditions, other signals may

also affect the phosphorelay. Indeed, several proteins like KipI,

Sda, Rap, BmrD, and Obg have been shown to respond to meta-

bolic, environmental, cell density, and cell-cycle-related signals

and modulate the phosphorelay response (Vidwans et al, 1995;

Perego & Hoch, 1996; Wang et al, 1997; Perego, 1998; Burkholder

et al, 2001; Fukushima et al, 2006). It will be interesting to investi-

gate how these regulators impact the growth dependence of sporu-

lation cell fate, that is, do they act as modulators that control the

growth threshold or do they act as all-or-none checkpoint mecha-

nisms that prevent any growth-dependent increase in 0A activity

and sporulation.

Notably, several of the above-mentioned proteins are negative

regulators of sporulation that act on either KinA or Spo0F and

suppress the phosphate flux in the phosphorelay. This suggests that

they may act as essential checkpoints that prevent sporulation under

conditions where growth rate is low despite the presence of nutri-

ents, for example, at low temperatures or in the presence of stress

agents like antibiotics and ethanol. Such checkpoint regulators may

also play an important role in preventing slow-growing cells from

sporulating in conditions like MSgg media where Bacillus subtilis

needs to follow alternate differentiation programs like biofilm

formation (Chai et al, 2008).

In contrast to the negative regulators discussed above, a

recent report has postulated the existence of a positive regulator

of sporulation called extracellular factor FacX (Ababneh et al,

2015). Its existence was demonstrated by triggering sporulation

via IPTG-controlled KinA induction in exponentially growing

culture. Notably, Ababneh et al showed that induction of KinA

leads to sporulation in exponentially growing cells only if the

medium from stationary phase cultures is added. This suggests

that the extracellular factor FacX, which is produced during

post-exponential growth, can create a permissive environment

for sporulation during exponential growth. Crucially, addition of

FacX to exponentially growing cultures does not trigger

sporulation without KinA induction. This suggests that the

growth rate requirement and other regulatory mechanisms

remain active in the presence of FacX and prevent sporulation.

As the molecular identity of FacX remains unknown, it is

unclear how it triggers sporulation or what controls FacX

production. However, since its accumulation is only significant

in the post-exponential phase, it will be interesting to determine

whether its production is growth rate dependent.

In summary, our results reveal a novel decision strategy based

on the pulsatile 0A~P response to starvation: The phosphorelay only

responds with a pulse upon completion of DNA replication, and the

amplitude of each pulse encodes the cell’s growth rate which is an

indicator of the extent of starvation. This simple strategy allows

cells to defer commitment to sporulation for as long as environmen-

tal conditions remain conducive to growth while bypassing the need

for specific metabolite sensing. Notably, the sensitivity of stable

protein levels to cell growth that enables this decision strategy is a

universal feature of bacterial physiology and not unique to the

sporulation network. As a result, similar growth rate-dependent

strategies for controlling the starvation response could very well be

employed in a wide range of other systems.

Materials and Methods

Strain construction

Appendix Table A1 lists Bacillus subtilis strains used in this study.

All strains are isogenic to B. subtilis PY79.

iTrans-0F strain construction

For the inducible 0F cassette, the spo0F gene was PCR-amplified

from B. subtilis PY79 with the addition of optimal RBS and linker

(AAGGAGGAAAGTCACATT) and including 43-bp fragment down-

stream. It was ligated to a derivative of PLD30, JDE131 plasmid

(SpR) next to the IPTG-inducible Phyperspank promoter (between

HindIII and NheI restriction sites. This cassette was transformed into

AmyE locus of a reporter B. subtilis strain constructed previously

(Kuchina et al, 2011b) harboring PspoIIR-YFP in SacA locus and

Pspo0A-CFP on PHP13 low-copy plasmid. Then, we knocked out

native spo0F in this strain. For the 0F deletion construct, the 50 and
30 fragments of 0F-adjacent genomic sequence were PCR-amplified

using the following primers: GAGGCGCCCCTGTCGCTTTCTGTCA

CTTCCTCAG and TCGAATTCGCAAAATACGAATGCCGTATTGATC

ATCAACGA for 50 arm, and GATCTAGAGACATCGACGAAATCAGA

GACGCCGTCAAAAAATATCTGCCCCTGAAGTCTAAC and TCGTCG

ACCCTTCGGAAACACCAAGGATCACTGGAG for 30 arm, and intro-

duced into per449 (KanR) vector between XbaI and SalI restriction

sites. The specific native genomic Spo0F knockdown in the resulting

i0FamyE strain was confirmed by PCR and sequencing. Finally, the

native promoter spo0F-rescue cassette was constructed and intro-

duced as follows. Gene spo0F with its native Pspo0F promoter

(165 bp upstream) and 43-bp downstream sequence were PCR-

amplified from B. subtilis PY79 with the addition of a terminator

upstream (CCAGAAAGTCAAAAGCCTCCGACCG) and ligated

between BHI and XbaI restriction sites to ECE173 (PmR) integrating

into GltA locus. This construct was transformed into the i0FamyE

strain resulting in iTrans-0F strain.
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Other reporter strains, cloning vectors, and transformation method

The reporter strains for spo0A and spo0F promoters and the PkinA-

KinA-GFP and Phsp-KinA-GFP strains were described previously

(Fujita & Losick, 2005; Kuchina et al, 2011b). The strain expressing

YFP from the IPTG-inducible Phsp promoter was constructed and

characterized for dose response earlier (Süel et al, 2007). To identify

DNA replication periods in time-lapse experiments (Fig EV1I), we

used a strain described previously that expresses a fluorescent

DnaN-YFP fusion protein from the IPTG-inducible Phsp promoter

(Veening et al, 2009; Su’etsugu & Errington, 2011; Narula et al,

2015).

To facilitate segmentation in the glucose addition experiments

(Fig 3), we transformed a plasmid bearing a constitutively

expressed promoter PrpsD driving mCherry expression (constructed

as described in Zhang et al, 2015) into the dual sporulation reporter

strain harboring PspoIIR-YFP at SacA genomic locus and Pspo0A-CFP

expressed from the low-copy PHP13 plasmid, also described earlier

[(Kuchina et al, 2011b), “0A (5x)-IIR”]. Promoter sequences were

defined as follows: PrpsD—chromosomal sequence 2853257 to

2853567; Pspo0A—chromosomal sequence 2518060 to 2518350;

and PspoIIR—chromosomal sequence 3794404 to 3794543 (Kuchina

et al, 2011a,b).

The vectors used in this study are as follows: ECE174,

integrating into the sacA locus (constructed by R. Middleton and

obtained from the Bacillus Genetic Stock Center); pLD30, designed

to integrate into the amyE locus (kind gift from Jonathan Dworkin,

Columbia University); ECE173, designed to integrate into the gltA

locus (Middleton & Hofmeister, 2004) (constructed by R. Middleton

and obtained from the Bacillus Genetic Stock Center); per449, a

generic integration vector constructed for integration into the

gene of interest (kind gift from Wade Winkler, UT Southwestern);

and the bifunctional cloning plasmid pHP13 carrying the

replication origin of the cryptic B. subtilis plasmid pTA1060

(Haima et al, 1987). One-step B. subtilis transformation protocol

was followed.

Culture preparation and microscopy

Culture preparation

For imaging, B. subtilis culture was started from an overnight LB

agar plate containing appropriate antibiotics (final concentrations:

5 lg/ml chloramphenicol, 5 lg/ml neomycin, 5 lg/ml erythro-

mycin, 5 lg/ml phleomycin, and 100 lg/ml spectinomycin).

Strains containing multiple resistance genes were grown on a

combination of no more than three antibiotics at a time. Cells

were resuspended in casein hydrolysate (CH) medium (Sterlini &

Mandelstam, 1969) and grown at 37°C with shaking. After reach-

ing OD 1.8–2.0, cells were washed once and resuspended in 0.5

volume of resuspension medium (RM) (Sterlini & Mandelstam,

1969). The resuspended cells were grown at 37°C for 1 h, then

diluted 15-fold, and applied onto a 1.5% low-melting agarose

pad made with RM-MOPS medium with desired IPTG or glucose

concentration, if necessary. The pads were covered, left to air-

dry for 1 h at 37°C, and placed into a coverslip-bottom Willco

dish for imaging. For the late IPTG addition experiment, a small

drop (5 ll) of IPTG dissolved in RM was applied onto the RM-

MOPS pad between image acquisitions through an opening in

the dish lid.

Time-lapse microscopy

Differentiation of B. subtilis microcolonies was monitored with fluo-

rescence time-lapse microscopy at 37°C with an Olympus IX-81

inverted microscope with a motorized stage (ASI) and an incubation

chamber. Image acquisition was set to every 20 min with a Hama-

matsu ORCA-ER camera. Custom Visual Basic software in combina-

tion with the Image Pro Plus (Media Cybernetics) was used to

automate image acquisition and microscope control.

Image analysis

A combination of custom written MATLAB programs, Microbe-

Tracker (Sliusarenko et al, 2011), and freely available ImageJ plug-

ins (Rasband, W.S., ImageJ, U. S. National Institutes of Health,

Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2014)

was used to analyze microscopy data as described below.

Data analysis

Quantification of cell growth rates

The mean cell growth rate for individual cell cycles (Figs 1C and F,

2A and D, 3C and F, 4F, EV1A, D, G and H, EV3, EV5A, EV6A and

D, and Appendix Fig S1) was quantified using the measurements of

cell length in the time-lapse data. We first calculated the instanta-

neous cell growth rate at every frame as:

lðtÞ ¼ 1

LðtÞ
dLðtÞ
dt

¼ dlogLðtÞ
dt

¼ logðLðt þ DtÞÞ � logðLðtÞÞ
Dt

where L(t) is the cell length at time t and Dt is the time difference

between successive frames (20 min). For cell cycles that result in

vegetative division, mean growth rate during a cell cycle was

defined as the average of l(t) over the cell-cycle duration. For cell

cycles that end in sporulation, the mean growth rate was the aver-

age of l(t) over the cell-cycle duration until the asymmetric divi-

sion. Depending on the strain, the asymmetric division was

defined either as PspoIIR activation (for the strains in which a PspoIIR
reporter was present) or as the time frame 2 h before the appear-

ance of the phase-bright forespore.

Calculation of promoter activity

The measurements of promoter activities for P0A-cfp/yfp promoter

(Figs 1E and F, 2C and D, and EV6C and D) P0F-yfp promoter

(Fig EV1C and G) and Phsp-yfp promoter (Fig EV1F) refer to rate of

protein production calculated from fluorescence time-lapse data

using the same procedure as previously reported (Narula et al, 2015).

Quantification and characterization of promoter activity pulses

Promoter activity time series determined from fluorescence micro-

scopy were smoothed using the MATLAB smooth function by

employing a Savitzky–Golay filter with a third-order polynomial

over a sliding window of five frames. After smoothing, the maxi-

mum promoter activity during the cell cycle was used as the peak

promoter activity (Figs 2C and D, EV1G, and EV6D).

Growth rate dependence of induced gene expression from

Phyperspank promoter

The growth dependence of fluorescent protein levels in Phsp-yfp and

Phsp-kinA-gfp was modeled with equation 1 (Figs 2A and EV5A). In
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this equation, V(l) = AL(l) where A and L(l) are the cross-

sectional cell area and cell length, respectively. The cross-sectional

area was assumed to be fixed and growth independent. The depen-

dence of L(l) on growth was determined by fitting the data for

change in cell length at division as a function of growth rate

(Fig EV1H). We used the following phenomenological expression

for L(l): L(l) = 3.466*exp(�0.689/l) + 3.743 lm.

To isolate the growth dependence of gene expression in the

Phsp-yfp expressing strain, the fluorescence measurements were

normalized by the concentration predicted by the fitted equation at

l = log(2)/h.

Estimation of the growth rate, 0A activity, and KinA thresholds for

sporulation

The thresholds for predicting sporulation cell fate (Figs 2D and 5C,

D and E) were determined independently for each strain (and in the

inducible KinA strain for each IPTG level). In every case, observa-

tions for individual cell cycles included the independent variables:

(i) the mean cell-cycle growth rate and (ii) either the peak P0A
promoter activity (Fig 2D) or the peak KinA-GFP level during the

cell cycle (Fig 5C and D); and the dependent variable: cell fate (i.e.

vegetative division = 0 or sporulation = 1). These observations

were fit with a logistic function using the MATLAB glmfit function

to predict the probability of sporulation as a function of each of the

individual independent variables (Figs 5C and D, EV2 and EV5B

and C). Each outcome of the dependent variable, cell fate, was

assumed to be generated from a binomial distribution for the logistic

regression. 95% confidence intervals of the logistic regression

curves (Figs EV2 and EV5B and C) were also calculated using the

glmfit function.

Threshold values of the independent variables were defined as

the value at which the fitted logistic regression predicts probability

of sporulation to be equal to 0.5. The glmfit function was also used

to calculate the standard error of the thresholds. For the growth rate

threshold, cell cycles with growth rate greater than the threshold

were classified as vegetative and those with growth rate lower than

or equal to the threshold were classified as sporulating. For the peak

P0A promoter activity or the KinA-GFP thresholds, cell cycles with

values greater than the threshold were classified as sporulating.

These threshold values were then used to predict cell fates and the

calculate three performance measures: (i) false-positive rate (FPR,

fraction of vegetative cells that were incorrectly predicted to

sporulate), (ii) true-positive rate (TPR, fraction of sporulating

cells that were correctly predicted to sporulate), and (iii) total error

rate (fraction of total cells whose cell fate was incorrectly

predicted).

To determine the effectiveness of each threshold as a cell-fate

prediction method, we computed the receiver operating characteris-

tic (ROC) curve for each case (Figs 2E and EV5D). This ROC curve

is a commonly used way to characterize the performance of binary

classifier in signal detection theory (Provost & Fawcett, 2001). We

compute it by varying the threshold and calculating the false-

positive rate and true-positive rate as functions of threshold value

(Provost & Fawcett, 2001). Next, we computed the AUC (area under

the ROC curve) to estimate the performance of growth rate, peak

P0A promoter activity, and KinA-GFP level threshold based on cell-

fate predictions for the various strains. The computed AUCs and

optimal thresholds for each case are summarized in Fig EV5D. The

results indicate that all three variables can be used to robustly

predict sporulation cell fate for the WT and inducible KinA strains.

Quantification of growth rate and sporulation fraction dynamics

To calculate the growth and sporulation fraction dynamics based on

generations (Fig 3), first we binned the observations for individual

cell cycles of WT cells by generation number (the cell cycle at the

start of the time-lapse experiment was labeled generation 0). The

fraction of cell cycles in each generation bin that ended in sporula-

tion were used to calculate the experimental sporulation fraction

dynamics (red dots in Fig 3B and E). Next, the WT growth rate

threshold calculated from the data in Fig 2D was used to classify the

cell cycles as vegetative (growth rate > threshold) or sporulating

(growth rate ≤ threshold). The ratio of the number of cell cycles

classified as sporulating to the total number of cell cycles in each

generation bin was used as the predicted sporulating fraction (black

curves in Fig 3B and E).

To calculate the growth dynamics based on time (Appendix Fig

S1), first we divided the whole time span of the time-lapse experi-

ment into 2-h time bins. Next, for the each cell cycle in the experi-

ment, its mean cell-cycle growth rate was calculated in all 2-h time

bins that were spanned by that cell cycle. The mean and standard

deviations of cell-cycle growth rates in each time bin were calcu-

lated to determine the colony growth rate dynamics. These results

were then used with a population dynamics model to explain

how nutrient addition affects the growth slowdown dynamics

(Appendix Fig S1).

Statistical analysis

Significance of correlation between “peak promoter activity” and

“growth rate” variables (Figs 1F and EV1G) was tested using the

standard two-tailed Z-test at the 0.05 confidence level. Sample sizes

under the null hypothesis of no correlation were chosen to ensure

that a correlation coefficient of 0.2 could be detected with a power

of 90%.

To determine whether growth rate or KinA-GFP thresholds for

sporulation depend on IPTG in the inducible KinA strain (Figs 5E

and EV5E and F), we extended our logistic regression approach

and included IPTG as a predictor for cell fate. Specifically, data for

growth rates, KinA-GFP level, and cell fate for IPTG induction

levels and WT cells was pooled (Npooled = 547) and fit with a logis-

tic regression function of the form: logit(y) ~ b0 + b1*x1 + b2*x2,
where y = cell fate, x1 = either growth rate or KinA-GFP level,

x2 = IPTG indicator variable (= IPTG concentration for inducible

KinA and 0 for WT), and b0–2 = regression coefficients. The fitglm

function in MATLAB was used to fit the pooled data with this

model. The same function was used for each regression coefficient

to also calculate the t-statistic for a test that the coefficient is zero

and corresponding P-value. A b2 regression coefficient that is signif-

icantly different from zero was taken to indicate dependence of the

sporulation threshold on IPTG. Using this procedure, we found the

following P-values for growth rate dependence: 0.030967 (b0),
4.8959e-23 (b1), 2.601e-26(b2), thus indicating that growth thresh-

old depends on IPTG. In contrast, we found the following P-values

for KinA-GFP level dependence: 8.1272e-30 (b0), 1.2117e-24 (b1),
0.70784 (b2), thus indicating that KinA threshold does not depend

on IPTG.
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The same procedure was used to determine whether the growth

rate or 0A activity thresholds varied between WT and Dsda cells

(Fig EV6E and F). Data for growth rates, peak P0A promoter activ-

ity, and cell fate for WT and Dsda cells was pooled (Npooled = 449)

and fit with a logistic regression function of the form: logit(y)

~ b0 + b1*x1 + b2*x2, where y = cell fate, x1 = either growth rate

or peak P0A promoter activity, x2 = strain indicator variable (= 0

for WT and 1 for Dsda), and b0–2 = regression coefficients. Using

this model and the fitglm function, we found the following P-

values for growth rate dependence: 3.2012e-20 (b0), 8.4018e-23

(b1), 0.17138 (b2), thus indicating that growth threshold does not

depend on whether the strain is WT or Dsda. We also found the

following P-values for peak P0A promoter activity dependence:

2.8499e-23 (b0), 2.131e-29 (b1), 0.41013 (b2), thus indicating that

peak P0A promoter activity threshold also does not depend on

whether the strain is WT or Dsda.

Expanded View for this article is available online.
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