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ABSTRACT 

Modern sequencing instruments bring unprecedented opportunity to study within-host viral 

evolution in conjunction with viral transmissions between hosts. However, no computational 

simulators are available to assist the characterization of within-host dynamics. This limits 

our ability to interpret epidemiological predictions incorporating within-host evolution and 

to validate computational inference tools. To fill this need we developed Apollo, a GPU-

accelerated, out-of-core tool for within-host simulation of viral evolution and infection 

dynamics across population, tissue, and cellular levels. Apollo is scalable to hundreds of 

millions of viral genomes and can handle complex demographic and population genetic 

models. Apollo can replicate real within-host viral evolution; accurately recapturing 

observed viral sequences from an HIV cohort derived from initial population-genetic 

configurations. For practical applications, using Apollo-simulated viral genomes and 

transmission networks, we validated and uncovered the limitations of a widely used viral 

transmission inference tool.  
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INTRODUCTION 

Modern advancements in genomic sequencing have provided an unprecedented resolution 

that enables the study of viral evolution to venture into the within-host environment1–3. The 

era of epidemiological research ushered in by these technologies has revolutionized our 

understanding of viral evolution at host, tissue, and cellular levels1,4–7. However, the 

increasing volume and complexities of the data have outpaced current computational tools 

resulting in a bottleneck that inhibits our ability to fully utilize the potential of these vast new 

data8,9. 

There are many simulation tools for viral evolutionary studies10–17. However, none natively 

scale to within-host, within-tissue, or within-cell resolution and thus may not accurately 

capture the intended evolutionary dynamics at finer resolution. Furthermore, as existing 

platforms are largely limited to single-core architectures, they cannot operate at scales 

sufficient to address the larger and more complex simulations demanded by the size and 

complexity of modern datasets. These limitations lead to an inability to account for 

transmission networks at within-host structures capturing pathogen genomic variations and 

phenotypic responses11. 

To address these challenges, we developed Apollo, a simulator for studying viral evolution at 

scale at individual viral sequence resolution while accounting for population and within-host 

dynamics. We draw from the GPU-powered parallelization architecture CATE (CUDA-

Accelerated Testing of Evolution) as well as conventional protocols for viral inference 

pipelines18–21.   

Apollo is a forward-in-time simulator conducting evolutionary testing, analysis, and 

simulation at scale to bridge the gap between data and analysis. Apollo natively implements 

five hierarchical levels of an epidemic:  network, host, tissue, cellular, and viral genome. 

Therefore, Apollo allows both scale and granularity in terms of epidemic configuration and 

simulation.  

Through this paper, we present the design, implementation, and validation of Apollo. We 

demonstrate that Apollo is able to incorporate large pools of sequences and complex 
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demographic and population genetic models and can replicate sequence evolution of viral 

sequences obtained from clinical cohort of individuals infected with HIV. Additionally, using 

an Apollo-generated gold-standard data set we validated and revealed the limitations of 

TransPhylo16,17,22, a popular viral transmission inference tool  frequently used in amongst 

others in the COVID-19 pandemic15,20,21,23.   
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RESULTS 

Software architecture spanning across five epidemiology hierarchies 

Apollo’s novelty lies in its ability to span across five hierarchies of an epidemic: host contact 

network, individual host, tissue, cellular, and the viral genome itself (Online Methods and 

Supplementary Note Figure S - 1)24–27. Apollo’s  efficiency is built on the computational 

framework of CATE18, a large-scale parallel processing architecture powered by the GPU, 

CPU and SSD. It is further enhanced by an out-of-core file structure supported by a novel 

parallelized search algorithm we refer to as Compound Interpolated Search (CIS). CIS 

enables identifying variants from the file space at O(log(log N)) time complexity18,19.  

Epidemic spread is dependent on many interactions within a susceptible population. These 

interactions are captured via contact network graphs representing the spread of infection in 

the population12,24. Apollo supports a broad range of network models from random 

structures (e.g. Erdős–Rényi random graphs) to customizable networks that replicate real-

world dynamics (e.g. Dynamic Caveman graphs) (Supplementary Note Section 2.1). 

Additionally, Apollo incorporates real-world scenarios such as explicit sampling schemes 

and their effects on a population.  

Accurate epidemic modeling requires capturing within-host diversity28. Apollo implements 

support for heterogenous host populations with varying behavioral responses (such as 

quarantine upon diagnosis, treatment upon diagnosis and Lost-To-Follow-Up), immune and 

drug responses, as well as differences among within-host structures like tissues and their 

cellular environment (Supplementary Note Section 2.2). 

Apollo supports detailed modelling of distinct viral populations in different tissues. It 

parametrizes complex tissue level dynamics using 13 parameters which govern aspects 

such as distinct generational phases governing viral population growth of individual tissues, 

cell affinity for viral attachment, and intra-host migration of viral particles (Supplementary 

Note Section 2.2.3). 
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At the cellular level Apollo explicitly models complex processes like viral genomic 

recombination, where the exchange of genetic material is dependent on the viral population 

occupying the same host cell (Supplementary Note Section 2.3). Apollo's cell-level 

resolution allows users to configure characteristics representative of the individual’s 

infected tissues such as intra-tissue cell populations and specific roles of the tissues which 

can influence the infectiousness and mortality of an individual host (Supplementary Note 

Section 2.2.5.1 and 2.2.5.2). These capabilities enable support for numerous 

customizations including  epidemiological compartment models ranging from Susceptible 

Infected Recovered (SIR) to Susceptible Exposed Infected Recovered Susceptible (SEIRS) 

and beyond29,30 (Supplementary Note Section 2.2.5.6). 

The evolutionary landscape of viral evolution is modeled at the level of individual viral 

genomes3,31. Genomic variation resulting from evolutionary forces such as mutation and 

recombination is linked to phenotypic expression (Supplementary Note Section 2.3). This 

variation in expression introduces evolutionary pressures by affecting viral fitness, 

survivability, and mutation rates (Supplementary Note Section 2.3.2.5 and 2.3.2.6). Apollo 

accommodates segmented genomes allowing for multiple mutation and recombination 

hotspots within a single genome and each locus can be configured with its own base 

substitution models, mutation rates, and recombination factors (Supplementary Note 

Section 2.3.2.6 and 2.3.2.7). 

Apollo navigates the complexities of simulating the five hierarchies via a three-phase 

architecture (Figure 1 and Supplementary Note Section 3.3):Parameterization, 

Initialization, and Simulation. In Parameterization, users configure Apollo across all five 

hierarchies using JSON scripting (Figure 1A-D). During Initialization, Apollo validates the 

parameters and sets up the contact network complete with  heterogeneous hosts (Figure 

1E-H). Finally, the simulation engine orchestrates the spread of the viral infection across the 

host population from one generation to the next. It manages the infection of the susceptible 

population while simulating evolutionary changes in viral genomes. Host behaviors and their 

characteristics are integrated, reflecting tailored host responses with the engine guiding the 

simulation across the modeled within host tissue and cellular environments (Figure 1I-T). 
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Figure 1. Overview of Apollo’s three phase architecture. Phase one: users configure the simulation 

with parameters for (A) computational resource allocation, (B) contact network, (C) host and within 

host characteristics and (D) viral genome. Phase two: simulation is initialized by (E) generating the 

contact network, (F) populating the network with hosts, (G) configuring individual host 

characteristics, and (H) selecting an initial host and infecting it with initial viral genome sequences. 

Phase three: Apollo processes the simulation one generation at a time. Beginning with (I) categorizing 

hosts to determine the infectious population who then (J) infect the susceptible population. From 

the (K) infected population, for (L) each infected host their (M) tissues are simulated sequentially 

considering (N) their current generation phase. (O) The virus infects the tissue’s cells and (P) initiate 

replication. (Q) Once the offspring have been mutated, assembled and configured they (R) migrate 

across tissues given the mechanics activation. After all infected individuals are simulated, (S) the 

sampling mechanism if selected is triggered, followed by (T) the setup of the next generation. The 

cycle continues until a simulation end condition such as obtaining a pre-defined number of host 

samples is met. 
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Benchmarking Apollo’s capacity to scale  

Apollo exhibited high linearity O(N) during benchmarking, where the processing time was a 

function of the within-host viral population size per individual host (Online Methods and 

Supplementary Note Section 4.1)32. This linearity was consistent for all test scenarios 

which included evolutionary mechanics of mutation, recombination and replicated across 

different classes of hardware resources. 

Our baseline test simulations ran without evolutionary mechanics. The tests involved only 

viral reproduction while maintaining a constant parent population.  We observed a 

regression gradient of 0.410 minutes per increase of 10,000 viral sequences in population 

size (R² = 0.995) (Figure 2A and Supplementary Note Section 4.1.1).  

With the introduction of evolutionary mechanics, we observed slight variations in processing 

time in contrast to the baseline (Figure 2B and Supplementary Note Section 4.1.2). In the 

presence of only mutations, the regression gradient dropped to 0.401 (R² = 0.998). 

Conversely, with only recombination, the gradient increased to 0.491(R² = 0.991). When both 

mutation and recombination were present the gradient increased to 0.487 (R² = 0.997).  

During the evaluation of Apollo’s hardware adaptability, we observed a significant decrease 

in processing time on the faster A100 GPUs compared to the baseline V100 GPUs (Figure 2C 

and Supplementary Note Section 4.1.3). The A100s improved the processing time by a 

factor of 1.454 to a reduced gradient of 0.282 (R² = 0.997). 
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Figure 2. Scalability of Apollo in terms of time complexity under different test scenarios. (A) 

Evaluation of the baseline per generation processing time shows a linear increase proportional to 

population size. (B) An increase in the processing times is observed in the presence of the 

evolutionary mechanics of mutations (red) and recombinations (blue), or both (purple). (C) Apollo’s 

adaptability to the available hardware resources shows it was able to make use of the capabilities of 

the more powerful A100 GPUs (red) and increase performance above the baseline V100 (grey). 
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Evaluating integration and extension beyond the Wright-Fisher model  

Apollo is built on a relaxed set of the assumptions from the Wright-Fisher (WF) model 

(Supplementary Note Section 2.3.1)33–35. Simulations testing the default parameterization 

of Apollo (Online Methods) saw the maintenance of the declared WF assumptions. 

(Supplementary Note Section 4.2). Apollo’s results corroborated with theoretical 

predictions of the rates of allele fixation due to genetic drift, including observations 

showcasing the increasing population size resulting in longer fixation times. Results from 

both tests (Figure 3A and B) were consistent with the predictions of standard WF model. 

Even though simulations started with varying haplotypes of equal frequency, the eventual 

fixation of a single haplotype population and the complete loss of all other haplotype 

populations was observed. 

We showcase Apollo’s capabilities to extend beyond the WF model (Supplementary Note 

Section 4.3) using mutation and selection forces. The introduction of neutral, irreversible 

mutations (Figure 3C and D) was conducted with the expectation of fixation of a mutated 

strain as theorized under the neutral mutation theory36. The simulations resulted in the rise 

of mutated haplotype populations followed by the subsequent fixation of one mutated 

haplotype. The remaining three populations including the two original populations were lost 

(Figure 3E). 

Apollo’s accountability for selection forces was validated via the comparative analysis of 

change in population in the presence and absence of selection (Supplementary Note 

Section 4.4). We observed a balance in the mutated and original variants in the absence of 

selection (Figure 3K). Next, we expected a decline in the population of the mutated variant 

when a negative selection force was applied to it. As conjectured under negative selection 

theory Apollo’s simulations showcased the survival of the positively selected population 

inheriting the ancestral genome at a higher frequency while the negatively selected mutated 

variant existed at a lower frequency (Figure 3L).   

Apollo’s adeptness at capturing complex evolutionary dynamics such as mutation selection 

balance was attested via a quasispecies simulation (Supplementary Note Section 4.5). 
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Solving the fitness landscape for the eigenvectors and their subsequent eigenvalues 

revealed that two possible quasispecies dynamics should exist under the defined 

conditions. Apollo’s simulation consistent with the solution revealed the extinction of allele 

A while the haplotypes 𝑇, 𝐺, 𝐶 achieved a mutation-selection balance reaching fixation of 

the quasispecies (Figure 3H). 
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Figure 3. Consistency of Apollo simulations with theoretical predictions from relaxed Wright-

Fisher (WF) models of population genetics. (A) Showcases the fixation of haplotype A (red) in the 

population while haplotype B (blue) becomes extinct under the forces of genetic drift while the parent 

population size (grey) remains constant. (B) Demonstrates the frequency changes of 100 haplotypes 

with one haplotype (orange) reaching fixation in the population while the remaining 99 haplotypes 

become extinct. (C) The Markov chain of the base substitution model used in the simulation of 

fixation of neutral mutations illustrates the possible transitions between nucleotides A, T, C, and G. 

(D) The corresponding transition matrix shows the probabilities of transitions between each 

nucleotide pair. (E) Showcases the changes of frequency of the alleles populations over 500 

generations. Initial alleles A (blue) and T (gray) become lost, while mutated alleles G (orange) and C 

(black) rise in frequency, with G reaching fixation. (F) Represents the Markov chain used for the 

quasispecies simulation with (G) the transition matrix of the base substitution model. (H) Showcases 

the mutation-selection balance formed by the quasispecies of alleles T, G, and C (blue, red, and 

yellow respectively) allowing them to become fixed with allele A (grey) becoming extinct in the 

population. (I) Showcases the base substitution model’s Markov chain with the (J) transition matrix 

for the evaluation of selection forces. (K) Allele A (blue) viral sequences only exist at the start of the 

simulation and give rise to mutants of allele T (red) reaching a balance in the absence of selection 

forces. (L) Shows the frequency changes of alleles A (blue) and T (red) in the presence of the latter 

being deleterious. The lower frequency of the deleterious allele T is highlighted compared to the 

advantageous allele A. 
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Simulation of HIV sequences corroborated HIV within-host status  

We evaluated Apollo’s ability to simulate within-host viral dynamics, specifically the 

replication cycle of HIV as observed in infected individuals (Online Methods and 

Supplementary Note Section 4.6). Using Apollo, we modeled the progression of an HIV 

infection, leveraging metadata and HIV-1 viral sequences obtained from the Southern 

Alberta HIV Clinic, Canada as part of previous cohort studies37,38. Validation proved the 

successful recapture of sequences present in the real-world clinical samples using only the 

initial template sequences, base substitution models, recombination hotspots, and 

mutation rates. 

The sequences consisted of the 701-base length clonal sequences from the viral genome’s 

Reverse Transcriptase (RT) pol region (GenBank: MN919177.1) obtained via Sanger 

sequencing (Figure 4A and B). The sequences collected from the Peripheral Blood 

Mononuclear Cells (PBMC) during the first four months of sampling contained 30 

segregating sites. In total 192 segregating sites were identified to be present among all 

sequences spanning two years and four months collected across all five tissues (Online 

Methods).  

The first simulation test aimed to replicate the within-host dynamics experienced during the 

first four months of infection (Supplementary Note Section 4.6.7). The four canonical 

stages of HIV emerged from Apollo’s simulation (Figure 4D): a primary infection phase 

demonstrated an exponential increase in HIV viral load followed by acute HIV syndrome, 

then a drop in the viral load referred to as clinical latency, and finally a slow rise in the viral 

load caused by the accumulation of high-fitness variants that lead to opportunistic diseases 

and eventually death.  

All four sequences present in the clinical data were recaptured during the course of the 

simulation (Figure 4E). The recaptured sequences perfectly matched those present in the 

clinical samples.  

Next, we simulated the HIV within-host  dynamics for a period of two years and four months 

of infection across all five tissues: PBMC, duodenum, colon, esophagus and stomach 
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(Supplementary Note Section 4.6.8). This let us investigate the effect of cross-tissue 

migration on within-tissue viral diversity and population density (Figure 4C). We found that 

cross-tissue spread established a viral population in the Duodenum even though no viral 

sequences were present in the tissue at incidence of simulation (Figure 4F). Inspection of 

the simulated sequences against the clinical sampled sequences revealed that Apollo 

reproduced 19 sequences with 100% accuracy (Figure 4H), and a further 50 sequences with 

accuracies above 98.959% (a maximum of two base mismatches) (Figure 4G). 
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Figure 4. Experimental setup and Apollo’s replication of the real-world  HIV infection in an 

individual infected with AIDS. (A) Genome map of HIV with the target region (dark blue) spanning 

701 bases of the polymerase (pol) region (light blue) as identified by (B) the NCBI BLAST analysis. (C) 

Network of intra-tissue spread of the virus within the host, indicating movement between the five 

sampled tissues: duodenum, plasma, stomach, colon, and esophagus. (D) Temporal changes in the 

within-host viral population over 52 generations (four months) showcases the four stages of HIV 

infection: primary infection, acute HIV syndrome, clinical latency, and finally a slow rise in the viral 

load caused by the accumulation of high-fitness variants. (E) Frequency of four recovered sequences 

and their prevalence in the viral population across 52 generations. (F) Viral load changes in different 

tissues (PBMC, Colon, Esophagus, Stomach, Duodenum) over a period of two years and four months 

of infections. (G) Showcases the recaptured sequences from the simulation with two or fewer base 

mismatches compared to the target query sequences. Dot size represents sequence accuracy. The 

sequences are coloured by the tissue of occurrence (blue for duodenum, orange for colon, red for 

plasma, purple for oesophagus and green for stomach). (H) Subset of reconstructed sequences that 

perfectly matched clinical sequences from the HIV infected individual.  
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Using Apollo to benchmark the accuracy of transmission prediction  

Gold standard datasets are critical to benchmark the accuracy of predictions made by 

inference tools39. TransPhylo is a popular tool for inferring host-to-host transmission 

networks and predicting unsampled sources of infection and infection dates16,17 and has 

been used to evaluate epidemics including HIV AIDS and SARS-CoV-2’s COVID-1915,20,21,23,40. 

However, TransPhylo‘s inferences have not been validated against simulated datasets due 

to the lack of individual viral-resolution epidemic simulations with within-host dynamics. 

Apollo addresses this gap by providing epidemic simulations complete with the capture of 

within host dynamics. Apollo can generate who-infected-whom transmission networks, 

infection dates, and sampling information, making it ideal for benchmarking such inference 

pipelines (Supplementary Note Section 4.7). 

We  simulated an outbreak of a hypothetical virus in a population of 300 individuals. A total 

of 55 infected individuals were sampled at random via 50 sampling events. The population 

consisted of heterogeneous hosts of three types: non Lost to Follow-Up (LTFU) individuals 

(individuals who became non infectious upon sampling), complete LTFU (individuals who 

maintain their infectivity post sampling), and partial LTFU (individuals with reduced 

infectivity post sampling) (Online Methods and Supplementary Note Figure S - 29). Analysis 

of the transmission network revealed that hosts of the two LTFU populations remained 

infectious even when sampled (Figure 5A). We used the sampled sequences, and the host 

metadata produced by Apollo as the ground truth (Figure 5B).  

The sampled sequences and their sampling time were then submitted to TransPhylo. It 

inferred the transmission network complete with unsampled sources of infection and the 

times of infection for the sampled individuals16,20,21. The successful execution of TransPhylo 

was evaluated using its MCMC tracer diagrams that showed convergence for the relevant 

parameters (Supplementary Note Figure S - 30). This is the standard practice for the 

evaluation of these tools17,20–22,41,42. 

Despite the convergence of the MCMCs, we observed major deviations in the TransPhylo 

pipeline’s inferences in relation to Apollo’s ground truth (Figure 5C). The first inconsistency 
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was observed in the estimation of the Most Recent Common Ancestor (MRCA) of the 

sampled population (Supplementary Note Figure S – 29C and D). The pipeline inferred the 

MRCA to be around the year 1990 when in fact it was around 1993.  

Additionally, the pipeline’s transmission network overestimated the population that involved 

the sampled individuals. It predicted the presence of 329 infected individuals (Figure 5C) in 

the population while the truth was only 77 (Figure 5B) (including both sampled hosts and the 

unsampled individuals between them). This divergence was further stressed by the incorrect 

predictions of who infected whom. In the prediction of infection dates, we found a mean 

absolute error of 87.7037 days from the ground truth with 9.3 days and 194.35 days for the 

5th and 95th percentiles. 
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Figure 5. Using Apollo’s simulations as ground truth for evaluating the accuracy of TransPhylo 

predictions. (A) The complete transmission network as simulated by Apollo. Node colors represent 

the profile type of each host: blue for normal profiles, red for complete lost-to-follow-up (LTFU), and 

yellow for partial LTFU. (B) The abbreviated transmission network comprising of the sampled hosts 

(green) and the unsampled nodes (grey) between them. This is the true network to be predicted by 

the inference pipeline. (C) The predicted transmission network as generated by the inference 

pipeline. Green nodes represent sampled individuals, while grey nodes indicate inferred unsampled 

individuals. A clear overestimation of the population size along with incorrect inferences between 

host-to-host transmission can be observed in comparison to the ground truth.  
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DISCUSSION  

In this work we have introduced Apollo, a high resolution viral simulator designed to model 

viral infection and transmission across five hierarchical levels43,44. Our approach leverages 

the large-scale parallel processing architecture of CATE18, with extensions via multi-GPU 

support. Apollo effectively captures network-level dynamics, cross-host transmission, and 

host-specific behaviors, extending from tissue to cellular and genomic variations45–47. The 

robust three-phase architecture of Apollo ensures that it maintains efficiency and scalability 

while modeling complex epidemic scenarios. 

Apollo’s observed linear increase in processing time (O(N)) with increasing within-host viral 

populations demonstrates that scaling simulations to larger, more complex scenarios will 

be both manageable and predictable. It enables accurate estimations of processing times 

given the complexity of the simulations at hand. For researchers working on simulations and 

big data projects, this linear relationship translates to reliable planning for computational 

needs and processing times. Additionally, Apollo’s demonstrated ability to efficiently utilize 

evolving hardware technologies to improve simulation speed ensures that it will remain a 

relevant and effective tool with its efficiency improving with advancing computational 

resources. 

The successful integration of the Wright-Fisher model demonstrates Apollo’s ability to 

accurately simulate fundamental evolutionary processes such as allele fixation and 

extinction, aligning with theoretical predictions34,35,48. Apollo’s simulations were consistent 

with the theoretical predictions even when expanding beyond the Wright-Fisher 

assumptions35,49,50. This demonstrates that Apollo’s simulations have an accuracy and 

reliability that  strongly reflect real-world evolutionary dynamics, including the effects of 

mutation and selection. 

Simulation of HIV infection that was consistent with the real biological data obtained from 

an  individual receiving ART over a period spanning two years and four months highlights its 

ability to model complex within-host dynamics and genomic evolution with high fidelity51. 

This capability enables the evaluation of various pathogenic scenarios, including the effects 
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of therapeutic interventions on viral behavior. By accurately predicting sequence evolution, 

Apollo offers valuable insights into viral evolution, pathogenesis, resistance mechanisms, 

and the impact of treatment strategies. 

Apollo’s proven fidelity, demonstrated through the standard Wright-Fisher model, its 

extensions, and consistency with real-world scenarios, makes it a reliable benchmark for 

evaluating inference pipelines. By serving as a ground truth, Apollo’s simulations allow for 

precise assessment and refinement of these tools. Comparing the inferences made by tools 

such as TransPhylo against Apollo’s simulations revealed their limitations. For instance, 

there is a need for improved compartment modeling beyond basic SIR models, including 

more accurate assumptions to improve the prediction of infection rates and sampling times. 

These comparisons highlight areas for enhancement in the inference tools and provides 

insights into how complex models can impact their inference accuracy39. 

The implementation of five epidemiological hierarchies encompassed in a three-phase 

architecture enables Apollo to be a comprehensive tool for simulating viral dynamics at 

scale. We are capable of supporting this novel proposition through our large-scale parallel 

processing architecture and out-of-core framework18. Through Apollo, we bridge previous 

limitations of studying the effects of within-host evolution on the population scale and 

provide a versatile and powerful tool to explore, analyze, and anticipate various epidemic 

scenarios with unprecedented speed and accuracy. The insights made possible by Apollo 

will help drive progress in areas of epidemic inference, understanding viral evolution and 

behavior as well as effects of public health interventions.  
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ONLINE METHODS 

Design and development of population to viral genome resolution architecture 

The five epidemiological hierarchies captured by Apollo are encompassed in three main 

modules: network, host, and genome (Supplementary Note Section 2). The mechanics, 

assumptions, and algorithmic implementations of these modules have been extensively 

validated. The organization of the five hierarchies into the three modules allows the 

seamless integration of the required components with Apollo’s large scale parallel 

processing architecture (Supplementary Note Section 3.3). 

Beginning with the network module its focus is contact network generation and recording 

host-host interactions. In total five stochastic network graph models designed to cater to a 

wide range of diseases are provided (Supplementary Note Section 2.1). Three of these 

models are standard graph models used in epidemiology: Erdős-Rényi random, Barabási 

Albert, and standard Caveman models. In addition, Apollo comes equipped with two more 

models intended to capture real-world interactions more accurately via additional layers of 

flexibility (Supplementary Note Section 2.1.4 and 2.1.5). They are named the random 

model and dynamic caveman model and are extensions of the Erdős-Rényi and caveman 

graph models. 

Hosts are the unit of infection in an infection transmission chain22,29. The host module 

processes the within-host environment and the behavioral patterns of each individual in the 

population (Supplementary Note Section 2.2). The tissue structures, intra-tissue cellular 

environments, and the cross-tissue migration of the hosts are managed by the module. The 

host module is responsible for determining the duration of infection, the rate of progeny 

generation, and the roles of the tissue structures such as those that allow entry and exit of 

the disease into and out of the susceptible individual. The configuration of the host module 

also enables support for four epidemiological compartment models: SIR, SIRS, SEIR, and 

SEIRS.  In addition, the host module works in tandem with the network module to determine 

who infects whom in the population. 
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The genomic module manages the viral genomes including mechanics related to its 

evolution and phenotypic expressions (Supplementary Note Section 2.3). By default, the 

genomic module supports the Wright-Fisher model (Supplementary Note Section 2.3.1). 

However, through parameterization of the simulation model, all WF assumptions can be 

relaxed except for discrete nonoverlapping generations (Supplementary Note Section 

2.3.2). 

The evolutionary forces accounted for by Apollo include mutation and recombination 

(Supplementary Note Section 2.3.2.6 and 2.3.2.7). The genomic module enables 

segmentation of the genome based on hotspot regions that can undergo mutations and 

recombinations. These regions can be overlapping. Mutational hotspots can have their own 

independent clock models, mutation rates, and site substitution models. The resultant 

effects caused by genomic variation are in relation to fitness, survivability, proofreading, and 

effects on recombinational factors such as the probability of region to undergo 

recombination and the likelihood of a recombination hotspot being the selected template. 
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Evaluating scalability by benchmarking processing time relative to viral population size 

To evaluate how Apollo’s per-generation processing time scales in relation to the increasing 

within-host viral population. Three different test types were conducted (Supplementary 

Note Section 4). The first was a baseline line test, used to obtain a comparative foundation 

against which the rest of the tests could be compared. The second was the assessment of 

the change in processing time in the presence of the different evolutionary mechanics of 

mutation and recombination as supported by Apollo. The third evaluated the change in 

processing time under different computational hardware. In all tests there is a single host, 

whose within host viral population was increased in increments of 105 from 105 to 106. The 

processing time for each bin was averaged across 100 generations.  

The baseline hardware consisted of Compute Canada’s Beluga cluster. At the time of testing, 

the cluster was equipped with NVIDIA V100SXM2 GPUs, Intel Gold 6148 Skylake CPUs and 

NVMe SSDs. We used 20 CPU cores and 50GB of RAM. For the first test the simulations were 

conducted under the WF assumptions with no mutations, recombination or selection. 

The second test measured the change in processing times in the presence of 192 mutational 

hotspots, each with their own base substation models and mutation rates and 14 

recombination hotspots. The mutation rates were set to follow a Poisson distribution of 

mean 0.3333 per generation. The hardware resources were consistent with the baseline 

using the Beluga cluster. 

The third test was set up with the same configuration as the first with the exception being 

Apollo was being executed on Compute Canada’s Narval cluster. Narval comprised of 

improved hardware with NVIDIA A100SXM4 GPUs, AMD Milan 7413 CPUs and SSD storage52. 
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Assessing Wright-Fisher model integration and advanced model extensions 

Two simulations were configured to evaluate Apollo’s behavior on default parameters 

(Supplementary Note Section 4.2.1). At default Apollo’s simulations function under the 

Wright Fisher assumptions which include the absence of mutations, recombinations, 

selection forces and includes the maintenance of constant, within host viral populations 

sizes. The factors for generation time and progeny rate were the same as those used for 

Apollo’s baseline benchmark. 

The first simulation consisted of two viral populations of haplotype A and haplotype B of 

equal frequency equaling to a total within host population of 200 viral sequences. The rate 

of progeny generation followed a negative binomial distribution of 𝑛 = 10 and 𝑝 = 0.55. The 

simulation was run for 500 generations. 

In the second experiment we made the testing environment more robust by increasing the 

within host population size to 1000 virions and 100 unique haplotypes, each with an equal 

frequency. The simulation was run for 2818 generations. 

To demonstrate Apollo’s capabilities to extend beyond the WF model using two experiments 

involving mutation and selection forces (Supplementary Note Section 4.3.1). To validate 

the mutation mechanic of Apollo we designed an experimental setup evaluating fixation 

under neutral mutations in absence of back mutation. The base substitution model was 

configured so that Haplotype A produced mutated haplotypes of base G, with base change 

probabilities of 0.5. Similarly, haplotype T would produce mutated haplotypes of base C. 

Both mutated haplotypes would not mutate further and produce only clonal progeny. 

Therefore, under the effects of genetic drift, one of the mutated haplotypes should reach 

fixation, and their frequency in the population should be affected by the parent haplotype. 

For the evaluation of Apollo’s mechanisms capable of accounting for selection forces a 

comparative experiment was designed (Supplementary Note Section 4.4). First a control 

experiment where both the original and mutated strain had no selection advantage was 

implemented. The simulations were designed to start with a single loci genome of base A. 
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The implemented base substitution model allowed the mutation to allele T with a probability 

of 0.5 or it would remain unchanged with the same probability. The mutation rate followed a 

Poisson distribution of mean (𝜇) of 0.01. The viral population was maintained at a constant 

size of 1000 and the starting population comprised of only base A viral sequences. The 

simulation was run for 5000 generations. Subsequently, to examine the effects of selection 

on the above control a negative selection pressure was applied to the mutated strains 

containing allele T by reducing their probability of survival from 1 to 0.85. 

To illustrate Apollo’s ability to capture complex evolutionary dynamics such as mutation 

selection balance we conducted a simulation based on Eigen’s quasispecies principle 

(Supplementary Note Section 4.5). The viral population's genome consisted of a single 

base, which could be one of four bases A, T, G, or C. Genomes of allele A did not undergo 

mutation and produced clonal progeny. The remaining three bases T, G and C had a base 

substitution model where they will remain unchanged with a probability of 0.5 or mutate to 

either one of the other bases with a probability of 0.25 (Figure 3F and G). The mutation rate 

followed a Poisson distribution of mean (𝜇) of 0.01. Under these parameters the mutation 

landscape can be configured as shown by matrix 𝑊 below. 

𝑊  =   [

1 0 0 0
0 0.5 0.25 0.25
0 0.25 0.5 0.25
0 0.25 0.25 0.5

] 

Solving for the matrix the eigenvalues and their respective eigenvectors are as depicted in 

Table 1. 
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Table 1. Solved Eigenvalues and Eigenvectors for the matrix W. In the eigen vectors corresponding 

with the matrix column 1 refers to base A, column 2 to base T, column 3 to base G and column 4 to 

base C.  

Eigenvalue Eigenvector 

0.25 [0 −1 1 0] 

1 [1 0 0 0] 

0.25 [0 −1 0 1] 

1 [0 1 1 1] 

Based on the solution in Table 1 either one of two quasispecies states will occur. These 

states are characterized by nonnegative values in their corresponding eigenvector. The 

expected quasispecies combinations would either be the fixation of allele A while the 

mutant species of T, G and C would become extinct or coexistence of alleles T, G and C 

forming a quasispecies through a mutation selection balance. In the latter allele A will 

become extinct and the quasispecies will become fixed in the population.  

Following the simulations successful execution the downstream analysis of identifying the 

haplotypes and their frequency in each generation was conducted using Apollo’s utility 

function Haplotype Retriever. 
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Simulation of HIV within-host infection dynamics while assessing fidelity through real world 

sequence data reproduction 

The simulation of HIV infection within a host was conducted to demonstrate Apollo’s 

capabilities to capture robust epidemiological factors associated with the host, the within-

host environment which spans across tissues, their cellular environment and the evolving 

viral genomes (Supplementary Note Section 4.6). Apollo’s ability to capture the complex 

interplay between evolutionary forces of mutation, recombination and selection was 

evaluated through the corroboration of simulation results using real world clinical sequence 

samples and meta data.  

The HIV-1 sequence data used was collected as part of previous studies using the cohorts 

from the Southern Alberta HIV Clinic (SAC), Canada (Supplementary Note Section 4.6.1) 

(University of Calgary Conjoint Health Research Ethics Board (CHREB) approval NR# REB15-

1941). The sequence data consisted of clonal HIV-1 viral sequences for the reverse 

transcriptase encoding region (RT) obtained over multiple time points. The samples were 

obtained from  PBMC (Peripheral Blood Mononuclear Cells), and four gastrointestinal 

tissues (duodenum, colorectum, esophagus and stomach) and sequenced via Sanger 

sequencing37,38. The sample collection spanned a period of two years and three months 

(Table 2). The sequences used were obtained from on individual  undergoing Anti-Retroviral 

Therapy (ART) monotherapy using Didanosine (DDI)53–56.   
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Table 2. Detailed temporal information on the sampling of the individual as well as the number of HIV 

RT pol sequences available and obtained from each tissue during each of the seven sampling events. 

  Sequences obtained per tissue 

Sampling 

number 
Date PBMC Colon Stomach Duodenum Esophagus 

1 11-May-1993 12 9 9 NA 9 

2 14-Sep-1993 11 NA NA NA NA 

3 11-Jan-1994 12 10 10 8 NA 

4 21-Jun-1994 11 NA NA NA NA 

5 04-Oct-1994 12 NA NA NA NA 

6 02-May-1994 11 NA NA NA NA 

7 10-Oct-1995 12 10 10 10 NA 

Evolutionary information in relation to the target gene region such as mutation rates and the 

positioning of recombinant hotspots was collected by referencing to existing literature. 

Fourteen hotspots of recombination predominant in this region were identified via a 2014 

study conducted by Smyth et al57. The average Recombination Events Per Nucleotide per 

round of infection (REPN) was determined at 1.8 × 10−3. The mutation rate was configured 

to a Poisson distribution of mean 0.3333 per replication cycle58,59. 

The identification of segregating sites or mutational hotspots was conducted using Multiple 

Sequence Alignment (MSA). We used MUSCLE (MUltiple Sequence Comparison by Log-

Expectation) alignment via the MEGA (Molecular Evolutionary Genetic Analysis) 

software60,61. The base substitution transition matrix for each segregating site was then 

determined by analysis of the MSA data in conjunction with the time series sequence 

information. 

The real-world analysis was conducted into two phases. Phase one was the simulation of 

infection spanning four months (or 126 days) and a single tissue, the PBMC. This period 

involves the time from the first to the second visit (Table 2) from May 11, 1993, to September 
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14, 1993. In phase two we expanded the analysis to encompass the entire sampled dataset 

(Table 2) using Apollo to simulate the entire infection, across all five tissues, from the first 

visit to the last visit. This period spanned 882 days or two years, four months, and 30 days. 

Apollo’s fidelity was evaluated by evaluating its capability to reconstruct sequences 

extracted at the last time point based solely on the sequences provided at the first sampling 

(11-May-1993). 

The simulation was parameterised to encompass and reflect the within-host pressures 

exerted on the viral population by ART, based on documented effects. This was conducted 

by configuring phases of infection in each tissue. They were tailored to mirror the observed 

stages in HIV ART patients. Beginning with primary infection, characterized by an exponential 

growth or eclipse phase of the virus (0 to 4 weeks from infection), followed by acute HIV 

syndrome or primary infection phase (5 to 9 weeks from infection). Subsequently, clinical 

latency or chronic infection (9 weeks to 8 years from infection) ensues, followed by the onset 

of opportunistic diseases (9 to 11 years from infection), marked by a resurgence in viral load 

and eventual mortality62. As shown in Table 3 these phases were delineated as timeframes 

based on the infected time of the individual.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2024. ; https://doi.org/10.1101/2024.10.07.617101doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.07.617101
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3. Details of the generational phases used for each tissue and the parameters used for each 

test. Since the Duodenum did not have a starting population, its phase configuration is different. A 

neutral phase is maintained till the tissue is occupied by viral particles caused by migration from 

other tissues. 

Test Tissues 
Phase 

count 
Phase type Time ratio 

Distribution 

Parameters 

Test 1: 

4-months 

analysis 

PBMC 

1 Neutral 0.35  

2 Stationary 0.05 Variance:10000 

3 Depreciation 0.1 Alpha:75, 

Beta:75 

4 Stationary 0.5 Variance:10000 

Test 2: 

2-years and 4 

months 

analysis 

PBMC, 

Colon, 

Stomach, 

Esophagus 

1 Neutral 0.05  

2 Stationary 0.0075 Variance:10000 

3 Depreciation 0.0125 Alpha:75, 

Beta:75 

4 Stationary 0.93 Variance:10000 

Duodenum 
1 Neutral 0.0750  

2 Stationary 0.925 Variance:1000 

As the duodenum lacked sampled sequences from the initial sampling event (Table 2) its 

phases were adjusted to account for this by introducing a lengthened neutral phase. We 

introduce sequences into the duodenum by leveraging the integration of viral particle 

migration between tissues. 

Apollo’s cross tissue spread mechanic was configured from the works by Chaillon et al. and 

Goyal et al. (Supplementary Note Section 4.6.5)6,7. The tissues across whom viral migration 

occurred were identified and the rates of spread were set using binomial distributions of 𝑛 =

30 and 𝑝 = 0.75. The initiation of migration was to generation 20 with the intention of 

providing sufficient time for the within-tissue viral population to amass. This meant that virus 

would start to spread from tissue to the next after 20 replication cycles had occurred in the 
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simulation. Migration from the Duodenum was set to start after generation 40, since it only 

receives a viral population after cross infection from Colon. 

Replication time was set to be 2.2 days with a standard deviation of 0.22. This was 

parameterised using a gamma distribution of shape 100 and scale 0.02262–64. The rate of 

progeny generation was set using a binomial distribution with 𝑟 = 35 and 𝑝 = 0.8065,66.  

The reference survival rate for progeny was set at 0.15. The low survival rate was selected to 

reflect the challenges faced by the virus in the hostile host environment. Additionally it aligns 

with the viral particle counts observed in relation to the average progeny released by a cell 

and the actual viral load present in a host at any given time62,67. Based on the clinically 

sampled sequences a survival landscape was configured to favour viral sequences that were 

present in the real-world data. The affinity of virus to the cells of the tissues was configured 

using a gamma distribution of shape = 8 and scale =  6. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2024. ; https://doi.org/10.1101/2024.10.07.617101doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.07.617101
http://creativecommons.org/licenses/by-nc-nd/4.0/


Generating standard epidemiological datasets for quantifying the accuracy of inference 

pipelines 

We begin by simulating an epidemic across a population of 300 individuals to demonstrate 

Apollo's viability as a gold standard data generator. We then quantified and benchmarked 

the accuracy of predictions made by the inference pipeline against the simulation’s ground 

truth. The simulation was designed to represent a generalized viral infection without being 

specific to any particular disease. The hypothetical virus was 701 base pairs in length with 

14 recombination hotspots and 30 mutational hotspots. The physical connections required 

to cause disease transmission was determined to follow that of an Erdős-Rényi contact 

network. The parameters were configured to capture a broad spectrum of properties 

associated with viral disease spreads. 

The susceptible population was connected via an Erdős-Rényi contact network. The 

population comprised of 300 individuals with 0.75 probability of linkage between nodes. 

There were three types of host present. They were non lost to follow up, complete LTFU (Lost 

To Follow Up), and partial LTFU. Non LTFU represented individuals who upon being sampled 

will be removed from the infectious population. Therefore, the Lost to Follow Up (LTFU) 

individuals are those that remain infectious even after sampling. In contrast to non-LTFU 

hosts, LTFU individuals are considered to be able to have higher chance to transmit 

infections as they remain infectious after sampling. We segregated LTFU individuals into two 

categories. Those that remain completely infectious and those whose infectivity is reduced, 

pot sampling. They are labelled as Complete LTFU and Partial LTFU. Their percentages of 

distribution were 70%, 15%, and 15% respectively of the total population (Supplementary 

Note Figure S - 29). Detailed parameters for each profile type are outlined in Table 4. A 

sampling mechanic was used to conduct 50 sampling events at a rate defined using a 

binomial distribution of 𝑛 = 10 and 𝑝 = 0.05. 
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Table 4. Details of the parametrization of the three profile types. The normal profile signifies 

individuals that are removed from the infectious population once they are sampled. Complete LTFU 

are individuals that continue to be infectious regardless of being sampled and identified. The partial 

LTFU individuals reduce their infectivity once sampled but will not be completely removed from the 

infectious population. The infectivity of hosts and their mortality by infection was dependent on 

profile type. 

Profile type Sampling effect 
Infectivity 

parameters 

Terminal load 

parameters 

Non-LTFU Removed Binomial 

(𝑛 = 10, 𝑝 = 0.25) 

Binomial 

(𝑛 = 100000, 𝑝 = 0.75) 

Complete LTFU No change Binomial 

(𝑛 = 10, 𝑝 = 0.35) 

Binomial 

(𝑛 = 100000, 𝑝 = 0.75) 

Partial LTFU Infectivity reduction 

Beta distribution 

(α = 5, β = 10) 

Binomial 

(𝑛 = 10, 𝑝 = 0.25) 

Binomial 

(𝑛 = 10000, 𝑝 = 0.75) 

As depicted in Table 4 to factor in the mortality of infected hosts we have reduced the 

terminal load of the partial LTFU population so that those whose viral load exceeds a 

particular threshold will cause the host to reach mortality.  

The viral population parameters such as rate of replication, mutation, and recombination 

were made consistent with our previously described HIV analysis. The simulation was run 

with a start date of May 11th, 1993. 

Once the simulation was completed the sequences obtained from the sampling mechanic 

were used to evaluate the inference pipeline. The sampled sequences came complete with 

host metadata, their time of being sampled, and infection time. Our inference pipeline was 

designed using the software TransPhylo16,20–22. 

TransPhylo requires a time phylogenetic tree where the tip dates correspond to the 

sequences sampling time. We generated such a tree using the BEAST2 software. For the 
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BEAST2 execution, we activated tip dates and used a gamma site model coupled with a GTR 

substitution model. The clock model was an optimized relaxed clock, and the prior was the 

birth-death skyline serial model. The MCMC chain was of length 109. The final tracer diagram 

was evaluated by ensuring that each parameter had an Estimated Sample Size (ESS) greater 

than 200. The resultant trees were then summarised into a single tree using TreeAnnotator 

where the target tree type was set to maximum clade credibility and node heights to 

common ancestor heights. Burn-in was at the standard 10%21. 

The resultant tree was then used by TransPhylo to predict the transmission network 

complete with unsampled sources of infection and the sampled hosts' infection time. 

TransPhylo was parametrized according to the settings in Table 5. 

Table 5. TransPhylo parameters for the generation of the MCMC tree and subsequent transmission 

predictions of who infected whom and infection dates. 

Parameters Value 

Infection rate shape 1 

Infection rate scale 0.99995 

Sampling rate shape 1 

Infection rate scale 0.5 

MCMC iterations 100000 

Starting sampling probability 0.0833 

On evaluation of TransPhylo’s tracer diagrams and confirming their convergence 

(Supplementary Note Figure S – 30B) the predicted transmission tree and metadata were 

extracted. The inferences of who infected who along with the predicted infected times were 

evaluated against Apollo’s ground truth. Further evaluations were made in regard to the 

inferred population size and the Most Recent Common Ancestor (MRCA) in the sampled 

population. 
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CODE AVAILABILITY 

Apollo is freely available under the MIT license as part of the CATE software on multiple 

platforms including GitHub (https://github.com/theLongLab/CATE), Anaconda 

(https://anaconda.org/deshan_CATE/cate) and Google Colab. Apollo is complete with its 

own wiki (https://github.com/theLongLab/CATE/wiki/Apollo) and user manual 

(https://github.com/theLongLab/CATE/tree/main/Apollo_User_Manual). These 

documentations explain how to use Apollo and come complete with examples.  
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