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ABSTRACT

The 3D structure of a protein can be predicted from
its amino acid sequence with high accuracy for a
large fraction of cases because of the availability
of large quantities of experimental data and the ad-
vance of computational algorithms. Recently, deep
learning methods exploiting the coevolution infor-
mation obtained by comparing related protein se-
quences have been successfully used to generate
highly accurate model structures even in the ab-
sence of template structure information. However,
structures predicted based on either template struc-
tures or related sequences require further improve-
ment in regions for which information is missing.
Refining a predicted protein structure with insuffi-
cient information on certain regions is critical be-
cause these regions may be connected to functional
specificity that is not conserved among related pro-
teins. The GalaxyRefine2 web server, freely available
via http://galaxy.seoklab.org/refine2, is an upgraded
version of the GalaxyRefine protein structure refine-
ment server and reflects recent developments suc-
cessfully tested through CASP blind prediction ex-
periments. This method adopts an iterative optimiza-
tion approach involving various structure move sets
to refine both local and global structures. The esti-
mation of local error and hybridization of available
homolog structures are also employed for effective
conformation search.

INTRODUCTION

Template-based protein structure prediction methods can
generate accurate protein models when sufficiently similar
structural templates are available (1). Recently, template-
free methods have also been able to produce highly accu-
rate models (2,3) because of advances in coevolution anal-

ysis (4) and deep learning algorithms (5,6), which can ex-
tract protein structure information from protein sequences.
However, the predicted protein structures may be inaccu-
rate in regions for which there is not sufficient experimen-
tal data regarding template structures or related sequences
available. Because model inaccuracy originates from a de-
ficiency of information, researchers rely on physical prin-
ciples to further refine structures. In recent CASP (Critical
Assessment of techniques for protein Structure Prediction)
blind prediction experiments, a model refinement category
was introduced to evaluate existing model refinement meth-
ods and stimulate advances in the field (7).

The GalaxyRefine web server for protein structure refine-
ment (8) was released on the GalaxyWEB server (9,10) in
2013. This server is based on a refinement method that per-
forms short molecular dynamics (MD) relaxations after re-
peated side chain repacking perturbations. The GalaxyRe-
fine server has been widely used in both experimental and
computational studies. For instance, the server has been
used by experimentalists in functional studies involving pro-
tein modelling to improve the quality of model structures
obtained using other prediction methods (11–14). Addi-
tionally, developers of computational algorithms have com-
bined the server algorithm with prediction methods em-
ployed in other research areas for improving prediction
quality (15–17).

Here, we present GalaxyRefine2, an upgraded version of
GalaxyRefine (8), which reflects a progress made during re-
cent CASP experiments (18). In contrast to the previous
version that focused on refinement in a local environment
by a local move set, side chain repacking, GalaxyRefine2
introduces various local and global move sets and accumu-
lates the conformational changes iteratively, enabling larger
movements. The local and global move sets utilize estimated
structure error to focus on refinement efforts in more in-
accurate regions. Available structures of homologous pro-
teins in the structure database are also used to enrich the
possible structure pool (19). A benchmark test of CASP re-
finement targets showed that GalaxyRefine2 can improve
model structures by 2-fold compared to GalaxyRefine in
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Figure 1. Flowchart of the GalaxyRefine2 protocol. The protocol consists
of two pre-processing steps and the main refinement step.

terms of the accuracy measures GDT-HA (20) and LDDT
(21).

THE GALAXYREFINE2 METHOD

Overall protocol

The computational protocol of GalaxyRefine2 is schemati-
cally shown in Figure 1. The protocol is a light version of the
method presented in (19), with a smaller number of itera-
tions. Details can be found in the reference, and the method
is summarized below.

Pre-processing: local error estimation

Residue-wise error of the input structure is first estimated
based on RMSF, FRAG and MSA scores. The RMSF score
is residue-wise root-mean-square fluctuation in 24 runs of
14.4-ps MD relaxation involving side chain repacking ev-
ery 1.2 ps (8). The FRAG score measures the agreement be-
tween backbone torsion angles of the input structure and

those of fragments in the fragment library. The MSA score
is the average of the position-specific scoring matrix com-
ponents (22) from a multiple alignment of the sequences of
homologs detected through HHsearch (23) against the in-
put sequence. The alignment is generated by PROMALS3D
(24). Residue-wise error is predicted using a linear model
that combines these three scores. Finally, stretches of con-
secutive residues with high estimated errors are designated
as unreliable local regions (ULRs).

Pre-processing: structure threading

Among the structures of detected homologs, only those
with TM-score >0.5 (25) to the input structure are con-
sidered in this step. The input sequence is threaded onto
each homolog structure based on the alignment of PRO-
MALS3D (24). The threaded structure undergoes local er-
ror estimation and structure optimization by the GalaxyRe-
fine algorithm (8). Local patches of the optimized structure,
which are not part of the predicted ULRs are used by the
‘structure hybridization’ operator in the refinement step.

Structure refinement

An initial pool of 48 structures is generated from the in-
put structure by re-building the termini and loops pre-
dicted as ULRs. At each iteration cycle, 480 trial structures
are generated by applying structure operators 10 times to
each pool structure. Structure operators include three oper-
ators that drive local refinement, ‘fragment assembly’, ‘loop
modelling’ and ‘side chain perturbation’, and three that
drive larger changes, ‘normal mode perturbation’, ‘struc-
tural hybridization’ and ‘secondary structure perturbation’.
‘Fragment assembly’ re-builds regions with higher esti-
mated errors through fragment assembly and triaxial loop
closure (26,27). ‘Loop modelling’ either mixes the back-
bone torsion angles of a selected ULR with those of an-
other pool structure or mutates them. ‘Side chain pertur-
bation’, as in GalaxyRefine, repacks side chains (8). ‘Nor-
mal mode perturbation’ perturbs the structure toward one
of low-frequency normal modes. ‘Structure hybridization’
hybridizes the structure with the structures threaded to
homologs. ‘Secondary structure perturbation’ perturbs the
orientations of the secondary structure chunks in a stochas-
tic manner.

The 480 structures are then locally optimized by a 3.0-
ps MD relaxation (1.2-ps after loop modelling). Each low-
energy trial structure replaces a pool structure with higher
energy that is structurally close enough. If a low-energy trial
structure is not close to any pool structures, the highest
energy pool structure is replaced. The criterion of close-
ness is gradually increased with iterations to facilitate broad
sampling (19). After five iteration cycles, all 2400 generated
structures are scored, and the 10 lowest-energy structures
are selected. The 10 structures are subject to full-atom opti-
mization to improve their stereochemical properties and are
reported as the final refined structures.

Energy function

The energy function used for MD relaxation is a linear com-
bination of physics-based energy, statistical potentials and



Nucleic Acids Research, 2019, Vol. 47, Web Server issue W453

Figure 2. Successful refinement examples from CASP benchmark set. GalaxyRefine2 can improve structures at both the global level (A: TR462 and B:
TR896) and local level (C: TR948, D: TR614 and E: TR488) by applying various structure operators simultaneously.

restraints, as described in (19). The restraints are derived
from the input structure in terms of the Cartesian coordi-
nates of alpha carbons and pair distances between alpha
carbons or between backbone nitrogen and oxygen. To re-
duce the tendency of being restrained too strongly to the
initial structure, higher 10% restraints are neglected during
relaxation (28). The user can select the functional form of
the restraints from either harmonic or Lorentzian. The de-
fault option of GalaxyRefine2 is Lorentzian, which allows
for wider sampling than the harmonic form. The user may
select the harmonic form by choosing the ‘Conservative’ op-
tion if the input structure is known to be reliable and only
local refinement is desired. Energy without restraints is used
in final scoring.

Method performance

The GalaxyRefine2 server was tested in the refinement
category of CASP12 and CASP13 in a blinded manner,
and the server named ‘Seok-server’ was ranked highly
among all servers (18,29). The CASP13 results (http://www.
predictioncenter.org/casp13/) are summarized in Table 1.
GalaxyRefine2 was also compared to GalaxyRefine (8) on
114 refinement targets of CASP8-12 that are monomeric
and have no missing residues in the middle. Homolog struc-
tures with a sequence identity of >40% were excluded
during local error estimation and structure threading. As
summarized in Table 2, the new version of GalaxyRe-
fine, GalaxyRefine2, showed improved performance. The
average magnitudes of improvement were 2-fold those of
GalaxyRefine in terms of GDT-HA (20) and LDDT (21),
when the server was run in the default mode. Several suc-

cessful refinement examples improving models in various
aspects are also illustrated in Figure 2.

GALAXYREFINE2 SERVER

Hardware and software

The server runs on a cluster of four Linux servers of 2.20-
GHz Intel Xeon E5-2650 v4 12-core processors. The web
application uses the Python programming language and
the MySQL database. The GalaxyRefine2 pipeline is im-
plemented using Python. The refinement method is imple-
mented as part of the GALAXY program package (9,10)
written in Fortran 90. JavaScript Protein Viewer (http://
biasmv.github.io/pv/) is used to visualize the refined mod-
els.

Input and output

The required input is a protein monomer structure in PDB
format. The number of residues in the input file is limited
to 300 for computational efficiency. Structures with missing
residues in the middle are not allowed. The user may choose
to run the server in the conservative refinement mode when
the backbone structure of the input is considered very reli-
able, such as in the cases of NMR structures or template-
based models generated from templates with high sequence
identities. The average run time is 6–10 h. Ten refined struc-
tures, ranked based on the energy, are visualized in the web
browser and are downloadable in the PDB format. Infor-
mation on structural changes between the input structure
and refined structures is provided in terms of RMSD and
MolProbity score (Figure 3).

http://www.predictioncenter.org/casp13/
http://biasmv.github.io/pv/
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Table 1. Performance comparison of server groups participated in CASP13 refinement category

Group names Mean improvement of Model 1 / Best among Model 1–5a

GDT-HA GDC-SC LDDTb – MolProbity

Seok-server (GalaxyRefine2) +1.46 / +2.68 +3.45 / +5.06 +2.55 / +3.21 +1.47 / +1.59
Bhattacharya-Server (29) –0.37 / +1.75 +1.70 / +3.55 +0.86 / +1.79 +1.19 / +1.34
YASARAc –1.21 / –1.21 +1.69 / +1.69 +0.57 / +0.57 +1.60 / +1.60
MUFold server –2.28 / –1.54 –0.69 / +1.17 –0.63 / –0.26 –0.40 / –0.17
3DCNN –11.44 / –3.28 –6.52 / –1.05 –6.83 / –3.43 +0.65 / +0.87

aAll evaluation values were obtained from CASP official homepage, http://predictioncenter.org/casp13/results.cgi.
bLDDT values were re-scaled to the range of [0, 100].
cYASARA group submitted only one model per target.

Table 2. GalaxyRefine2 benchmark test results for CASP8–12 refinement targets

Methods Mean improvement of Model 1 / Best among Model 1–10

GDT-HA GDC-SC LDDTa

GalaxyRefine2 (default) +0.92 / +2.72 +1.48 / +3.69 +1.58 / +2.43
GalaxyRefine2 (conservative) +0.92 / +1.98 +0.98 / +2.11 +1.03 / +1.47
GalaxyRefine (8) +0.58 / +1.41 +1.14 / +2.47 +0.73 / +1.16

aLDDT values were re-scaled to the range of [0, 100].

Figure 3. Example output page of GalaxyRefine2. Ten generated models
are visualized using the JavaScript Protein Viewer. The models are down-
loadable in PDB format. Information such as structural changes from the
input structure and MolProbity score is shown in the table.

CONCLUSIONS

GalaxyRefine2, an updated version of GalaxyRefine (8),
refines local and global protein structures simultaneously
by iterative conformational sampling, unlike GalaxyRe-
fine, which was limited to local refinement. GalaxyRefine2
was successful in conducting blind prediction in CASP12

(18) and CASP13 refinement experiments. This server can,
therefore, be used to improve predicted protein structures
or low-resolution experimental structures for further inter-
pretations or applications.
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