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T-cell acute lymphoblastic leukemia (T-ALL) is a complex disease, resulting from proliferation of differentially arrested immature
T cells. The molecular mechanisms and the genes involved in the generation of T-ALL remain largely undefined. In this study,
we propose a set of genes to differentiate individuals with T-ALL from the nonleukemia/healthy ones and genes that are not
differential themselves but interconnected with highly differentially expressed ones. We provide new suggestions for pathways
involved in the cause of T-ALL and show that network-based classification techniques produce fewer genes with more meaningful
and successful results than expression-based approaches. We have identified 19 significant subnetworks, containing 102 genes. The
classification/prediction accuracies of subnetworks are considerably high, as high as 98%. Subnetworks contain 6 nondifferentially
expressed genes, which could potentially participate in pathogenesis of T-ALL. Although these genes are not differential, they
may serve as biomarkers if their loss/gain of function contributes to generation of T-ALL via SNPs. We conclude that transcription
factors, zinc-ion-binding proteins, and tyrosine kinases are the important protein families to trigger T-ALL.These potential disease-
causing genes in our subnetworks may serve as biomarkers, alternative to the traditional ones used for the diagnosis of T-ALL, and
help understand the pathogenesis of the disease.

1. Introduction

T-lineage acute lymphoblastic leukemia (T-ALL) is known
to result from malignant transformation of hematopoietic
precursor cells at different maturation stages of T cells, the
so-called thymocytes [1]. Proliferation of developmentally
arrested T cells gives rise to T-ALL. Differentiation arrest may
take place at almost all stages of thymocyte development [2].
T-ALLs are a heterogeneous set of diseases, in terms of cyto-
genetics, molecular aberrations, and clinical characteristics
[1]. Its pathogenesis and subtypes are usually undefined. T-
ALL constitutes 15% of pediatric and 25% of adult ALL cases
[1–4].

In early stages of thymocyte differentiation, immature
T cells undergo V(D)J recombination [1]. During this time,
many other genes, especially the T-cell receptor (TCR) genes,

are transcribed and are in “open chromatin” configuration,
meaning that they are easily accessible to DNA binding pro-
teins, like recombinases. An unusual recombinase actionmay
lead to translocation of chromosomes [3, 5, 6]. Generally, the
translocations involve abnormal juxtaposition of powerful
enhancers or promoters of TCR genes with genes on other
chromosomes, such as transcription factors or oncogenes
[3, 7]. Translocations give rise to not only promoter exchange
but also fusion genes, encoding chimeric proteins [1]. The
othermolecular-genetic abnormalities in T-ALL involve dele-
tions, amplifications, and point mutations which activate
oncogenes or inhibit tumor suppressors, which, in turn, cause
differentiation arrest in thymocytes [1–3]. Deletions are the
reason for loss of tumor suppressors. The correct diagnosis
of acute leukemia requires wide-ranging diagnostic pro-
cedures together with cytochemistry, multiparameter flow

http://dx.doi.org/10.1155/2013/210253


2 BioMed Research International

cytometry, cytogenetics, fluorescence in situ hybridization,
and molecular-genetic methods [8]. Although chromosomal
rearrangements are common to T-ALL, there is still a large
fraction of incidents (50%) where normal karyotype is seen
[1].

The precise diagnosis of a tumor type is the most signif-
icant step in cancer treatments [9]. In order to apply the
appropriate therapy, with maximum efficiency and mini-
mum toxicity, the cancer should be diagnosed and classified
correctly [10]. The challenge is to identify new diagnostic
biomarkers to differentiate diseased and healthy individuals
properly. An optimum biomarker would be easily analyzed
by a single test and measurable in body fluids (such as
blood or urine). However, cancer, in our case T-ALL, is a
complex disease, and it is very difficult to find a single optimal
biomarker at the molecular level [11].

The analysis of genome-wide expression profiles is fre-
quently used to discover new biomarkers [12]. Since microar-
ray or RNAseq high-throughput experiments give informa-
tion about the expression of many genes in parallel [13], they
are proposed to be a robust technology for the identification
of signatures or expression patterns that vary significantly
between diseased and healthy samples [11, 14, 15].The current
long-lasting diagnostic procedures for leukemia (e.g., cyto-
morphology, immunophenotyping, and metaphase cytoge-
netics) might be replaced by the comprehensive microarray
or RNAseq protocols which takes two or fewer days and
allows the simultaneous detection of the expression of almost
all genome in one experimental approach [9].With the exten-
sive usage of microarrays, an increasing number of methods
have been developed to identify biomarkers [14, 16–20].

Along with the advantages of microarrays, there are some
limitations. For instance, some important genes of cancer
are not differentially expressed at the level of transcription
or the fate of cancer may not be controlled at the level of
expression [11]. In addition, the transcriptional level does not
always correlate with the translational level; in other words,
the mRNA expression is not always equal to the protein
expression [21]. The gene-expression levels may vary even
in the genetically identical cells with the same histories of
environmental exposure. These variations, known as “noise,”
come from the random nature of biochemical reactions [22].
Moreover, there is also an “experimental noise” other than
the “expression noise” (biological variations), in which slight
unintended differences in experimental setup may lead to
huge differences in hybridization of probes. This kind of
technical noise is also considered as one of the restrictions for
successful use of this technology [23–25]. Another limitation
of microarrays might be the lack of pathway knowledge. One
way to overcome this problem is to integrate gene-expression
profiles with protein-protein interaction (PPI) networks [26–
29]. A biological function or a phenotype is not controlled
by just one gene [30]; rather pathways or cross-talks among
proteins are responsible for the regulation of a function [31–
33]. Thus, network information provides a functional insight
when integrated with microarray data [11]. Therefore, identi-
fication of differential gene modules or subnetworks instead
of individual differentially expressed genes may increase the
reliability and robustness of biomarkers [11].

Traditional expression-based classification techniques
identify only differentially expressed (DE) genes as signa-
tures/markers, but a network-based approach returns sub-
networks including both DE and non-DE genes [12]. The
differential expression analysis of gene-expression profiles
returns massive numbers of genes which makes it difficult
to conclude that the differential expression of a particular
gene has resulted from the disease/abnormality. Therefore,
we cannot be so sure that the differential analysis identifies
geneswhose differential expression has only resulted from the
disease: there may be another factor affecting the expression
of that gene, such as experimental setup, treatment, or
gender. As noted earlier, even cells with identical genome and
environmental exposure history show variations in their gene
expression (noise).Thus, just differential analysis alone is not
reliable enough to conclude a gene as a biomarker of a disease.

However, network-based approaches do not depend on
only expression data. They integrate microarray data with
PPI data and return subnetworks rather than individual
genes. The number of subnetworks is not as high as the
number of individual genes identified by differential analysis.
These subnetworks are differential as a whole, but individual
genes in a subnetwork may not be differential. Although
irresponsive genes cannot be regarded as biomarkers, they
have very important role in interconnecting several DE genes
and can help us to understand the pathogenesis of the
disease. The non-DE genes are necessary to maintain the
integrity of the subnetworks, meaning that they are required
to interconnect highly DE genes. Furthermore, generation of
a disease necessitates somemutations or polymorphisms that
may lead to loss of function or gain of function of proteins
without affecting the expression level of that protein. This
does notmean that this particular protein is not significant for
the disease just because it is not differentially expressed. The
resulting subnetworks represent models of the underlying
molecular mechanisms. Each module corresponds to a dif-
ferent functional pathway or complex. Since genes function
in collaboration rather than alone, subnetworks are more
rational than independent responsive genes, from a biological
perspective [34].

In this study, we used PinnacleZ algorithm [12] to inte-
grate microarray and PPI data. In addition to PinnacleZ algo-
rithm, there are several other studies which provide different
ways to integrate gene-expression data with other biologi-
cal data, such as protein-protein interactions, protein-DNA
interactions, molecular signatures, or hub proteins [35–42].
These integrated analyses not only improve the prediction
accuracy but also shed light on the biological pathways
involved in the pathogenesis of the diseases. However, there
are not significant differences in their prediction accuracies
among themselves [43]. Combining PPI and microarray data
has led also to determining some important proteins that
are highly connected in interaction networks: “party” and
“date” hubs [44, 45]. Party hubs are the ones highly correlated
with its interacting partner proteins (coexpressed) and date
hubs are less-correlated genes with its interacting partners
[44, 45]. The method of Taylor et al. [42] successfully used
hub proteins to reveal the dynamic modularity in protein
networks to predict breast cancer outcome.
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Hierarchical clustering is one example of the expression-
based classification techniques which groups together both
genes and samples with similar expression patterns. It can
also define subclasses of a disease, such as cancer (e.g.,
different stages of cancer or different types of cancer, like
B-ALL versus T-ALL) [46]. Clustering algorithms try to
organize genes or samples according to their similarity
in expression. Genes with related pattern appear in the
immediate vicinity of each other. In other words, it gathers
coexpressed genes together. It also has a tendency to arrange
genes with similar functions together since the functionally
related genes are likely to be co-expressed [47]. Hierarchi-
cal clustering is a type of unsupervised clustering which
does not use any prior knowledge regarding the sample
classes.

2. Methods

2.1. Microarray Data (The MILE Study). We used a compre-
hensive group of Affymetrix microarray datasets to deter-
mine which genes or modules discriminate T-ALL sam-
ples from healthy individual samples. This study included
bone marrow samples of 173 T-ALL patients at diagno-
sis (untreated patients) and 74 nonleukemia/healthy spec-
imens (e.g., healthy, hemolysis, and iron deficiency). The
patient samples were heterogeneous; that is, there were
samples from different stages of T-ALL. All microarray
data were obtained from the Microarray Innovations in
Leukemia (MILE) study, the National Center for Biotech-
nology Information’s Gene Expression Omnibus database
(http://www.ncbi.nlm.nih.gov/geo/) under series accession
no. GSE13204. The MILE study is an international stan-
dardization program and was conducted by 11 laboratories
across three continents [13]. The comprehensive MILE data
has a high degree of intra- and interlaboratory correlation,
meaning that they tried to minimize the disadvantages of
microarrays, such as noise. In order to avoid the limitations of
microarrays, we used only MILE data. There were two stages
in this study containing microarray samples of 17 different
classes of leukemia and myelodysplastic syndromes and an
18th class of non-leukemia. We used only the first stage in
which thewhole genomemicroarray platform (HG-U133Plus
2.0; Affymetrix, Santa Clara, CA, USA) was used [15]. In
the GEO-series matrix, the microarray data were already
summarized and quantile normalized as described before
[48].

In order to integrate microarray data with the human PPI
network, it is necessary to convert Affymetrix probeset IDs to
corresponding Entrez gene IDs.The annotation data was also
provided under the same accession number. It is important
to note that values for multiple probes corresponding to the
same Entrez ID were averaged so that a particular gene ID is
seen only once throughout the microarray data.

We also used a recently published dataset to test per-
formance of our subnetworks. This dataset includes gene-
expression profiles of childhoodT-ALLbonemarrow samples
under series accession no. GSE46170 from GEO.This dataset
includes 31 patients and 7 healthy samples.

2.2.HumanProtein InteractionNetwork. ThehumanPPI net-
work is obtained from Human Protein Reference Database.
There are 38788 PPIs whose interactions are experimentally
verified and extracted from the literature [49].

2.3. Data Integration. In order to combine human PPI data
with microarray data, we used a previously described algo-
rithm (PinnacleZ, a plugin to cytoscape) [12]. This algorithm
superimposes gene-expression values with corresponding
network proteins, begins from every protein (seed) in the
PPI network, and greedily appends interactions to identify
the subnetwork starting from each seed whose mean expres-
sion for each sample best discriminates between the two
sample types (In our case, the sample types are T-ALL and
nonleukemia/healthy conditions). At first, the number of
resulting subnetworks is equal to the number of proteins in
the PPI network. Then, nonsignificant modules are filtered
out by three types of permutation testing [30]. At last,
subnetworks with high discriminative potential are obtained.

To equate the number of healthy individuals (74) to the
number of patients with T-ALL (173), we divided T-ALL
patient samples into two groups randomly. Then, we merged
each half of patient data with the healthy data, separately. For
each merged data (87+ 74 and 86+ 74), we ran the algorithm
4 times. Then, we resampled our patient samples 5 times
(we again divided T-ALL samples into 2 groups randomly;
thus these 2 groups are different from the 2 groups created
before. So,we generated 10 different combinations of patients)
and repeated the merging and algorithm-running steps. We
obtained results of 40 runs in total.

2.4. Classification Accuracy. The classification accuracy of a
given subnetwork or the overall rate of correct predictions
of the patient and healthy datasets was estimated by 10-fold
cross-validation with two different classifiers (J48 and RBF
network classifiers implemented in WEKA [50]). According
to 10-fold cross-validation, the complete dataset was divided
into 10 uniformly sized subgroups; the classifier was trained
for nine subgroups, and predictions were made for the
remaining subgroup. High classification accuracy, like 90%,
means that a given subnetwork differentiates/predicts the
patient and healthy samples correctly, 90% of the time.

As pointed out, we randomly divided diseased samples
into two groups: for each half we found subnetworks and
determined their classification accuracy. We used the other
half as a validation set to cross-test the prediction accuracy of
a given subnetwork.

We also used an independent microarray dataset (child-
hood T-ALL samples, GSE46170) to test the classification
accuracies of our subnetworks. Again the prediction accu-
racies are obtained by J48 and RBF network classifiers in
WEKA, by 10-fold cross-validation.

2.5. Functional Enrichments. Functional enrichment anal-
ysis was achieved by using Gene Ontology Tree Machine
(GOTM) which searches for functional enrichments from
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

http://www.ncbi.nlm.nih.gov/geo/


4 BioMed Research International

TNNI2

KCNN4

ADD2

CALM1
MYO10

Subnetwork 3

Subnetwork 5

Subnetwork 6

Subnetwork 7

Subnetwork 4

Subnetwork 1 Subnetwork 2

ARL6IP5

PTK2

CCR5

CCL14

ADRBK1

ORM1

CCL5

CD36

P4HB

COL5A3

COL1A2

ITGA2B

TP53

STRA13
RANBP2

UBE2I

SMAD4

SOX4

ATF2

TFAP2C
WT1

TBXA2R

LTB4R
GRK6

SNCA ATXN3
TSPAN3

SALL2

EWSR1

PRTFDC1

CEACAM5

PRTFDC1YWHAG

EWSR1
SSBP2

−1.00 0.00 1.00

Figure 1: First seven of the most frequent subnetworks. Nodes represent proteins, and edges represent interactions. The color of each node
ranges in accordance with the change in expression of the corresponding gene for T-ALL versus healthy samples. The shape of each node
shows whether its gene is significantly differentially expressed (diamond; 𝑃 < 0.05 from a two-tailed 𝑡-test) or not (circle).
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Figure 2: Second six of the most frequent subnetworks. Nodes represent proteins, and edges represent interactions. The color of each node
ranges in accordance with the change in expression of the corresponding gene for T-ALL versus healthy samples. The shape of each node
shows whether its gene is significantly differentially expressed (diamond; 𝑃 < 0.05 from a two-tailed 𝑡-test) or not (circle).
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Table 1: GO enrichments of nondifferentially expressed genes.

Gene symbol Subnetwork Gene title GO: function GO: process

P2RX7 Sub-9
Purinergic receptor P2X,
ligand-gated ion
channel, 7

ATP binding, ATP-gated
cation channel activity,
ion channel, and
receptor activity

Ion transport, signal
transduction

C9 Sub-13 Complement
component 9 No enrichments

Caspase activation, complement
activation, and induction of
apoptosis

CHGA Sub-14
Chromogranin A
(parathyroid secretory
protein 1)

Calcium ion binding,
protein binding Regulation of blood pressure

PLG Sub-14 Plasminogen

Apolipoprotein binding,
calcium ion binding,
peptidase activity, and
plasmin activity

Blood coagulation, induction of
apoptosis, negative regulation of
angiogenesis, cell proliferation,
fibrinolysis, proteolysis, and
tissue remodeling

MEP1A Sub-14 Meprin A, alpha (PABA
peptide hydrolase)

Astacin activity,
metal-ion binding,
metallopeptidase
activity, and zinc-ion
binding

Digestion, proteolysis

HN1L Sub-16
Hematological and
neurological expressed
1-like

No enrichments No enrichments

Genomes (KEGG) categories for genes in the given subnet-
works.

2.6. Hierarchical Clustering. In order to identify groups of
genes that have similar expression patterns and to show
the difference between expression-based and network-based
classification approaches, hierarchical clustering method was
applied to 173 T-ALL and 74 healthy samples together. Ini-
tially, there were 20148 probes.Then, these probes are filtered
by 𝑡-test. We determined the first 100 most differential genes,
and we repeated the same analysis with the first 200 most
differential genes.The rationale behind this is to analyze how
the results would change between these two sets. Hierarchical
clustering algorithm which is implemented in Expander [51]
was performed on both the 200 and 100 most differentially
expressed genes. Both samples and genes are clustered with
complete linkage and Pearson correlation.

3. Results and Discussion

We applied both expression-based and network-based
approaches to find important genes for the generation of
T-ALL and to show that network-based approaches are
more successful in returning more meaningful results than
expression-based approaches.

As a network-based approach, we used PinnacleZ algo-
rithm [12] to distinguish T-ALL patients and healthy samples
by integrating microarray data with the human PPI network.

This approach enabled us to identify subnetworks/modules
as markers which differentiate the patients from healthy
individuals. The size of subnetworks or the number of genes
in a subnetwork varies, ranging from 1 to 10 genes. As noted
earlier, the individual genes may not be responsive, meaning
that expression of a particular gene is different in patients and
healthy samples, but an entire subnetwork is differential.

As explained in the Methods section, we prepared dif-
ferent combinations (10 different combinations) of patient-
healthy merged data and ran the algorithm 4 times with
each combination. Then, we focused on the most frequent
subnetworks. We recovered the most repeated 19 subnet-
works, out of 183 subnetworks (see Figures 1, 2, and 3.
Please refer to Supplementary Material available online at
http://dx.doi.org/10.1155/2013/210253 (Table S1–Table S19) to
see the names and functions of these genes.). These subnet-
works cover 102 genes in total, and the majority of them are
differentially expressed (DE). There are only 6 genes whose
expression is not differential among T-ALL and healthy
samples (see Table 1). The list of genes in the subnetworks,
their functions, and the pathways they are involved in can be
found in Table 2 and also in the Supplementary Material.

Development of cancer requires the accumulation of
several mutations in several genes in different pathways [52].
Since the cell regulation is controlled by many pathways,
a mutation in one pathway may be compensated by other
pathways. But if there are many mutations in numerous
pathways, the harmful impacts of these mutations cannot
be compensated. For instance, if a tumor suppressor gene is

http://dx.doi.org/10.1155/2013/210253
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Figure 3: The last six of the most frequent subnetworks. Nodes represent proteins, and edges represent interactions. The color of each node
ranges in accordance with the change in expression of the corresponding gene for T-ALL versus healthy samples. The shape of each node
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Table 2: KEGG and GO enrichments of the most frequent 19 subnetworks.

Subnetworks KEGG GO: function
Sub-1 No enrichments Actin binding, calmodulin binding

Sub-2
Chemokine-signaling pathway,
Chemokine-cytokine receptor interaction,
endocytosis

Signal-transducer activity, chemokine activity,
and cytokine activity

Sub-3 ECM-receptor interaction, focal adhesion, and
hematopoietic cell lineage

Growth factor binding, extracellular matrix
structural constituent

Sub-4
Pathways in cancer, colorectal cancer, pancreatic
cancer, chronic myeloid leukemia, cell cycle, Wnt
signaling pathway, and MAPK signaling pathway

Promoter binding, transcription activator activity,
and transcription factor activity

Sub-5 Neuroactive ligand-receptor interaction Signal-transducer activity, G-protein coupled
receptor activity

Sub-6 No enrichments No enrichments
Sub-7 No enrichments No enrichments

Sub-8 Pathways in cancer, colorectal cancer, and Wnt
signaling pathway No enrichments

Sub-9
Leukocyte transendothelial migration, regulation
of actin cytoskeleton, dilated cardiomyopathy, Fc
gamma R-mediated phagocytosis, and
hypertrophic cardiomyopathy (HCM)

GTP binding, actin binding

Sub-10 Phagosome, gap junction GTP binding, GTPase activity, nucleotide
binding, and structural molecule activity

Sub-11 No enrichments
Metal-ion binding, calcium ion binding, SH3
domain binding, and phospholipid transporter
activity

Sub-12 No enrichments No enrichments
Sub-13 Complement and coagulation cascades No enrichments

Sub-14 Bladder cancer Calcium ion binding, metalloendopeptidase
activity

Sub-15 Toll-like receptor signaling pathway Transmembrane receptor activity

Sub-16
Pathways in cancer, neurotrophin signaling
pathway, ErbB signaling pathway, and
nonhomologous endjoining

ATP binding, protein C-terminus binding

Sub-17 Toll-like receptor signaling pathway, pathogenic
Escherichia coli infection Transmembrane receptor activity

Sub-18 Tight junction, endocytosis No enrichments
Sub-19 No enrichments No enrichments

inactivated, it is not enough to generate cancer; additional
mutations are needed before cancer appears [53]. We found
that the subnetworks correspond to different pathways, in
general (Table 2). This result supports the notion that mul-
tiple cell regulatory pathways are involved in production
of leukemogenesis. Targeting defective molecular pathways
is more effective in getting rid of cancer cells and less
destructive for rapidly dividing normal cells, which is referred
to as “targeted therapy” [54, 55]. Since targeted therapy aims
at destroying only tumor cells whose particular pathways are
broken or malfunctioning, it might have fewer side effects
than chemotherapy and radiotherapy which are cytotoxic
to all fast-proliferating cells, including the healthy ones.
Targeting our subnetworks or their corresponding pathways
may result in development of efficient novel drugs for T-ALL
treatment.

Table 3: T-ALL related genes found in subnetworks and their
behavior in our samples.

T-ALL related genes Subnetwork Behavior
ABL1 16 ↑

CCL5 2 ↓

CD99 12 ↑

TP53 4 ↑

WT1 4 ↑

Among the genes in the subnetworks, some are known
to be associated with T-ALL from previous studies: ABL1 [1,
56, 57], CCL5 [58], CD99 [59], TP53 [60], and WT1 [61, 62].
Table 3 exhibits these T-ALL related genes and their behavior.
Many other genes seen in subnetworks were not previously
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Table 4: Cancer related genes recovered in subnetworks and their
behavior in our samples.

Cancer related genes Subnetwork Behavior
VANGL1 8 ↑

CEACAM5 7 ↑

SSBP2 7 ↑

LTB4R 5 ↓

TFAP2C 4 ↑

USP13 8 ↑

CD36 3 ↓

UBE2I 4 ↑

EWSR1 6 ↑

SOX4 4 ↑

LASP1 9 ↓

found to be linked to T-ALL (some are related to cancer, but
not specifically to T-ALL, such as VANGL1 [63], CEACAM5
[64], SSBP2 [65], LTBR4 [66], TFAP2C [67], USP13 [68],
CD36 [69], UBE2I [70], EWSR1 [71], SOX4 [72], and LASP1
[73]) (See Table 4, for corresponding subnetworks and the
behavior of these genes). So, after experimental validation,
these genes may serve as novel markers for T-ALL.

There are 6 non-DE genes in our subnetworks (Table 1).
Although these irresponsive genes cannot be considered
as markers of T-ALL, they have very important roles in
interconnecting numerous DE genes, and their presence
could be essential for malignant transformation of precursor
T-cells. One of the 6 non-DE genes is P2RX7 (Figure 2,
subnetwork 9), which is a purinergic receptor P2X, expressed
in hematopoietic cells, and mediates both apoptosis and
proliferation, depending on the level of activation [74–76].
Prolonged activation of this receptor by extracellular ATP
is a significant mechanism to initiate apoptosis in T and B
lymphocytes [76, 77]. Its loss of function by an SNP (1513A→
C) has an antiapoptotic effect and is previously shown to be
related to chronic lymphoblastic leukemia (CLL). Although
this SNP abolishes the function of P2RX7, it does not have
an impact on the expression level of the receptor [76, 78].
Thus, loss of function does not imply reduced expression.
In T-ALL, it is possible seeing a similar mutation which
leads to loss of function of this receptor, without affecting
its expression level. Therefore, despite its nondifferential
expression, it may contribute to the pathogenesis of the
disease. Only differential expression analysis would not
highlight this gene as important, but network-based approach
detected it as a significant one. Moreover, loss of function of
P2RX7 decreases the efficiency of adjuvant chemotherapy in
breast cancer patients [79]. So, P2RX7 should be present to
benefit from chemotherapy. Apart from its role in apoptosis,
it also promotes proliferation upon weak stimulation [80].
Furthermore, P2RX7 expression (not necessarily upregula-
tion) results in increased proliferation and reduced apoptosis
[81]. When oxidized ATP, P2RX7 inhibitor, was injected
into the tumor, the tumor shrank [81]. Upregulation of
this gene was seen in acute lymphoblastic leukemia (ALL),
acute myelogenous leukemia (AML), chronic myelogenous

leukemia (CML), and myelodysplastic syndrome [82]. In
addition, its high expression diminished the remission rate
of AML after a dose of standard therapy [82]. Although the
upregulation of P2RX7 is not observed in our T-ALL samples,
these data suggest that it is worthwhile to further investigate
the potential role of P2RX7 in the generation of T-ALL.

PLG and MEP1A are other examples of our non-DE
genes. PLG (Figure 3, subnetwork 14) encodes plasminogen
which is essential for cancer cell invasion and metastasis.
Plasminogen activators convert plasminogen to active plas-
min which in turn activates MEP1A [83]. MEP1A (Figure 3,
subnetwork 14), meprin A, is a metalloprotease that cleaves
proteins and degrades extracellular matrix, facilitating the
tissue invasion and metastasis [84]. They participate in the
migration of leukocytes to the sites of infection andmigration
of cancer cells in metastasis [85]. Meprin A is upregulated
in several cancer cells [86, 87]. T-cell lymphoid tumor
growth is decreased by plasmin inhibitors by suppressing
metalloproteinases [88]. Even though these two genes are
not DE in our T-ALL samples, there is clear evidence that
these two groups of enzymes are very important candidates
of disease-causing genes.

Another non-DE gene is CHGA, chromogranin A, which
is an acidic glycoprotein commonly expressed by neuroen-
docrine cells [89]. It is widely used as a diagnostic and prog-
nostic biomarker for neuroendocrine tumors [90]. Our fifth
non-DE gene is C9, complement component 9. Tumor cells
possess some protective mechanisms against complement-
mediated tumor cell lysis [91]. Human leukemic cells remove
membrane attack complexes from their surfaces by phos-
phorylating C9 [92].Therefore extracellular phosphorylation
of C9 provides a defense mechanism against complement
system. In addition, complement system is defective in CLL
patients [93]. T-ALL could have a similar protective method
as CLL does. Further studies are necessary to elucidate the
roles of these non-DE genes in the pathogenesis of T-ALL.
These genes may lead to new clinical therapies for T-ALL.

Subnetworks are rich in transcription factors: there are
14 transcription factors involved in subnetworks (Table 5).
This result is in accordance with the important assumption
that abnormal or ectopic activation of specific transcription
factor genes, with/without chromosomal rearrangements, is
the main event in transformation of immature T cells [5].

There were 6 tyrosine kinases (Table 6), in our subnet-
works. Tyrosine kinases have a critical role in TCR signaling,
regulation of T-cell immune response, and T-cell survival
and proliferation. Expression of tyrosine kinases, like ABL1,
affect pre-TCR and TCR signaling and give a proliferative
and survival advantage [1]. ABL1 is an oncogene and is often
seen as ABL1-NUP214 fusion gene in T-ALL [1, 7, 61]. As can
be seen in subnetwork 16 (Figure 3), ABL1 is upregulated in
T-ALL patients compared to healthy individuals. Although
YWHAGwas not found to be related toT-ALLbefore, it inter-
acts with ABL1. The overexpression of ABL1 might induce
upregulation of the YWHAG gene (Figure 1, subnetwork
7). BTK is significantly downregulated in T lymphocytes,
which is consistent with our results. PTK2, also known as
FAK, Focal Adhesion Kinase, (Figure 1, subnetwork 2) has a
role in growth, differentiation, tumor metastasis, and wound
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Table 5: Transcription factors recovered in subnetworks.

Gene symbol Gene title Subnetwork Behavior
TNNI2 Troponin I type 2 (skeletal, fast) Sub-1 Down
SMAD4 SMAD family member 4 Sub-4 Up
TP53 Tumor protein p53 Sub-4 Up
ATF2 Activating transcription factor 2 Sub-4 Up
WT1 Wilms, tumor 1 Sub-4 Up
SOX4 SRY- (sex determining region Y-) box 4 Sub-4 Up

TFAP2C Transcription factor AP-2 gamma (activating enhancer binding
protein 2 gamma) Sub-4 Up

ATXN3 Ataxin 3 Sub-6 Up
SALL2 Sal-like 2 (Drosophila) Sub-6 Up
EWSR1 Ewing sarcoma breakpoint region 1 Sub-6, sub-7 Up
SSBP2 Single-stranded DNA binding protein 2 Sub-7 Up
GFI1B Growth factor independent 1B transcription repressor Sub-11 Down
ABL1 c-abl oncogene 1, receptor tyrosine kinase Sub-16 Up

XRCC6 X-ray repair complementing defective repair in Chinese hamster cells
6 (Ku autoantigen, 70 kDa) Sub-16 Up

Table 6: Genes involved in tyrosine-kinase signaling pathway recovered in subnetworks.

Gene symbol Gene title Subnetwork Behavior
BTK Bruton agammaglobulinemia tyrosine kinase Sub-17 Down
ABL1 c-abl oncogene 1, receptor tyrosine kinase Sub-16 Up

YWHAG Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,
gamma polypeptide Sub-7 Up

PTK2 PTK2 protein tyrosine kinase 2 Sub-2 Down
COL1A2 Collagen, type I, and alpha 2 Sub-3 Down
SPARC Secreted protein, acidic, and cysteine rich (osteonectin) Sub-14 Down

healing [94–97]. Its overexpression is associated with several
types of cancer [98, 99]. But in a recent study, it has been
shown that PTK2 protein is predominantly absent in both
normal T cells and T-lymphoblastic leukemia/lymphoma.
Although it is negative in T-cell leukemia/lymphoma, it is
mostly positive in B-cell lymphomas [96]. Consistent with
the literature, PTK2 gene is also downregulated in T-ALL
patients used in this study. Cell adhesion molecules (CAMs)
are necessary for interaction of hematopoietic cells with
extracellular matrix with stromal and other cells [53]. Defects
in adhesion were reported in other types of leukemia before,
such as in chronic myeloid leukemia (CML) [53, 100, 101].
The failure of hematopoietic stem cells (HSCs) to express the
correct or fundamental adhesion molecules may contribute
to transformation of a normal HSC to leukemic cell and to
get arrested at a particular step of their differentiation. The
adhesion deficiency may also help leukemic cells to escape
from the recognition by immune system [53].

Interestingly, the subnetworks are also abundant in zinc-
ion (Zn2+) binding proteins (Table 7) which are generally
enzymes, including those involved in DNA repair. Zinc-
finger motifs play key role in interaction of proteins with
nucleic acids (DNA/RNA) [102]. They are essential for
site-specific DNA recognition and transcriptional activation

[103]. Zn2+ has both structural and regulatory roles in zinc-
binding proteins, meaning that Zn2+ maintains the three-
dimensional structure of the proteins, and it is required for
the proper function of the proteins. For example, p53 needs
Zn2+ to fold properly. Both excess and inadequate amounts
of Zn2+ cause misfolding of p53 [103]. One of the molecular
mechanisms in carcinogenesis is the deformation of zinc-
finger domains in DNA repair proteins [102]. Zn2+ is also
important for thymic immune responses [104]. Low levels of
zinc are frequently reported in ALL cases. Normal lympho-
cytes contain more zinc than leukemic cells [105]. Treatment
of ALL patients with zinc, in addition to chemotherapy, was
hypothesized to increase the overall ability to recover fromT-
ALLpermanently and to endure toxic effects of chemotherapy
[106]. Some of the Zn2+ ion binding proteins are upregulated,
but some are downregulated (see Table 7). Although zinc-
ion binding proteins do not behave similarly at the level
of expression (i.e., they are not all up-regulated or down-
regulated: some of them are upregulated, while some are
downregulated), it is evident that more attention should be
paid to them.

Two subnetworks are actually individual genes rather
than interconnected genes (subnetwork 10, Figure 2 and
subnetwork 19, Figure 3). These genes are TUBB1 and HHIP.
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Table 7: Zinc-ion binding proteins recovered in subnetworks.

Gene symbol Gene title Subnetwork Behavior
TP53 Tumor protein p53 Sub-4 Up

ATF2 Activating transcription
factor 2 Sub-4 Up

WT1 Wilms, tumor 1 Sub-4 Up
SALL2 Sal-like 2 (Drosophila) Sub-6 Up

EWSR1 Ewing sarcoma
breakpoint region 1 Sub-6, sub-7 Up

USP13
Ubiquitin specific
peptidase 13
(isopeptidase T-3)

Sub-8 Up

CXXC4 CXXC finger 4 Sub-8 Up
LASP1 LIM and SH3 protein 1 Sub-9 Down

GFI1B
Growth factor
independent 1B
transcription repressor

Sub-11 Down

APP
Amyloid beta (A4)
precursor protein
(peptidase nexin-II,
Alzheimer’s disease)

Sub-13 Down

MEP1A Meprin A, alpha (PABA
peptide hydrolase) Sub-14 Non-DE

MMP9
Matrix metallopeptidase
9 (gelatinase B, 92 kDa
gelatinase, and 92 kDa
type IV collagenase)

Sub-14 Down

RASA4 RAS p21 protein
activator 4 Sub-16 Up

BTK
Bruton
agammaglobulinemia
tyrosine kinase

Sub-17 Down

USP20 Ubiquitin specific
peptidase 20 Sub-18 Up

PRKCI Protein kinase C, iota Sub-18 Up

HHIP stands for Hedgehog Interacting Protein, which is
a negative regulator of Hedgehog signaling pathway. Over-
activity of Hedgehog signaling pathway is related to many
cancer types [107]. HHIP is found to be associated with lung
cancer [108] and brain tumor [109]. Although it is down-
regulated in several tumor types, it is up-regulated in our T-
ALL patients (subnetwork 19, Figure 3) [110, 111]. The other
individual gene that is found as a marker is TUBB1, Tubulin
beta-1 (subnetwork 10, Figure 2), which has a role in assembly
of microtubules only in hematopoietic cells. Altered expres-
sions of beta-tubulin isotypeswere observed in specific tumor
types [112]. Tubulin mutations are involved in resistance to
drugs that target microtubules in cancer patients [113].

CALM1 gene, a member of subnetwork 1 (Figure 1), has
been shown to be involved in a translocation with AF10 gene,
and this fusion gene was detected in almost 10% of immature
T-ALL patients. CALM-AF10 fusion gene upregulates HOXA
gene cluster and has shown to be related to bad prognosis
[114]. Dik et al. studied gene-expression profiles of CALM-
AF10 positive and negative T-ALL patients and revealed that

Table 8: Classification accuracies of subnetworks found by two
different classifiers in WEKA.

Subnetworks J48 RBF
network

J48
(validation set)

RBF network
(validation set)

Sub-1 93 97 95 96
Sub-2 91 96 91 98
Sub-3 93 97 96 98
Sub-4 98.75 99 93 96
Sub-5 94 97 92 98
Sub-6 96 97 94 94
Sub-7 96 97.5 96 96
Sub-8 94 97 96 93.75
Sub-9 93 98 93 94
Sub-10 97 97 96 96.25
Sub-11 91 98 93 97
Sub-12 95 99 96 98
Sub-13 98 98 95 99
Sub-14 94 97.5 91 93
Sub-15 93 97 92 93
Sub-16 95 96 92.5 97
Sub-17 89 97 90 94
Sub-18 93 96 94 97
Sub-19 96.27 96.89 96.25 97

Table 9: Classification accuracies of subnetworks on an indepen-
dent microarray data by two different classifiers in WEKA.

Subnetworks J48 RBF network
Sub-1 73.68 76.31
Sub-2 94.73 92.1
Sub-3 81.57 76.31
Sub-4 68.42 94.73
Sub-5 89.47 97.36
Sub-6 78.94 78.94
Sub-7 78.94 81.57
Sub-8 89.47 84.21
Sub-9 89.47 81.57
Sub-10 81.57 73.68
Sub-11 81.57 86.84
Sub-12 68.42 89.47
Sub-13 71.05 71.05
Sub-14 81.57 89.47
Sub-15 92.1 86.84
Sub-16 86.84 86.84
Sub-17 84.21 89.47
Sub-18 92.1 81.57
Sub-19 81.57 76.31

the TUBB gene was 7-fold overexpressed in CALM-AF10
positive patients [115]. In this study, TUBB1 genewas detected
in subnetwork 10 as an individual gene (Figure 2). TUBB
polymorphisms were described in ALL patients, and they
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Figure 4: The heat map shows the hierarchical clustering result of the 100 most differentially expressed genes in T-ALL with respect to
healthy individuals. Red and green spots represent upregulated and downregulated genes, respectively. Black spots denote equal expression.
The columns labeled with light green belong to healthy individuals, and the columns labeled with black are individuals with T-ALL.
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Figure 5:The heatmap shows the hierarchical clustering result of the 200most differentially expressed genes in T-ALLwith respect to healthy
individuals. Red and green spots represent up-regulated and down-regulated genes, respectively. Black spots denote equal expression. The
columns labeled with light green belong to healthy individuals, and the columns labeled with black are individuals with T-ALL.

were suspected to be involved in drug resistance [116]. ADD2
gene is another gene in subnetwork 1. ADD genes are a family
of cytoskeleton proteins encoded by three genes (ADD1,
ADD2, and ADD3). ADD2 gene knockout mice are used as
models for leukemia, and ADD3 gene was shown to have
a translocation with NUP98 in T-ALL patients [117]. These
two findings show that ADD gene family takes place in the
hematopoiesis and also in hematologic malignancies.

In subnetwork 8 (Figure 2), two genes that take part
in early developmental stages, VANGL1 and VANGL2, are
found directly related to DVL gene. DVL gene negatively
regulates WNT signalling pathway which plays an important
role in the hematopoiesis, particularly in T-cell development
[118].These findings stress once again the importance of these
networks in T-ALL pathogenesis not only on gene-expression
level but also on protein level.

3.1. Classification Accuracies of Subnetworks. After finding
subnetworks, we tested their classification accuracies with
two different classifiers, namely, J48 and RBF-network in
WEKA [50]. The prediction accuracy of each subnetwork
was tested individually with 10-fold cross-validation. As
discussed, the patient samples were randomly divided into 2
groups, and, for each subgroup, differential subnetworkswere
found. Classification accuracies of subnetworks were found
by testing their original sub-group (the group for which the
subnetworks were found) and by cross-testing the remaining
sub-group (the other half of the patients). The cross-testing
was applied to validate the prediction accuracies of modules
also in different sets of patient microarray data. All of the
subnetworks achieved very high accuracies in prediction,
higher than 90% (Table 8). There are some subnetworks that
achieved 99% prediction accuracy (Figure 1, subnetwork 4
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Table 10: T-ALL related genes in KEGG pathways [119].

Gene symbol Gene title
SIX4 SIX homeobox 4
LMO2 LIM domain only 2 (rhombotin-like 1)
HPGD 15-Hydroxyprostaglandin dehydrogenase (NAD)
GRIA3 Glutamate receptor, ionotropic, and AMPA 3
EYA1 Eyes absent homolog 1 (Drosophila)

FUT8 Fucosyltransferase 8 (alpha (1,6)
fucosyltransferase)

MLL Myeloid/lymphoid or mixed-lineage leukemia
(trithorax homolog, Drosophila)

MEIS1 Meis homeobox 1
HOXA9 Homeobox A9
TLX1 T-cell leukemia homeobox 1
CCR7 Chemokine (C-C motif) receptor 7
LDB1 LIM domain binding 1

CDKN2C Cyclin-dependent kinase inhibitor 2C (p18,
inhibits CDK4)

LYL1 Lymphoblastic leukemia derived sequence 1

TCF3 Transcription factor 3 (E2A immunoglobulin
enhancer binding factors E12/E47)

HHEX Hematopoietically expressed homeobox
SIX1 SIX homeobox 1
HOXA11 Homeobox A11
PTCRA Pre-T-cell antigen receptor alpha

MLLT1 Myeloid/lymphoid or mixed-lineage leukemia
(trithorax homolog, Drosophila), translocated to 1

HOXA10 Homeobox A10

andFigure 2, subnetwork 12).These results also prove the suc-
cess of the network-based classification approaches. Cross-
comparisons between two independent halves of patient
dataset revealed that subnetworks are good at distinguishing
T-ALL patients from healthy individuals, regardless of the
dataset in which they are found. In other words, they can
classify patients in both independent datasets with similar
accuracies.

To check whether our subnetworks are also applicable
to other publically available microarray data, we used gene-
expression profiles of childhood T-ALL samples (GSE46170).
As Table 9 shows, the classification accuracies of subnet-
works on this independent dataset are also relatively high,
about 83% on average (ranging 71–94%) over subnetworks.
Compared to original dataset (MILE) on which the sub-
networks are found, the independent dataset showed lower
performance on classification. This decrease in classification
accuracies may stem from the fact that the independent
dataset contains only childhood T-ALL samples as opposed
to MILE study which has heterogeneous patients, meaning
that there are patients from different stages of the disease
and they are not specifically childhood T-ALL samples.
Another reason may be the imbalanced number of patients
(31 patients) and healthy samples (7 healthy individuals)
in this independent dataset. The imbalanced numbers of

Table 11: Classification accuracies of 21 T-ALL related genes in
KEGG pathways in MILE and independent microarray data by two
different classifiers in WEKA.

Datasets J48 RBF network
MILE study dataset 93.11 95.95
Independent dataset 84.21 86.84

healthy and patient samples may also decrease the prediction
accuracy.

Moreover, to demonstrate the accomplishment of our
subnetworks, we compared them with T-ALL related genes
in KEGG pathways [119], considered as a module. Table 10
displays these 21 genes, and Table 11 presents their classifi-
cation accuracies. The performance of these genes is also
high, but this outcome is not surprising because these 21
genes are already known to be related to T-ALL. However,
our subnetworks largely consist of novel markers of T-
ALL, and they do the same or better jobs than these 21
genes in KEGG pathway. Moreover, there is also a decrease
in accuracies of these genes when tested on independent
dataset compared to MILE dataset. So, it is normal that our
subnetworks achieve higher accuracies in MILE dataset but
lower in the independent dataset (GSE46170). As indicated
above, the reason may be the imbalanced numbers of healthy
and patient samples.

Although integrating microarray data with network
information is a promising way to identify functional bio-
markers, the drawback of pathway-based classifiers is that
most of the human genes have not been assigned to a defini-
tive pathway yet [12]. As pathways become more complete,
the classification performances of pathway-based approaches
will increase [18].

3.2. Hierarchical Clustering Results. After filtering 20148
probes in microarray data with 𝑡-test and obtaining the 100
and 200 most DE genes, hierarchical clustering was applied
with complete linkage and Pearson correlation.The resulting
clusters are shown in Figures 4 and 5. Since there are too
many samples and genes, the gene names are not visible on
these figures. Please refer to Supplementary Material (Table
S20 and Table S21) to see the names and functions of these
genes.

In Figure 4, cluster results of the 100 most DE genes,
5 T-ALL samples, and 1 healthy sample are misclassified,
meaning that 5 T-ALL samples were grouped in healthy
samples and 1 healthy sample was grouped in patient samples.
Moreover, there are 1 T-ALL and 1 healthy sample, which are
misclassified in clusters of the 200 most DE (Figure 5). This
result is expected since 200 genes provide more information.
However, the number of genes is much larger than the one we
obtained in subnetworks.

A far more striking result is that 102 genes in our
subnetworks and the 100 most DE genes have only 2 genes
in common (Table 12). Furthermore, subnetworks and the
200 most DE genes have only 8 genes in common (Table 13).
This result shows that 94 of our subnetwork genes are less
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Table 12: The genes common to subnetwork genes and the 100 most differentially expressed genes.

Gene symbol Gene title GO: function GO: process

CLU Clusterin Protein binding

Antiapoptosis, apoptosis, cell death, complement
activation, classical pathway, endocrine pancreas
development, innate immune response, lipid metabolic
process, neurite morphogenesis, positive regulation of
cell differentiation, positive regulation of cell
proliferation, and response to oxidative stress

ITGA2B
Integrin, alpha 2b
(platelet glycoprotein IIb
of IIb/IIIa complex,
antigen CD41)

Calcium ion binding,
identical protein
binding, protein
binding, and receptor
activity

Cell adhesion, cell adhesion, and integrin-mediated
signaling pathway

Table 13: The genes common to subnetwork genes and the 200 most differentially expressed genes.

Gene symbol Gene title GO: function GO: process

ADD2 Adducin 2 (beta)
Actin binding, calmodulin
binding, and metal-ion
binding

No enrichments

CD36 CD36 molecule
(thrombospondin receptor)

Lipoprotein binding,
low-density lipoprotein
receptor activity, and
receptor activity

Blood coagulation, cell adhesion, lipid metabolic
process, lipoprotein transport, and transport

CLU Clusterin Protein binding

Antiapoptosis, apoptosis, cell death, complement
activation, classical pathway, endocrine pancreas
development, innate immune response, lipid metabolic
process, neurite morphogenesis, positive regulation of
cell differentiation, positive regulation of cell
proliferation, and response to oxidative stress

GSN Gelsolin (amyloidosis,
Finnish type)

Actin binding, calcium ion
binding, and protein
binding

Actin filament polymerization, actin filament severing,
and barbed-end actin filament capping

ITGA2B
Integrin, alpha 2b (platelet
glycoprotein IIb of IIb/IIIa
complex, antigen CD41)

Calcium ion binding,
identical protein binding,
protein binding, and
receptor activity

Cell adhesion, cell adhesion, and integrin-mediated
signaling pathway

LTB4R Leukotriene B4 receptor
Leukotriene B4 receptor
activity, nucleotide binding,
and receptor activity

G-protein signaling, coupled to IP3 second messenger
(phospholipase C activating), cell motility, immune
response, inflammatory response, muscle contraction,
and signal transduction

TLR4 Toll-like receptor 4

Lipopolysaccharide
binding, protein binding,
and transmembrane
receptor activity

I-kappaB kinase/NF-kappaB cascade, T-helper 1 type
immune response, detection of fungus, inflammatory
response, innate immune response, macrophage
activation, negative regulation of osteoclast
differentiation, positive regulation of interleukin-12
biosynthetic process, positive regulation of
interleukin-12 biosynthetic process, positive regulation
of interleukin-8 biosynthetic process, positive
regulation of tumor necrosis factor biosynthetic
process, and signal transduction

TUBB1 Tubulin, beta-1

GTP binding, GTPase
activity, nucleotide binding,
and structural molecule
activity

Microtubule-based movement, protein polymerization
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Table 14: The classification accuracies of the 100 and 200 most
differential genes between T-ALL and healthy samples.

Genes J48 RBF network
100 most DE 95 98
200 most DE 95 98

differential than the 200most DE genes.There are also 6 non-
DE genes in our subnetworks (in the remaining 94 genes).
Therefore, it would not be wrong to expect much higher
classification accuracies from the 100 and 200 most DE genes
than that of 102 subnetwork genes. But the classification
accuracies of the 100 and 200 most DE genes are not very
different from those of subnetworks. Actually, 2 subnetworks
(subnetworks 12 and 13, Figure 2) performed even higher
classification accuracies than the 100 and 200most DE genes.
Table 14 displays the classification accuracies of the 100 and
200 most DE genes. Thus, we can safely conclude that our
subnetworks (even they are less differential than the 100 and
200 most DE genes and contain non-DE genes) can do the
same or better job in distinguishing diseased samples from
healthy samples. Doing the same job with 10 genes, instead of
100 or 200 genes, might be regarded as an accomplishment.

It is interesting that very well-known cancer genes such
as TP53 and MAPK8 were not included in the 100/200 most
DE genes, but we were able to detect them by network-based
approach.

In conclusion, each subnetwork with high prediction
accuracy provides a new suggestion for pathways and molec-
ular mechanisms involved in the pathogenesis of T-ALL. All
subnetworks serve as a biomarker which can be helpful in
diagnosis and in identifying potential drug targets for T-ALL,
in the near feature. The accomplishment of network-based
classification and subnetwork/pathway detection is in line
with the idea that cancer is not a result of solely one pathway,
but instead it is a “disease of pathways” [12, 52, 120]. Unlike
conventional differential expression analysis, network-based
approach allowed us to identify potential disease-causing
non-DE genes. According to our results, we conclude that
transcription factors, tyrosine kinases, and zinc-ion binding
proteins are the most important protein groups involved in
generation of T-ALL.

The goal of this study is to highlight potential disease-
causing genes for further experimental validation. It is
beyond the scope of this study to verify all genes that appear
in subnetworks; experimental proof is vital. We recommend
investigators with an interest in a subnetwork/pathway to
validate them with experimental techniques, like RT-PCR
and Western blot. The important point of this work is that a
combination of bioinformatic methods and high-throughput
gene expression profiles and interactomics provide a promis-
ing way of identifying T-ALL specific modules and reveal
pathways involved in T-ALL.

References

[1] C. Graux, J. Cools, L. Michaux, P. Vandenberghe, and A.
Hagemeijer, “Cytogenetics and molecular genetics of T-cell

acute lymphoblastic leukemia: from thymocyte to lymphoblast,”
Leukemia, vol. 20, no. 9, pp. 1496–1510, 2006.

[2] P. Van Vlierberghe, R. Pieters, H. B. Beverloo, and J. P. P.
Meijerink, “Molecular-genetic insights in paediatric T-cell acute
lymphoblastic leukaemia,” British Journal of Haematology, vol.
143, no. 2, pp. 153–168, 2008.

[3] I. Aifantis, E. Raetz, and S. Buonamici, “Molecular pathogenesis
of T-cell leukaemia and lymphoma,” Nature Reviews Immunol-
ogy, vol. 8, no. 5, pp. 380–390, 2008.

[4] F. J. T. Staal and A. W. Langerak, “Signaling pathways involved
in the development of T-cell acute lymphoblastic leukemia,”
Haematologica, vol. 93, no. 4, pp. 493–497, 2008.

[5] A. A. Ferrando, D. S. Neuberg, J. Staunton et al., “Gene expres-
sion signatures define novel oncogenic pathways in T cell acute
lymphoblastic leukemia,” Cancer Cell, vol. 1, no. 1, pp. 75–87,
2002.

[6] L. Espinosa, S. Cathelin, T. D’Altri et al., “The Notch/Hes1 path-
way sustains NF-𝜅B activation through CYLD repression in T
cell leukemia,” Cancer Cell, vol. 18, no. 3, pp. 268–281, 2010.

[7] T. Hoang and T. Hoang, “The T-ALL paradox in cancer,”Nature
Medicine, vol. 16, no. 11, pp. 1185–1186, 2010.

[8] T. Haferlach, W. Kern, S. Schnittger, and C. Schoch, “Modern
diagnostics in acute leukemias,” Critical Reviews in Oncol-
ogy/Hematology, vol. 56, no. 2, pp. 223–234, 2005.

[9] T. Haferlach, A. Kohlmann, S. Schnittger et al., “Global
approach to the diagnosis of leukemia using gene expression
profiling,” Blood, vol. 106, no. 4, pp. 1189–1198, 2005.

[10] T. R. Golub,D. K. Slonim, P. Tamayo et al., “Molecular classifica-
tion of cancer: class discovery and class prediction by gene
expression monitoring,” Science, vol. 286, no. 5439, pp. 531–537,
1999.

[11] R. K. Nibbe and M. R. Chance, “Approaches to biomarkers
in human colorectal cancer: looking back, to go forward,”
Biomarkers in Medicine, vol. 3, no. 4, pp. 385–396, 2009.

[12] H.-Y. Chuang, E. Lee, Y.-T. Liu, D. Lee, and T. Ideker, “Network-
based classification of breast cancer metastasis,” Molecular
Systems Biology, vol. 3, article 140, 2007.

[13] A. Kohlmann, T. J. Kipps, L. Z. Rassenti et al., “An interna-
tional standardization programme towards the application of
gene expression profiling in routine leukaemia diagnostics: the
microarray Innovations in Leukemia study prephase,” British
Journal of Haematology, vol. 142, no. 5, pp. 802–807, 2008.
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