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Abstract: Metabolic changes occurring in ripe or senescent fruits during postharvest storage lead to
a general deterioration in quality attributes, including decreased flavor and ‘off-aroma’ compound
generation. As a consequence, measures to reduce economic losses have to be taken by the fruit
industry and have mostly consisted of storage at cold temperatures and the use of controlled
atmospheres or ripening inhibitors. However, the biochemical pathways and molecular mechanisms
underlying fruit senescence in commercial storage conditions are still poorly understood. In this sense,
metabolomic platforms, enabling the profiling of key metabolites responsible for organoleptic and
health-promoting traits, such as volatiles, sugars, acids, polyphenols and carotenoids, can be a
powerful tool for further understanding the biochemical basis of postharvest physiology and have
the potential to play a critical role in the identification of the pathways affected by fruit senescence.
Here, we provide an overview of the metabolic changes during postharvest storage, with special
attention to key metabolites related to fruit quality. The potential use of metabolomic approaches to
yield metabolic markers useful for chemical phenotyping or even storage and marketing decisions
is highlighted.
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1. Introduction

Fruit growth, ripening and senescence are complex processes, controlled by multiple
developmental and environmental signals, and their molecular mechanisms remain unclear [1].
Fruits undergo important metabolic changes during ripening, including chlorophyll breakdown,
anthocyanin or carotenoid pigment accumulation, cell wall degradation and the synthesis of low-weight
metabolites (such as sugars, acids and volatiles), which function to increase their attractiveness to seed
dispersers [2]. Once fruits are removed from the plant and until they reach consumers on the market,
a period known as postharvest ripening or senescence occurs—the duration of which is variable (from
days to weeks) and the effects of which mainly depend on fruit metabolism and ripening status at
harvest. Indeed, climacteric fruits, such as tomatoes, kiwi or avocados, which exhibit a concomitant
peak of ethylene production and a sudden rise in respiration at the onset of ripening [3], can ripen after
harvest. In this sense, the control of ethylene production is fundamental to optimize the postharvest
storage of these types of fruits [4]. On the other hand, non-climacteric fruits, e.g., strawberries and
grapes, do not exhibit respiration and ethylene production peaks, and have to be harvested (almost)
fully ripe. Postharvest storage initiates fruit senescence—the effects of which on biological processes are
unavoidable and largely negative. Senescence leads to protein, lipid and nucleic acid degradation and
cell dysfunction, disintegration and death [5]. Several factors influence and accelerate fruit senescence,
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with the most relevant being respiration, providing energy for maintaining metabolism, dehydration
and fungal activity [6]. Consequently, the degradative processes associated with postharvest senescence
impact fruit quality traits, i.e., aspect, texture, taste, aroma and nutritional characteristics, leading to
consumer rejection and important economic losses for the fruit industry.

Currently, depending on fruit crops, different postharvest strategies are commercially practiced in
order to adapt ripening to industry needs, delay senescence, maintain fruit quality attributes and, thus,
prolong shelf-life. In general, fruits are highly perishable at ambient temperature. Thus, refrigerated
storage is the most common method used to delay ripening, fruit respiration, enzymatic activities,
and the development of pathogen infections, and, therefore, extend fruit shelf-life [7]. However,
cold storage can provoke the development of a physiological disorder called chilling injury (CI).
Although CI symptoms are species dependent, CI includes internal and external browning, mealiness,
flesh bleeding, pitting or the inability to soften. These physiological disorders tend to appear once
the fruits are acquired by consumers, having a negative impact on palatability and acceptance [8,9].
To reduce CI symptoms and depending on the type of fruit, the industry combines low-temperature
storage with some complementary strategies. For example, prior heat treatment to cold storage is
widely used in several crops, including Citrus and loquat [10], while controlled atmosphere (CA,
increased CO2 and decreased O2 levels) is commonly applied to apple, strawberry, peach and pear,
among others [11]. Additionally, delayed cooling has been successfully applied in apple to reduce
soft scald, a chilling-dependent physiological disorder [12]. While CA reduces fruit respiration, heat
treatment has a protective effect by acting on membrane integrity and heat shock protein accumulation
and by promoting antioxidant and sugar metabolism [13]. Further, it is known that heat treatment
induces defense mechanisms and induces physiological changes that allow Citrus fruit to withstand
stressful conditions during storage. For example, GC–MS analysis in heat-treated oranges during
storage showed a higher concentration of sugars while no changes were observed in organic acid
levels [14].

In the case of climacteric fruits, such as tomato or banana, the application of ethylene
antagonist 1-methylcyclopropene (1-MCP) is commonly used to increase shelf-life [15]. However,
the aforementioned strategies have different degrees of effectiveness at reducing CI and prolonging
shelf-life, depending on fruit species and varieties. In addition, it must be highlighted that these
postharvest techniques constitute abiotic stresses for the fruits, which have to adapt their metabolism to
maintain homeostasis [16]. In particular, stress situations induce the synthesis of compounds involved
in plant protection, and trigger the accumulation of compatible metabolites, reactive oxygen species
(ROS)-scavenging enzymes and changes in carbon metabolism [17,18]. In this sense, metabolomic
platforms, allowing the simultaneous detection and quantification of hundreds of metabolites, offer the
possibility to improve our knowledge about the molecular mechanisms underlying fruit senescence
under commercial storage conditions.

2. Metabolomic Platforms in Postharvest Studies

The plant metabolome comprises a wide range of small molecules, with a large variety in
physico-chemical properties and extremely variable concentrations. Metabolomics is defined as the
field of the research that generates a profile of small molecules in a biological system. Thus, it can
directly reflect the outcome of complex networks of biochemical reactions and, therefore, provides
essential information about the underlying biological status on the system in question.

For these reasons, successful analysis of the complex network of fruit metabolites requires
highly sensitive and selective analytical techniques, with each displaying both advantages and
limitations and showing differential coverage depending on the nature of the metabolite. In particular,
mass spectrometry (MS) coupled with gas chromatography (GC), liquid chromatography (LC) and,
to a lesser extent, capillary chromatography (CE) and nuclear magnetic resonance spectroscopy (NMR)
have been the most extensively applied methodologies to study the plant metabolome, including its
reconfiguration during fruit postharvest senescence [17,19,20].
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GC–MS is the technique of choice for measuring small polar metabolites, which are thermally
stable and can be made volatile through a derivatization approach [21]. The main advantages of
GC–MS are its robustness and reproducibility, which have allowed the establishment of libraries and
databases facilitating the identification of metabolites. As a result of its characteristics, GC–MS is
mainly used in plant metabolomic studies to investigate central primary metabolism, which includes
sugars, sugar alcohols, amino acids, organic acids and polyamines [17,19]. In addition, GC–MS can be
coupled with headspace solid-phase microextraction (HS-SPME), which allows the detection of specific
volatiles present in a sample [22]. Both volatile and primary metabolite changes occurring during fruit
postharvest storage have been extensively studied, as they are key compounds of fruit taste and aroma.

To overcome the limitations of GC–MS, which is restricted to volatile and thermally stable
molecules, LC–MS is broadly used to detect a wider range of metabolites. In particular, the enormous
diversity of plant secondary metabolites, which includes tens of thousands of different compounds [23],
is mainly studied using LC–MS due to its versatility. However, and as a consequence of LC–MS
flexibility, metabolite identification remains difficult, as no universal mass spectral library has been
created [24].

Another technique used to study plant metabolomics, although rather uncommon, is capillary
electrophoresis (CE)–MS. This technique allows the detection of a wide range of highly polar or charged
metabolites by separating them based on their mass-to-charge ratio [25]. In this sense, this method has
been proposed as a valuable complementary approach for samples that cannot be readily resolved by
the more established GC– and LC–MS platforms [26].

Even if NMR presents a low sensitivity compared to that of MS approaches, it provides a series of
advantages over the previously mentioned approaches by providing structural information, involving
non-destructive sample preparation and providing rapid metabolite screening [19,27]. Integrated NMR
platforms, allowing the monitoring of changes in both primary and secondary metabolites, have been
developed and can be useful to study metabolic shifts in senescent fruits during postharvest [28].

3. Primary Metabolic Pathways Affected by Postharvest Storage: Effects on Fruit Texture
and Taste

Fruit organoleptic quality is a complex trait that is influenced by taste, aroma, color and texture.
In particular, fruit acceptance by consumers is directly influenced by sugar and acid content and the
ratios of both groups of primary metabolites [29,30]. Fruit respiration during postharvest storage directly
affects primary metabolic pathways, such as glycolysis, starch metabolism, and the tricarboxylic acid
cycle (TCA), which account for changes in sugar, amino and organic acid levels. Indeed, carbohydrates,
organic acids, proteins and fats are the main respiratory substrates during fruit storage. Furthermore,
they are involved in gluconeogenesis, a process which has been described to be upregulated during
the postharvest in orange and apple fruits [31–33]. Thus, it contributes to fruit depletion and also to
important changes in primary metabolite composition. In the next paragraphs, we described alterations
in sugars, organic and amino acids as a consequence of postharvest storage.

3.1. Sugars and Sugar Derivatives

Sugar content, which is commonly estimated by the soluble solid content (SSC), shows differential
behavior during postharvest, depending mainly on the species and storage conditions. The SSC trend
normally coincides with changes in the main sugar profiles present in ripe fruits, i.e., glucose, fructose
and sucrose.

While main carbohydrates tend to decrease in some species, as profiled by GC–MS and NMR
analysis in tomatoes kept at room temperature [34] or blackberries stored at 4 ◦C [35], in other fruits,
such as bananas and kiwis, their level increases as a consequence of starch hydrolysis, which takes
place during postharvest storage [36,37]. In turn, sucrose can be hydrolyzed, leading to a concomitant
increase in hexoses, as monitored by GC–MS in Powell oranges stored at room temperature [33].
Interestingly, growing evidence seems to point to sugars playing a regulatory role in senescence
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processes [38,39]. During fruit ripening and senescence, cross-talk between sugars and hormones
involved in ripening and senescence processes, such as abscisic acid, ethylene and auxin, has been
described [40–43], and sucrose degradation during postharvest storage can be crucial for inducing
senescence [33,44]. Furthermore, sugar uptake during fruit ripening may affect postharvest water loss
by interfering with cuticle development. Indeed, stable silencing of the cell wall invertase LIN5, a key
determinant of SSC content, led to a diminished water loss rate and wrinkling in transgenic tomato
fruits kept at room temperature for 12 days. Even though the complete molecular mechanism has not
been described, it was clearly established that sugar entry during fruit development impacts the cell
wall and cuticle structure, resulting in a radical effect on tomato senescence [45].

Apart from the most abundant sugars, i.e., sucrose, glucose and fructose, fruits also contain minor
sugar and alcohol derivatives, such as sorbitol, galactinol, raffinose, myo-inositol and trehalose [46].
Even if those compounds may be at low concentrations, they seem to be crucial for fruit behavior
during storage, as they can alleviate the negative effects of the abiotic stresses underlying postharvest
conditions. Indeed, soluble sugars are important metabolites in ROS metabolism, being the primary
carbon and energy source and contributing to the generation of reducing power generation via the
oxidative pentose phosphate pathway [41,47,48]. Furthermore, they play key roles in osmoprotection
and cell membrane stabilization [49–51]. As an example, important increases in raffinose and galactinol
levels were measured by GC–MS in peaches after heat treatment (three days at 39 ◦C) followed by
storage at 0 ◦C for two days and may confer improved tolerance to CI [52]. Moreover, comparing the
levels of galactinol (detected by LC–MS/MS), raffinose, trehalose and myo-inositol (identified by NMR)
in climacteric and non-climacteric plum varieties during postharvest storage at 20 ◦C and in presence
of 1-MCP, propylene (ethylene analogue) or control air, Farcuh et al. [46] noticed that the levels were
more enhanced in the latter variety. These data could explain the capacity of the non-climacteric variety
to cope better with postharvest stress conditions, and the identified sugars could be used as biomarkers
to evaluate fruit physiological status during storage (Table 1).

Softening during postharvest storage is a key physiological process leading to ripe fruit firmness;
however, excessive loss of firmness as a consequence of overripening can prompt physical damage
and pathogen attack, and consequently lead to an important decrease in fruit quality. Softening is the
result of several factors, including cell wall disassembling metabolism. Metabolites originated from
cell wall disassembly, mainly monosaccharides, can be monitored by primary metabolite profiling.
Indeed, in pitaya fruit, the content of several monosaccharides, including xylose, galactose, arabinose,
and mannonic acid and glucuronic acid, which originate from cell wall disassembly, was measured by
GC–MS [53]. Interestingly, these metabolites were decreased after blue light treatment (2 h at 25 ◦C
under blue light emitting diode) compared to control fruits kept in the dark, suggesting that this
treatment has a significant effect in delaying cell wall degradation and postharvest decay of pitaya
fruit [53]. Another study, using LC coupled with tandem MS (LC–MS/MS), detected an increase in
glucuronic acid, a component of pectin, among the major elements of plant cell wall, in pears stored
18 days at room temperature [54]. Pectin de-polymerization and de-esterification were also evidenced
by the detection of galacturonic acid by two-dimensional GC–MS (GC x GC–MS) in overripe kiwi fruits
stored at 20 ◦C and treated for 24 h with 200 ppm ethylene. On the contrary, no increase in galactose
was observed using GC–MS measurements, suggesting that this sugar is directly metabolized after
its release from cell wall, or that it is liberated as different form [55]. Among the main symptoms of
CI in peach is mealiness, which is the result of a cell wall metabolism disorder. Xylose, the central
constituent of hemicellulose, among the key components of plant cell wall, was increased during cold
storage in peach chilling-susceptible genotypes, but not in the varieties resistant to CI, confirming a
link between cell wall disassembly and mealiness in sensitive cultivars [56].
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Table 1. Primary metabolites (sugars, organic and amino acids) identified as putative biomarkers by metabolomic profiling studies to assess fruit quality
changes during postharvest storage. d: day; RT: room temperature; HPLC: high-performance liquid chromatography; UHPLC–MS/MS: ultra-high-pressure liquid
chromatography–tandem mass spectrometry; 1H-NMR: proton-NMR; CI: chilling injury; ROS: reactive oxygen species.

Metabolite Effect on Fruit Postharvest Treatment Behavior during
Postharvest Fruit Species Metabolomic

Platform Reference

raffinose, galactinol Tolerance to CI 39 ◦C, 3 d + 0 ◦C, 2 d Increase peach GC–MS [52]

raffinose, galactinol,
myo-inositol, trehalose

Enhanced capacity to cope
with postharvest stress

conditions
20 ◦C, 14 d Increase non-climacteric plum NMR,

UHPLC–MS/MS [46]

malate

Decrease in water loss and
in susceptibility to

opportunistic fungal
infections

RT, 20 d Decrease tomato GC–MS [57]

malate Correlation with fruit
firmness and shelf-life

25 ◦C until first symptoms
of deterioration Decrease tomato GC–MS, 1H-NMR [58]

mannose, citramalate,
gluconate, keto-gulonate 18 ◦C, 10 d Increase tomato GC–MS [36,59]

dopamine
Conversion to salsolinol at

late postharvest stages,
decrease in fruit quality

25 ◦C until senescence Decrease banana 1H-NMR [36]

proline Osmoprotection and
ROS-scavenging functions

0 ◦C, 20 kPa CO2/20 kPa
O2/60 kPa N2, 3 d + 0 ◦C,

air, 30 d + 20 ◦C, 2 d
Increase grape LC–MS [60]

proline Osmoprotection and
ROS-scavenging functions

1 mM GABA treatment,
20 min + 4 ◦C, 18 d (dark) Increase zucchini HPLC [61]
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3.2. Organic Acids

Several organic acids are related to fruit postharvest metabolism. Surprisingly, particularly in
tomato, the levels of malate, among the most abundant organic acids, impact fruit shelf-life (Table 1).
The malate content, measured by GC–MS, decreases during the ripening and postharvest storage at
room temperature of several tomato genotypes, including delayed fruit deterioration, non-ripening and
ripening inhibitor mutants as well as genotypes that are commercially used because of their delayed
maturation and senescence. Interestingly, it was also shown that malate levels were lower in mature
tomato fruits that ripened on the vine than off the vine [34]. However, when the malate concentration
in tomato fruits was manipulated by reducing the expression of two TCA cycle enzymes (fumarase
and malate dehydrogenase (MDH)), a differential postharvest behavior was observed compared to
that in wild-type fruits at room temperature. Interestingly, fruits of the MDH-deficient genotype
showed higher malate content and poorer postharvest behavior than non-transformed fruits by losing
more water and being more susceptible to opportunistic fungal infections and Botrytis cinerea spores.
In contrast, the fumarase-deficient genotype, with a relatively low malate content, presented a decrease
in water loss and in susceptibility to opportunistic fungi [57]. The mechanism underlying malate’s role
in postharvest responses could not be clearly explained; however, the authors suggested a role for SSC,
which changes in the opposite manner in MDH- and fumarase-silenced lines, in osmotic potential and
subsequent water loss during storage. Another study using recombinant inbred lines originating from
the cultivated tomato Solanum lycopersicum and the wild-type species Solanum pimpinellifolium also
pointed out the association between malate content, fruit firmness and shelf-life [58]. A comprehensive
polar metabolite profiling was performed by GC–MS and NMR and a combination of neuronal clustering
and network construction displayed a strong correlation between glycerate and malate content and
postharvest, which also showed a negative correlation with fructose levels [58]. This association
between metabolites and agronomic traits such as firmness and storage behavior suggested that
malate could be a good biomarker to select genotypes with enhanced quality traits, such as improved
postharvest life [58].

By performing a GC–MS metabolic characterization of S. lycopersicum cv. ‘Plaisance’ fruits
during ripening and postharvest stages, Oms-Oliu et al. [59] showed that one sugar (mannose) and
three organic acids (citramalate, gluconate and keto-gulonate) were strongly increased once the
fruit was removed from the vine and that these compounds could be indicators of metabolic shifts
during postharvest storage [59] (Table 1). As an example, the enhanced gluconate levels could be a
consequence of tartarate biosynthesis from ascorbate degradation or energy balance changes during
tomato storage [62,63]. Free mannose levels are generally low, as this monomer usually composes
carbohydrate polymers. However, it can be found in a free form as a result of cell wall disassembly and
hemicellulose breakdown during fruit senescence, as described in tomato, apple and pear [59,62,64].

Organic acids, particularly citric acid, accumulate at high levels in Citrus fruits, such as lemons,
oranges, grapefruits or pummelos. A study on ‘Hirado Buntan’ pummelo focused on the relationship
between organic acids, measured by high-performance capillary electrophoresis, and fruit senescence
during postharvest storage at both ambient and cold temperatures. The authors observed a general
decrease in malate, citrate, aconitate and fumarate during storage, accompanied by important
fluctuations in their levels; this decrease was associated with a loss of fruit quality [31]. The combination
of transcriptomic analysis paralleled the metabolomic data, suggesting that the peroxisomal MDH—the
expression of which correlated with malate levels—is responsible for organic acid metabolism
regulation during postharvest. This result indicated that the glyoxylate cycle, which occurs in
peroxisomes and glyoxysomes, is central to organic acid regulation by supplying succinate for the
TCA cycle [31]. Tang et al. [33] also observed a decrease in several organic acids analyzed by GC–MS,
such as malate, citrate and α-ketoglutarate, during postharvest storage of ‘Powell’ oranges at room
temperature. In this case, they suggested that malate could be used as a substrate for gluconeogenesis,
being converted into phosphoenolpyruvate (PEP) by the action of two enzymes upregulated in oranges
kept at room temperature: PEP carboxykinase and pyruvate orthophosphate dikinase (PPDK). Similarly,
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an increased abundance of PPDK proteins associated with decreased malate content was observed in
peaches subjected to heat treatment followed by storage at 20 ◦C [65]. Another study using GC–MS
analysis in different varieties from the Citrus genus suggested that a conversion of organic acids to
sugars during fruit postharvest senescence at ambient temperature occurs, as negative correlations were
frequently observed between metabolites belonging to the two groups and that the SSC/titratable acidity
ratio increased during storage [66]. The succinate content increased during pummelo postharvest
storage, showing a positive correlation with GABA and glutamine [31]. In addition, GABA increased
during the postharvest senescence of Powell oranges, matched by an upregulation of the genes involved
in the GABA shunt [33]. In this sense, the GABA shunt was outlined as an important pathway for
organic acid catabolism and for balancing organic acid and amino acid levels. Indeed, superfluous
citrate can be converted into amino acids via the GABA shunt [33,67]. Moreover, Sun et al. [31]
observed an increase in ROS during pummelo storage, which correlated with enhanced mitochondrial
damage. Cross-talk between ROS and organic acids could occur during postharvest senescence, as TCA
enzymes have been described to be very sensitive to inhibition by ROS [68,69], while organic acids
could be involved in the direct ROS scavenging [70,71].

3.3. Amino Acids

Amino acid content is also affected to a large extent by postharvest storage, as these compounds
are involved in several pathways induced during fruit ripening [47]. In particular, during senescence,
amino acid catabolism can counteract the reduction in electron supply from the TCA cycle [72].
Ubiquitination of proteins controls their degradation to free amino acids, and upregulation of the
ubiquitin pathway has been reported in stored peaches that were previously were heat treated [73].
Dopamine, a derivative of the aromatic amino acid tyrosine, has been proposed as a postharvest
marker in banana fruit stored at 25 ◦C [36] (Table 1). Indeed, NMR-based metabolite profiling of the
senescence of bananas stored at room temperature showed that dopamine levels were undetectable at
the last postharvest stage. Concomitant with dopamine disappearance was the sudden appearance of
salsolinol, which has been described to originate from dopamine and acetaldehyde, the latter formed
from ethanol, which is also generated in the late postharvest stage [36,74]. The authors concluded that
the conversion of dopamine to salsolinol led to a decrease in fruit quality, making bananas less fit for
consumption [36].

Additionally, several amino acids play a key role in tolerance to abiotic stresses in fruits during
postharvest senescence. Indeed, a GC–MS comparative study between pineapple varieties tolerant
and susceptible to CI stored at 10 ◦C outlined that amino acid increases during chilling stress may
be associated with a delay in symptom appearance, such as internal browning, by presumably
contributing to the synthesis of enzymes involved in tissue repair and, in the case of cysteine, aspartate
and valine, by acting as osmoprotectants [75]. Proline is a well-documented stress-related amino
acid and among the main osmolytes that are accumulated during plant stresses, playing important
membrane protection and ROS-scavenging functions [76,77] (Table 1). Grape storage in a CO2-enriched
atmosphere resulted in a threefold endogenous proline increase when compared to that in air-stored
grapes [60], and proline accumulation is a common trend in postharvest fruits subjected to treatments to
attenuate CI, such as zucchinis [61], mangoes [78], bananas [79], pears [80] and loquats [81]. However,
the possible role of amino acids in counteracting CI seems to be species dependent, as GABA, aspartate,
phenylalanine and proline increase in peach stored at 0 ◦C for 21 days was not associated with CI
protection, since their levels, quantified by GC–MS, were enhanced in both resistant and susceptible
genotypes [56].

A recent study in strawberry also outlined the possible role of amino acids in plant defense,
as pathogen resistance mechanisms implicated this group of metabolites [82]. The increase in asparagine,
aspartic acid, threonine, glutamic acid, glutamine, alanine and glycine in CO2-treated strawberries
compared to control fruits could, at least partially, explain the lower fungal decay observed in the first
group [83].
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4. Postharvest Impact on Secondary Metabolites

The two main families of secondary metabolites present in fruits are polyphenol and terpenoid
compounds, responsible for their appealing color and also important for their organoleptic and
nutritional characteristics [84]. Apart from their importance in the human diet, these molecules are
involved in plant defense and responses against biotic and abiotic stresses. In particular, metabolomic
approaches have helped in deciphering their role during fruit storage and how different postharvest
strategies impact on them. Here, impact on polyphenols, including anthocyanins, and carotenoids
during fruit shelf-life is discussed in the next paragraphs.

4.1. Polyphenol Compounds

Dynamic metabolite changes, profiled by high-performance LC–MS (HPLC–MS), were observed
during grape postharvest ripening and dehydration, the metabolic responses being genotype
dependent [85]. A particular feature was the cultivar-specific accumulation of stilbenes, a class
of phenylpropanoid compounds, with antifungal activity. On the other hand, anthocyanins and
other flavonoids, belonging to another phenylpropanoid class, were depleted along postharvest
dehydration [85]. An untargeted HPLC–MS profiling during grape ripening and withering (postharvest
drying), combined with transcriptomic and proteomic data integration, also correlated the presence
of stress-related secondary compounds (stilbenes and acylated anthocyanins) with the postharvest
phase. The synthesis of defense molecules could be a response to abiotic stress (dehydration)
or biotic stress (eventual pathogen attack). In addition, three metabolites (two taxifolins and
tetrahydroxyflavanone-O-deoxyhexoside), belonging to the flavonoid class, have been proposed as
putative markers in order to assess berry fruit quality traits (Table 2) [86]. In grapes, the accumulation of
different stilbenes during cold postharvest storage was monitored by UHPLC–MS/MS [87]. This increase
was also observed when grape fruits were kept at high CO2 [87]. In contrast, CA storage has been
described to have negative effects on anthocyanin accumulation in strawberry fruits, compounds
responsible for the color of the ripe fruit [88]. In this sense, postharvest cold storage is a mandatory
strategy to enhance anthocyanin content in some fruits such as blood oranges, some varieties of plums
and anthocyanin-rich tomatoes [89,90]. Interestingly, it has been described that tomato anthocyanin-rich
lines are able to maintain fruit quality for longer during storage, mainly by reducing their susceptibility
to Botrytis cinerea [91,92].

In mandarins, heat treatment previous to storage at 12–16 ◦C positively impacts polyphenol
metabolism by increasing flavonoids and lignin content (flavonoids measured by HPLC–MS). The effect
of this postharvest strategy can be seen as a modulation of fruit defense against biotic and abiotic stress
during postharvest storage, by supplying chemical (flavonoids) and physical barriers against pathogen
attack [93]. The relationship between polyphenol content and resistance to postharvest decay caused
by Penicillium expansum has also been described in apple; indeed, resistant and susceptible apple
genotypes could be discriminated based on polyphenol content, measured by UPLC–MS (Table 2) [94].
However, a general polyphenol increase during fruit shelf-life does not always occur, as described
by untargeted UHPLC–MS in several mango varieties stored at room temperature during six days,
in which it was found that only gallic acid and epicatechin content was enhanced after storage [95].
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Table 2. Secondary metabolites (polyphenols and carotenoids) identified as putative biomarkers by metabolomic profiling studies to assess fruit quality changes
during postharvest storage. d: day; w: weeks; UHPLC–HRAM MSn: ultra-high-performance liquid chromatography coupled to high resolution multiple-stage
mass spectrometry.

Metabolite Effect on Fruit Postharvest
Treatment

Behavior during
Postharvest Fruit Species Metabolomic

Platform Reference

taxifolin deoxyhexoside, taxifolin hexoside
tetrahydroxyflavanone-O-deoxyhexoside

Antifungal activity, withering
stress responses withering, 91 d Increase grape Untargeted

HPLC–MS [86]

procyanidin B1, epi-catechin Resistance to
Penicillium expansum 2 ◦C storage Increase apple UHPLC–HRAM MSn [94]

β-cryptoxanthin Part of β, β-xanthophyll pool
in mature oranges 12 ◦C up to 7 w Increase sweet orange HPLC [96]
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4.2. Carotenoids

Carotenoids are an important class of terpenoids, responsible for the attractive color of many fruits
and vegetables. While their low stability during postharvest storage, mainly due to a rapid turnover of
β-carotene, has been described in many staple crops, postharvest accumulation in Citrus and tomato
seems to be temperature dependent [96,97]. Carotenoid levels in grapefruit, determined by HPLC,
stored at 2 and 12 ◦C established a link between carotenoid content and CI symptom suppression,
suggesting that they play a role in preventing cold damage by protecting plastid structures [98,99].
Furthermore, the ratio between 9-Z-violaxanthin (yellow hues) and β-citraurin (orange-red pigments),
responsible for the external orange fruit color, was lower in sweet oranges stored at 12 ◦C than at
2 ◦C, outlining that this important quality indicator is better maintained at moderate temperatures.
Additionally, increased levels of β-cryptoxanthin in orange pulp stored at 12 ◦C should be pointed
out, due to health-beneficial provitamin A activity (Table 2) [96]. Carotenoid content, measured by
HPLC, was also drastically increased during postharvest storage of winter squash at 21 ◦C, even if
no induction of the biosynthetic genes could be observed. Starch degradation during winter squash
storage, with the concomitant release of soluble sugars which may act as substrates for terpenoid
synthesis, and downregulation of genes involved in carotenoid turnover, could be the explanation of
their enhanced content [100]. In other fruits, such as green pepper, carotenoid accumulation during
postharvest storage has a negative impact on consumer acceptance. Pepper reddening depends
on the metabolic dynamic of chlorophyll degradation and active synthesis of carotenoids, such as
β-carotene and capsanthin, as depicted by HPLC-based profiling of these pigments [101]. Quantification
of chlorophyll by spectrophotometry has also pointed out its breakdown as a deterioration factor
occurring during pear or lime shelf-life [102,103]. In this sense, postharvest strategies, such as chlorine
dioxide fumigation or hot water treatment, may be effective in downregulating genes involved in
chlorophyll-degrading enzymes [101,102].

5. Volatile Profiles during Postharvest and Their Impact on Fruit Aroma

In fruits, there are three major classes of metabolites responsible for flavor: sugars, acids,
and volatile. While fruit taste is mostly dependent on the ratio of sugars and acids, it is the volatiles that
determinate the unique flavor of fruits. Most volatiles present in mature fruits originate from terpenoid
and phenylpropanoid pathways or are fatty and amino acid derivatives [104]. Volatile profiling is
typically achieved by extracting them from the headspace (HS), i.e., the airspace around the fruit, and
detecting them by GC–MS. Sampling from headspace is most often performed by the adsorption of the
volatiles on a stationary phase coated on a fused silica fiber and is known as solid-phase microextraction
(SPME) [104]. Another GC–MS-based strategy for volatile profiling is their collection from chopped
fruits on a Super Q column, followed by elution with methylene chloride [105]. To overcome metabolite
co-elution by one-dimensional GC, GC x GC–MS has been implemented to increase separation
efficiency and volatile detection [106,107]. As not all volatiles impact fruit aroma, a complementary
approach, known as GC—olfactometry, can be used to determine odor-active compounds [108].
During postharvest, it could be established that important shifts in fruit volatile profiles are normally
observed and are often responsible for the decreased sensory acceptability after prolonged storage.
For instance, general trends profiled by GC–olfactometry, describe a loss of ‘green’ or ‘fresh’ notes
and a concomitant increase in ‘fruity’, ‘overripe’ or ‘musty’ aromas [109]. Changes in aroma are a
consequence of metabolic pathways that are active during postharvest and, in turn, appear to be
largely depend on the storage strategies used by industry. For example, among the symptoms related
to CI is the negative impact perceived on aroma production, a phenomenon described in many species,
such as strawberries [110], kiwifruit [111], tomatoes [112] and peaches [113]. Tomatoes stored at 5 ◦C
for 7 days were significantly less palatable than fruits recently harvested, and this decrease in consumer
acceptance, established by taste panels, was a consequence of changes in volatile emissions [105].
Furthermore, a higher increase in ‘musty’ and ‘damp’ aroma notes was observed in tomatoes stored
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at 10 ◦C than in those stored at 12.5 ◦C, suggesting that the latter temperature storage was able to
maintain better sensory attributes [114].

Fermentation metabolism and amino acid and fatty acid catabolism are of great importance
regarding the production and accumulation of volatiles in harvested fruits. Indeed, the activation of
amino acid and fatty acid degradation to generate TCA cycle acetyl-CoA precursors and thus maintain
energy production leads to the accumulation of specific substrates for volatile formation. In mandarin,
a combination of metabolomic and transcriptomic data outlined the upregulation of genes involved in
branched-chain amino acid catabolism, fatty acid cleavage and ethanol fermentation, which suggested
that central metabolism modifications are accountable for the increase in branched-chain esters (‘fruity’,
‘overripe’ aroma), fatty acid-derived volatiles (‘musty’ notes) and ethanol [115]. The activation
of anaerobic fermentative metabolism due to postharvest abiotic stress is especially important in
‘off-aroma’ compound generation and has been described in fruits of several species, including
strawberries [116–119], apples [120], mandarins [109] and peaches [121], among others. Indeed,
the glycolysis end-product pyruvate can alternatively serve as a substrate for anaerobic respiration
and ATP production under O2-limiting conditions, which produces a shift from aerobic respiration to
the fermentation pathway [16,120,122,123]. As a consequence, off-aroma volatiles, namely ethanol,
acetaldehyde and ethyl acetate, accumulate, playing a key role in fruit quality decline [117,124] (Table 3).
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Table 3. Volatile compounds identified as putative biomarkers to evaluate the effects of postharvest storage on fruit aroma. d: day; w: week; GC–O: gas
chromatography–olfactometry; GLC–MS: capillary gas–liquid chromatography–mass spectrometry.

Volatile Effect on Fruit Postharvest Treatment Behavior during
Postharvest Fruit Species Metabolomic

Platform Reference

ethanol, ethyl acetate,
acetaldehyde

‘Off-aroma’ generation,
‘alcohol’ aroma

3 ◦C, 3 ws supplemented
with different CO2

concentration
Increase strawberry HS-SPME–GC–MS [117]

ethanol, ethyl acetate,
acetaldehyde

‘Off-aroma’ generation,
‘alcohol’ aroma 5 ◦C, 6 ws + 20 ◦C, 1 w Increase mandarin HS-SPME–GC–MS

and GC–O [109]

ethanol, ethyl acetate,
acetaldehyde

‘Off-aroma’ generation,
‘alcohol’ aroma

2.5 ◦C, 7 d + 1 ◦C followed by
two different low oxygen

protocols up to 240 d
Increase apple HS-SPME–GC–MS [11]

ethanol, ethyl acetate,
acetaldehyde

‘Off-aroma’ generation,
‘alcohol’ aroma

0 ◦C, 6 w + 20 ◦C, 2 days
supplemented with different

CO2 concentration
Increase grape HS-SPME–GC–MS [87]

β-myrcene Decrease in aroma quality 2 ◦C or 12 ◦C, 7 w Increase at 2 ◦C,
decrease at 12 ◦C grapefruit HS-SPME–GC–MS [98]

ketone nootkatone Confers characteristic ripe
aroma fragrance 12 ◦C, 7 w Increase in 12 ◦C grapefruit HS-SPME–GC–MS [98]

limonene Cold-induced responses 2 ◦C, 7 w Increase grapefruit HS-SPME–GC–MS [98]

limonene Cold-induced responses 1 ◦C, 7 w Increase lemon HS-SPME–GC–MS [125]

limonene Cold-induced responses 5 ◦C, up to 6 w Increase mandarin HS-SPME–GC–MS [126]

limonene Senescence predictor
Combination of treatments,
including 15 ◦C, 7 d + 2 ◦C,

18 d, 13 ◦C, 17 d
Increase grapefruit GLC–MS [127]

α-farnesene
Correlation with CI

symptom development in
0 ◦C storage

0 ◦C up to 12 w, with or
without ethylene Increase lime, mandarin,

grapefruit, orange GC–MS [128]

linalool Key component of fruit
aroma

10 ◦C, 10 d + 22 ◦C
until fully ripe

Decrease in
low-temperature storage papaya HS-SPME–GC–MS [129]

linalool Key component of fruit
aroma

0, 2, 5, and 10 ◦C up to
3 months

Decrease in
low-temperature storage Muscat table grapes HS-SPME–GC–MS [130]
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Fermentative metabolism activation and off-flavor compound formation are mainly associated
with low oxygen concentration under CA storage [118,123,124,131]. However, the production of
ethanol via fermentation may also be a consequence of a decline in cellular energy status [132].
As long as energy demand is maintained, fermentation can be endured; nevertheless, failure of cellular
homeostasis, such as an imbalance in the pH or ROS production, will lead to storage-induced disorders,
strongly affecting fruit quality [133]. Understanding how or when fermentation occurs can help to
limit ethanol production. Metabolomic approaches using 1H NMR and GC–MS profiling were used
to assess metabolite gradients within the fruit, which may be related to in situ hypoxia in the central
part of the ripening fruit [134,135]. CA is of special importance for the long-term storage of fruits
such as apples, and could maintain a better aroma quality [136,137]. It appears that the low-oxygen
pressure employed during CA affects volatile emissions in a genotype-dependent manner [11]. Indeed,
a multiplatform metabolomic approach (proton-NMR, GC–MS and HS-SPME–GC–MS) comparing ‘Red
Delicious’ and ‘Granny Smith’ apple varieties showed strong activation of fermentative metabolism
in the former, with ethanol and acetaldehyde accumulation, while the latter dealt with hypoxia by a
reconfiguration of nitrogen metabolism through the intensification of alanine levels to prevent excessive
accumulation of pyruvate [11]. Low oxygen may induce changes in metabolite concentrations that
reflect a decrease in biosynthetic process, inhibition of the TCA cycle, and activation of anaerobic
metabolism, which means accumulation of sucrose and organic acids and diversion of pyruvate
to ethanol and alanine [134]. Table grapes stored under elevated CO2 concentrations (5 kPa O2

and 15 kPa CO2) showed an upregulation of genes involved in pyruvate synthesis (pyruvate kinase,
PEP carboxykinase and NADP-dependent malic acid enzyme) and a concomitant increase in volatiles,
detected by HS-SPME–GC–MS, derived from pyruvate degradation—some of which were suspected
to generate ‘off flavor’. Additionally, the increased expression of a specific alcohol dehydrogenase gene
(ADH) under anaerobic atmospheric conditions enhanced the accumulation of off-aroma volatiles,
including ethanol, acetaldehyde and ethyl acetate [87].

Metabolic reconfiguration during postharvest affects volatile patterns beyond the generation of
off-aroma compounds, and changes occurring in most important volatile classes are described in the
next sections.

5.1. Fatty and Amino Acid-Derived Volatiles

Fatty acid-derived volatiles, responsible for aldehyde, alcohol and ester accumulation, the last
being the predominant class of aromatic compounds in fruits of several species, seem to be strongly
impacted by low-temperature storage [110,138,139]. Free fatty acids such as linoleic acid and linolenic
acid are reduced to aldehydes by the lipoxygenase pathway (LOX). Next, aldehydes are reduced to
alcohols followed by alcohols to esters by ADH and alcohol acyltransferase (AAT), respectively (for a
review, see [84]). Interestingly, correlations among LOX, ADH and AAT activities, gene expression
and decreased volatile production under refrigerated postharvest conditions have been established
in several fruit-bearing species [140,141]. In particular, a relationship between a reduction in ADH
activity and decreased ester content, monitored by SPME–GC–MS technology, during pear cold storage
has been established [138]. In tomatoes, ADH activity was diminished as a consequence of refrigerated
conditions at both 10 and 12.5 ◦C, and storage was associated with an increase in the aldehyde/alcohol
ratio at 10 ◦C [112,114]. Furthermore, a decrease in ADH2, LoxC and AAT1 transcripts after 8 days
of cold storage (5 ◦C) was associated with lower levels of C6 and C5 (fatty acid-derived) volatiles in
chilled tomatoes [105]. Additionally, low temperature also seems to affect upstream lipid catabolism
by downregulating the expression of several genes involved in the formation of the unsaturated free
fatty acids linoleic acid and linolenic acid, limiting substrate availability for ester biosynthesis [142].
Furthermore, membrane damage during cold storage has also been suggested to impair ester synthesis,
as a relatively high leakage rate, a commonly used marker for membrane permeability, was measured
in pears stored for a long time under refrigerated conditions [138]. The impact of cold storage on
the aromatic compound profile reaches further than that on the pattern of lipid-derived volatiles.
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Branched-chain volatiles derived from the direct precursors of branched-chain amino acids, measured
by GC, after methylene chloride extraction, were also shown to decrease during tomato cold storage and
are correlated with a lower expression of two branched-chain aminotransferases (BCAT1 and BCAT7)
involved in the first step of the catabolism of these amino acids [105]. Additional treatments, such as
hot air or UV-C, combined with cold storage could counteract the negative effect on ester biosynthesis
by promoting the LOX pathway, as has been demonstrated in peaches [143]. Similarly, a pre-chilling
heat treatment (52 ◦C, 5 min) has been shown to alleviate the depletion of important volatiles for
tomato aroma quality during its postharvest storage; in this case, the volatiles include amino acid-
and carotenoid-derived compounds profiled by HS-SPME–GC–MS [144]. Fatty acid-derived alcohols
were also higher under elevated CO2 concentrations compared to those of recently harvested grapes
and cold-stored berries under atmospheric conditions due to the upregulation of the LOX pathway,
together with ADH [87].

Low-oxygen storage has a broader impact on volatile content than ethanol and off-aroma
compound generation, as demonstrated by the different content of ethyl esters between ‘Granny Smith’
and Red Delicious’ apples [11]. Indeed, ethanol can serve as a substrate for ethyl esters, enhancing
their synthesis [136,145,146] and competitively inhibiting the formation of esters originated from other
alcohols [147]. As a consequence, an imbalance between the ratio of ethyl and the remaining esters
occurs during postharvest storage of fruits of ethanol-accumulating apple varieties and those of many
other fruit-bearing species, most likely affecting aroma perception. The fruits of ‘Granny Smith’ and
‘Royal Gala’ apple varieties did not seem to accumulate ethanol under low-oxygen-pressure storage;
however, a negative effect on ester synthesis, in particular straight-chain esters, was observed, with the
impact proportional to the decrease in O2 pressure [148–154]. This decrease can be explained by the
fact that the LOX pathway requires the presence of oxygen. This effect has also been described in
other apple varieties. [137,153]. In contrast, the concentration of branched-chain esters, monitored
by HS-SPME–GC–MS, did not seem to be negatively affected by low oxygen, possibly because
branched-chain amino acid levels were unaltered [154]. Furthermore, low oxygen suppresses the
production of the hormone ethylene, which is involved in ester synthesis, as demonstrated during
apple or banana storage in the presence of its antagonist 1-MCP [155–157].

5.2. Terpenoid Volatiles

Several studies in Citrus have highlighted important changes in terpenoid volatiles monitored
by HS-SPME–GC–MS. These changes were related to CI and tolerance to cold storage. In mandarins,
the accumulation of terpenoid volatiles is associated with chilling-sensitive fruits [158]. This increase is
temperature dependent, and the authors suggest that it was responsible for decreased fruit palatability,
as terpenes can contribute to an unpleasant aroma, providing ‘musty’, ‘resinous’ and ‘oily’ notes.

Another study on volatile emission by intact grapefruits stored at 12 and 2 ◦C for 7 weeks outlined
important differences in the profiles of the terpenoid volatiles as a consequence of temperature [98].
Interestingly, grapefruits stored at 2 ◦C experienced a strong increase in monoterpene content,
particularly in limonene and β-myrcene levels; this group of volatiles was strongly decreased in fruits
stored at 12 ◦C at the beginning of the postharvest period, after which their content remained unchanged.
In contrast, sesquiterpene emissions were predominant in the fruits stored at 12 ◦C [98]. While the
accumulation of the monoterpene β-myrcene under 2 ◦C can negatively impact negatively consumer
acceptance, by providing ‘musty’ and ‘wet soil’ aroma notes to the fruits [108], sesquiterpene ketone
nootkatone levels, an important volatile in grapefruit aroma, seems to be promoted (in term of it content)
under moderate–intermediate-temperature storage, but not refrigerated conditions [98,159] (Table 3).
Taken together, these data suggest that the aroma quality of grapefruits could be better maintained
during intermediate-temperature storage, as has been previously demonstrated in mandarins [126,149].

The trend in the accumulation of the monoterpene limonene and the sesquiterpene α-farnesene,
which showed a transient increase after one week of storage under the two different temperatures,
could be related to cold-induced responses. Limonene release, measured both by HS-SPME–GC–MS and
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capillary gas–liquid chromatography–MS, has also been described in other Citrus species [125–127,160]
and could be a consequence of cell wall and plasmatic membrane disruptions in the oil glands [99,125].
The degree of accumulation ofα-farnesene is correlated with the susceptibility of different cold-sensitive
Citrus species to CI development at 0 ◦C storage [128]. Interestingly, α-farnesene stopped being emitted
by grapefruits after 3 weeks of storage at 12 ◦C, which coincided with the decrease in the observed
CI symptoms, i.e., peel injury. At 2 ◦C, α-farnesene emissions were maintained during the whole
postharvest period, concomitant with the CI symptom progression, confirming the relation between
the detection of this volatile and CI manifestation. In this sense, the detection of α-farnesene by
metabolome-driven approaches could be of high value as a potential biomarker to assess Citrus
quality during postharvest (Table 3). Similarly, the monoterpene linalool, a key component of the
aroma of papaya, was negatively affected by cold postharvest storage at 10 ◦C, and a concomitant
downregulation of linalool synthase expression was also observed, suggesting that this volatile could
be used as a marker to define papaya quality during postharvest storage [129] (Table 3). Linalool is
also the predominant compound responsible for flavor in Muscat table grapes, a highly appreciated
quality trait [161]. The postharvest storage of ‘Shine Muscat’ grapes at different temperatures between
0 and 10 ◦C showed that the decrease in linalool, profiled by HS-SPME–GC–MS, was enhanced at
relatively low (0, 2 and 5 ◦C) temperatures in both fruit skin and flesh. Concomitant with linalool
levels, grapes stored for four weeks at 10 ◦C presented a higher Muscat flavor than grapes stored
at 0 ◦C for the same duration [130]. A possible effect of temperature on linalool synthesis or on the
interconversion of free (aroma-producing) linalool and its glycosidically (odorless) bound form could
be responsible for the observed differences in its concentration. In this sense, optimal storage at 10 ◦C
for a short period or at relatively low temperatures followed by poststorage conditioning at 10 ◦C is
fundamental for maintaining aroma quality for consumers [130] (Table 3).

The combination of 1-MCP with high O2 or high CO2 seemed to favor terpene content, as did the
CO2-enriched atmosphere in lemon [162]. CA storage under an elevated CO2 atmosphere (8% CO2

and 2%–3% O2) could also promote terpene accumulation in mango. Indeed, fruit injury as a result of
CA can enhance the activity of glycosidases, releasing monoterpenes, such as linalool or terpineol,
from their glycoside-bound forms [163]. However, all tested CA treatments resulted in a reduction in
total sesquiterpenes and also enhanced levels of ethanol, acetaldehyde and esters compared to those
under atmospheric conditions. In addition, it was established that mangoes should not be stored
under 3%–5% O2 to avoid excess fermentative compound accumulation and maintain fruit aroma
quality [163,164].

6. Conclusions

Although fruit responses to postharvest storage conditions are species and even cultivar dependent,
making them especially complicated to study, metabolomic approaches alone or combined with
transcriptomic/proteomic analyses are highly useful for understanding how metabolic changes affect
quality traits. In particular, reconfiguration of fruit metabolism as a consequence of the abiotic/biotic
stress encountered during postharvest storage conditions (cold, hypoxia, pathogens, etc.) has a direct
impact on the accumulation of taste- and aroma-producing metabolites, which are decisive attributes
for consumers and thus for the fruit industry. Even though many molecular mechanisms active during
fruit postharvest storage and senescence remain elusive, future omic studies will shed light on them to
optimize fruit storage conditions.

Furthermore, the recent advances in metabolomic-driven technology allows the identification of
valuable biomarkers that can be employed by the fruit industry to tightly monitor changes in quality
attributes during postharvest storage. In this sense, the use of multiplatform approaches offers the
possibility to select a set of metabolite markers, which could better depict the impact of postharvest
storage on aroma, taste, appearance and nutritional value [165].
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