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Abstract 
Motivation: Summary statistics from genome-wide association studies (GWAS) are widely used 
in fine-mapping and colocalization analyses to identify causal variants and their enrichment in 
functional contexts, such as affected cell types and genomic features. With the expansion of 
functional genomic (FG) datasets, which now include hundreds of thousands of tracks across 
various cell and tissue types, it is critical to establish scalable algorithms integrating thousands 
of diverse FG annotations with GWAS results. 
 
Results: We propose BTS (Bayesian Tissue Score), a novel, highly efficient algorithm uniquely 
designed for 1) identifying affected cell types and functional elements (context-mapping) and 2) 
fine-mapping potentially causal variants in a context-specific manner using large collections of 
cell type-specific FG annotation tracks. BTS leverages GWAS summary statistics and 
annotation-specific Bayesian models to analyze genome-wide annotation tracks, including 
enhancers, open chromatin, and histone marks. We evaluated BTS on GWAS summary 
statistics for immune and cardiovascular traits, such as Inflammatory Bowel Disease (IBD), 
Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), and Coronary Artery Disease 
(CAD). Our results demonstrate that BTS is over 100x more efficient in estimating functional 
annotation effects and context-specific variant fine-mapping compared to existing methods. 
Importantly, this large-scale Bayesian approach prioritizes both known and novel annotations, 
cell types, genomic regions, and variants and provides valuable biological insights into the 
functional contexts of these diseases. 
 
Availability and implementation: Docker image is available at 
https://hub.docker.com/r/wanglab/bts with pre-installed BTS R package 
(https://bitbucket.org/wanglab-upenn/BTS-R) and BTS GWAS summary statistics analysis 
pipeline (https://bitbucket.org/wanglab-upenn/bts-pipeline). 
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Introduction 
Typical single-marker-based genome-wide association studies (GWASs) do not consider 
correlation between variants (linkage disequilibrium, LD) and the potential cellular or epigenetic 
context of the genetic variants. Interpretation and prioritization of GWAS results and variants 
thus require downstream analyses using various types of functional genomic (FG) data. 
 
Many existing methods can perform fine-mapping of the GWAS signals within a region, based 
on the summary statistics alone (approximate Bayes factor), or summary statistics with LD 
information. Examples of these methods include conditional analysis (Galarneau et al., 2010; 
Knight et al., 2012; Uffelmann et al., 2021; Yang et al., 2012), CAVIAR/CAVIARBF (Chen et al., 
2015; Chen et al., 2016; Hormozdiari et al., 2014), DAP-G (Wen et al., 2016), FINEMAP 
(Benner et al., 2016), and SuSiE (Wang et al., 2020; Zou et al., 2022). Other methods prioritize 
variants based on their functional annotations, such as coding, promoter or enhancer regions, 
e.g., RegulomeDB (Boyle et al., 2012; Dong et al., 2023). Colocalization methods such as coloc 
(Giambartolomei et al., 2014; Wallace, 2021), HyPrColoc (Foley et al., 2021), eCaviar 
(Hormozdiari et al., 2016), ENLOC (Wen et al., 2017) and their variants jointly analyze summary 
statistics from GWAS and molecular traits such as expression quantitative trail loci (eQTL). 
There are also tools for integrative analysis (e.g., INFERNO (Amlie-Wolf et al., 2018), 
SparkINFERNO (Kuksa et al., 2020), FUMA (Watanabe et al., 2017)) which combine data from 
multiple sources: for example, prioritizing variants based on both colocalization posterior 
probabilities and overlap with functional annotations. Additionally, some methods (e.g., 
PAINTOR (Kichaev et al., 2014), fGWAS (Pickrell, 2014), BFGWAS_QUANT (Chen et al., 
2022), PolyFun (Weissbrod et al., 2020), CARMA (Yang et al., 2023)) further formalize overlap 
with functional annotations and incorporate functional annotations as priors for inferring causal 
variant status.  
 
The recent increase in availability of large functional annotation databases such as ENCODE 
(Consortium, 2012; Consortium et al., 2020), ROADMAP (Consortium et al., 2020; Roadmap 
Epigenomics et al., 2015), and FILER (Kuksa et al., 2022) provides an opportunity to carry out 
unbiased functional analyses of GWAS results across thousands of cell types and genome-wide 
annotations. However, such large-scale, systematic analyses can come at a significant 
computational cost, as they need to build and evaluate different statistical models for each 
annotation or combination of annotations and cell types of interest. In addition, each model 
evaluation often requires running time exponential in the number of potentially causal variants 
(Asimit et al., 2019; Kichaev et al., 2014).  
 
Moreover, most methods that model LD are susceptible to errors due to a mismatch between 
GWAS summary statistics and LD. Such mismatches can occur when the GWAS and the 
reference genotype panel used to compute LD differ demographically. Even more importantly, 
mismatch is all but guaranteed in the case of GWAS meta-analyses, as reviewed recently in the 
SLALOM publication (Kanai et al., 2022). Briefly, if two variants belong to the same haplotype, 
most models expect them to have similar summary statistics and behave erratically if this 
expectation is violated. But different studies in a meta-analysis can incorporate one variant and 
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not the other, which can cause large differences in the amount of evidence supporting each 
variant. To accommodate this common situation, fine-mapping methods must be robust to LD 
mismatch (Chen et al., 2021; Kanai et al., 2022; Yang et al., 2023). 
 
To address these large-scale analysis issues, we present BTS, a Bayesian Tissue Score model 
and an efficient implementation of this model. BTS performs joint fine-mapping of variants and 
their context-mapping based on FG annotations and provides easy-to-interpret summaries of 
the results. The main features of the proposed BTS framework are: 

● BTS can perform joint context-mapping (inference of cell types, genomic features) and 
context-specific fine-mapping of variants (Figs. 1,3,5; Methods) 

● End-to-end GWAS summary statistics analysis pipeline (Fig. 1; Section “BTS GWAS 
summary statistics analysis workflow”; Supplementary Methods): users can provide 
their own functional annotations for running with BTS, or use the FILER FG database 
(Kuksa et al., 2022) to obtain cell type-specific annotations from data sources such as 
ENCODE (Consortium, 2012; Consortium et al., 2020), EPIMAP (Boix et al., 2021), and 
GTEx (Consortium, 2020). By default, the user only needs to provide GWAS summary 
statistics as input. 

● Scalability: BTS can conduct a systematic and exhaustive search through thousands of 
genome-wide annotation tracks and has running times two orders-of-magnitude faster 
per genome-wide track (Section “Running time improvement”; Fig. 6) using a novel, 
more efficient factored Bayesian model (Methods; Section “BTS statistical model”) for 
FG annotations, LD and GWAS summary statistics. 

● Robustness to mismatch between GWAS summary statistics and LD estimates (Fig. 2). 
The BTS model introduces a single model parameter (the prior on variance of the true 
effect sizes) to control most of the sensitivity to LD mismatch. We also provide 
guidelines on how to choose this parameter. (Methods; Section “Mitigation of LD 
mismatch”). 

 
We applied BTS to GWAS datasets from four different diseases: Coronary Artery Disease 
(CAD) (van der Harst & Verweij, 2018), Inflammatory Bowel Disease (IBD) (Liu et al., 2015), 
Rheumatoid Arthritis (RA) (Stahl et al., 2010) and Systemic Lupus Erythematosus (SLE) 
(Bentham et al., 2015). In each case, BTS took under one hour (Fig. 6) to prioritize cell types, 
tissues, genomic regions and variants relevant to the disease across a variety of FG annotation 
tracks (>900; see Supplementary Table S2 for details on annotation tracks used). This shows 
BTS can serve as a tool for systematic and unbiased functional context mapping and context-
specific variant mapping. 
 
The BTS GWAS summary statistics analysis pipeline, including scripts for obtaining relevant LD 
and functional annotations starting from the GWAS summary statistics, is freely available at 
https://bitbucket.org/wanglab-upenn/BTS-pipeline. BTS model estimation is implemented as an 
R package and is freely available at https://bitbucket.org/wanglab-upenn/BTS-R.  
BTS Docker including pre-installed GWAS summary statistics pipeline is also available at 
https://hub.docker.com/r/wanglab/bts. 
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Results 

BTS overview 
To jointly estimate variant posterior probabilities and enrichment of annotations in causal 
variants, we rely on a well-known Bayesian model (PAINTOR (Kichaev et al., 2014), CAVIARBF 
(Chen et al., 2015), see also Methods; Section “BTS statistical model”; Supplementary 
Methods). Briefly, for each possible configuration of causal variants within a locus, its Bayes 
factor only depends on the GWAS summary statistics and the correlation between variants (LD). 
On the other hand, causal variant configuration prior depends only on the functional annotations 
of the variants, as well as the annotation importance (e.g., enrichments of the annotations in 
causal variants). We use an Expectation-Maximization (EM) algorithm to maximize overall data 
likelihood by iteratively updating the annotation enrichments and evaluating configuration 
posterior probabilities, until a convergence criterion is reached (Fig. 1; Methods; 
Supplementary Methods). 
 
Our key observation is that the posterior probability decomposes into a factor which only 
involves the GWAS data, and one which only involves annotations (Section “BTS statistical 
model”; Eq. 9). Furthermore, the factor involving GWAS data is the same for all iterations of the 
EM algorithm. Because of this, BTS can compute Bayes factors only once and then re-use them 
hundreds or thousands of times across various annotation evaluations (Figs. 1, 6). 
 
BTS algorithm further improves running time by introducing two main computational 
improvements 1) by using the matrix inversion lemma to compute Bayes factors (Section “BTS 
statistical model”; Supplementary Methods; Lemma 2, Eq. 4) and 2) by more efficiently 
computing variant configuration probabilities (Section “BTS statistical model”; Eq. 8). 
 
These observations, alongside computational improvements detailed in the Methods, and 
Supplementary Methods, are the main reason for the improved runtime of BTS (Fig. 6). 
 
To run the BTS algorithm, the user has the option to supply three types of information for each 
genomic region to be analyzed: per-locus GWAS summary statistics, LD matrix, and functional 
annotations. Alternatively, the user can provide full GWAS summary statistics only and use BTS 
end-to-end GWAS summary statistics analysis pipeline (Fig. 1) which (1) identifies genomic 
regions of interest, (2) computes per-locus variant LD and functional annotation matrices, then 
(3) runs BTS model estimation on the assembled input data (Steps 3,4 in Supplementary Fig. 
S1), and (4) aggregates across estimated models to prioritize annotations, genomic regions, 
and variants. This GWAS summary statistics analysis pipeline leverages the FILER FG data 
repository (Kuksa et al., 2022) for tissue and cell type-level functional annotations, and the 1000 
Genomes project genotype reference panel (Byrska-Bishop et al., 2022; Genomes Project et al., 
2015) to estimate LD between variants. The pipeline outputs cell type and functional context-
specific posterior probabilities for individual variants within each of the identified genomic 
regions of interest, annotation and functional context importance (enrichment scores, causal 
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variant prior odds), as well as cell type, region, and variant mapping summary plots (e.g., Figs. 
3, 4) 
 
 
 

 
Figure 1. Overview of the BTS framework. A) Input GWAS summary statistics and LD data (top 
sub-panel) are analyzed across cell type and tissue-level FG annotations (bottom sub-panel) to 
jointly perform context-mapping and identify context-specific set of genomic regions and 
potentially causal variants for each context and region. B) The two-factor structure of BTS 
model (Section “BTS statistical model”) allows it to be evaluated efficiently across thousands of 
genome-wide annotations (Fig. 6; Section “Running time improvement”). BTS estimates 
context-independent GWAS+LD null model (top sub-panel) and many annotation-specific 
models (bottom sub-panel). C) BTS outputs annotation relevance (enrichment p-values) (top 
sub-panel), functional genomic regions within each of the prioritized contexts (middle sub-
panel), and annotation-specific causal variant posterior probabilities (bottom sub-panel) (Fig. 3; 
Sections “Prioritizing regions, variants and their contexts with BTS”, “Cross-trait BTS 
evaluation”). Supplementary Fig. S1 and Section “BTS GWAS summary statistics analysis 
workflow” detail BTS analysis workflow and its main steps.  
 
As illustrated in the example in Fig. 2, given the same summary statistics, BTS discovers two 
independent signals if the variants are uncorrelated (Fig. 2, first column, LD=0), and one 
independent signal shared between two variants, if these are correlated (Fig. 2, second column, 
LD=1). Crucially, in the baseline model with no functional annotations, the posterior probability 
mass is shared equally between the two variants, but in the model that uses an annotation the 
probability is assigned to the variant which overlaps trait-relevant annotation.  
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Figure 2. Variant prioritization with BTS using summary statistics, LD, and annotation 
information. A) In case of two independent signals (numbered 5 and 6 on the x-axis), both 
variants are prioritized by BTS (posterior probability for both variants is 1). B) If the two variants 
(5 and 6) are in LD, variant 6 is prioritized (red line posterior probability) based on its overlap 
with relevant annotation track (black triangle). Note that the null model (blue line) will not be able 
to prioritize between these variants (posterior=0.5) since both variants have similar Z-scores 
and are in LD. C) In case of LD and GWAS mismatch, two variants (6 and 7) are in LD but have 
very different GWAS summary statistics (Z-scores). As shown here, BTS is robust with respect 
to the LD mismatch and prioritizes variant 6 with a more significant association statistic (Z-
score) and avoids prioritizing false-positive variant 7 by default model. 

 
Finally, BTS is robust to mismatch between LD and summary statistics (Fig. 2, third column, LD 
mismatch): when two variants with LD close to 1 have wildly different summary statistics, the 
one with low phenotype association is not prioritized. We emphasize that this common-sense 
result was difficult to achieve: the same statistical model with different parameter settings has a 
propensity for prioritizing variants with low phenotype association in such cases of LD 
mismatch. One of our contributions in this article is to identify parameter values that make the 
model robust to LD mismatch (Supplementary Methods; Methods “Mitigation of LD 
mismatch”). 
 

Prioritizing regions, variants and their contexts with BTS 
To illustrate the performance of BTS, we started with summary statistics from a Coronary Artery 
Disease (CAD) GWAS (van der Harst & Verweij, 2018). Our end-to-end pipeline first performed 
LD pruning of the 4,298 genome-wide significant GWAS variants (p-value<5e-8) to identify 389 
tag variants (pairwise-independent, r2<0.7). We further filtered out 2 loci belonging to the HLA 
region on chromosome 6, where complicated linkage patterns make fine-mapping extremely 
difficult. LD expansion of the remaining tag variants yielded 6,513 candidate variants. Using the 
LD-expanded candidate set, we then defined the LD block for each tag variant using the left-
most and right-most variants in LD with the tag variant 1) within a 1 megabase window and 2) 
with no more than 1000 variants separating the boundary variants and the tag variant. Any of 
the overlapping LD blocks were then merged to obtain 167 non-overlapping regions of interest. 
By extracting variants within these regions from the initial GWAS summary statistics, we 
obtained a total of 24,727 variants for further analysis. We note that each of the regions will not 
only contain variants that are highly associated with the CAD phenotype or are in LD with them 
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but also any unrelated or unassociated variants in between. For each of the identified regions of 
interest, the BTS pipeline used PLINK (Chang et al., 2015; Purcell et al., 2007) to compute LD 
matrices based on the 1000 Genomes dataset (Byrska-Bishop et al., 2022; Genomes Project et 
al., 2015), using genotypes from samples belonging to the European super-population as 
reference. 
 
BTS used FILER (Kuksa et al., 2022) to obtain a discovery set of 943 various regulatory 
annotations for testing including FANTOM5 enhancers (Andersson et al., 2014), Roadmap 
Epigenomics ChromHMM enhancers (Roadmap Epigenomics et al., 2015), ENCODE 
(Consortium, 2012; Consortium et al., 2020) DNase hypersensitivity sites, EpiMap enhancers 
(Boix et al., 2021) and all available tissues and cell types therein (see Supplementary Tables 
S2, S4). After excluding annotations which did not overlap any of the regions of interest, 532 
genome-wide annotation tracks remained, across all data sources and tissues. Then BTS was 
run on the 167 genomic regions, with the default setting of d=2, i.e. looking for at most two 
distinct causal signals in each region (we note that even though d=2, the credible variant set 
may include more than d variants).  
 
BTS prioritized open chromatin annotations for blood vessel, monocyte and B cells and other 
relevant cell types and tissues (Fig. 3) consistent with the tissues and cell types involved in the 
disease (Ghattas et al., 2013; Libby & Theroux, 2005; Srikakulapu & McNamara, 2017). Blood 
vessel, blood, and immune-related annotations accounted for 23 out of 103 (22%) of the 
significant annotations (annotation statistical significance assessed with a likelihood ratio test, 
p<0.01). 
 
Importantly, BTS provides context-specific variant fine-mapping as shown in Fig. 4, where BTS 
prioritized two variants (rs9295128 and rs9457927) within the same SLC22A2 region, with one 
variant (rs9295128) prioritized in coronary artery context, and another variant (rs9457927) 
prioritized in the cardiac muscle cell. 
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Figure 3. BTS prioritization for functional contexts (X axis) and genomic regions (Y axis) in CAD 
GWAS. A) Effect size and enrichment of the functional annotation genome-wide across all 
identified regions of interest and using all variants located within these regions. Shown are the 
annotation significance (p-values) as given by the likelihood ratio test of the BTS model with 
annotation and the model without annotation (see Section “BTS algorithm”; Supplementary 
Methods for details on estimating annotation significance). Out of 103 significant annotations (p 
< 0.01), shown are 25 annotations overlapping with at least five prioritized genomic regions 
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(variant posterior > 0.5). In general, annotations with greater enrichment in top GWAS variants 
have lower, more significant p-values. B) BTS-prioritized regions of interest (Y axis) and their 
potential functional contexts (X axis). Shown are regions with annotation overlaps and top 
variant posterior > 0.5. Asterisks (*) mark regions with increased causal variant posterior 
compared to the null model (GWAS+LD only, without annotation) in one or more functional 
contexts. Darker colors correspond to regions and annotations with greater top variant 
posteriors. Merged regions (i.e. regions containing more than one overlapping LD blocks) are 
labeled with a caret (^)	before the region name. For CAD, BTS prioritizes blood vessel, 
monocyte, cardiac muscle, and immune cell types across active histone marks, open chromatin, 
and enhancer genomic features. 

 
Figure 4. BTS within-region context-specific variant fine-mapping. Shown is an example of 
differential variant prioritization for SLC22A2 region (GRCh37/hg19 chr6:160683145-
160978997) in two different contexts, coronary cell enhancers and open chromatin regions in 
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cardiac muscle cells. A) GWAS results for genomic region encompassing SLC22A, with discrete 
LD blocks shaded separately. Subfigures B, C, D show BTS analysis results for the middle 
(dark grey) LD block. B) BTS prioritizes variant rs9295128 in coronary artery context as it 
overlaps with annotated enhancer from EpiMAP (BTS coronary artery enhancer annotation p-
value=1.7e-3; prior odds=2.85). C) In a different context (heart), BTS prioritizes variant 
rs9457927 in the cardiac muscle cell based on its location within an annotated open chromatin 
region defined by DNase assay (BTS annotation p-value=7.1e-4; prior odds=5.51). D) 
Annotated enhancer regions for coronary artery (left) and open chromatin regions for cardiac 
muscle cell (right) across two biological replicates (Rep1, Rep2) each. 

Using cell type and tissue-specific annotations with BTS helped identify a more precise set of 
potentially causal variants across genomic regions for CAD. Compared to the GWAS+LD null 
model without annotation, we observed a significant reduction in average credible set sizes for 
BTS models that use annotations. For example, across 46 genomic regions prioritized by BTS 
and 200 annotations we observed the average credible set size of 2.44±2.7, while the null 
model had a significantly larger credible set size of 6.5±7.77 across the same genomic regions. 
Importantly, using annotations allowed BTS to identify 44 additional potentially causal variants 
that were otherwise not prioritized by the null model. We also note 38 out of 72 variants 
identified by GWAS+LD-only model were de-prioritized as they were not found to be located 
within any of the prioritized annotations or functional elements. Overall, using annotations with 
BTS allowed to identify a total of 78 potentially causal CAD variants across 46 loci (see 
Supplementary Table 5a). 

Cross-trait BTS evaluation 
We further tested performance of BTS on several other GWAS datasets for immune-related 
traits (IBD, RA, SLE) using the same set of 943 annotation tracks as input. As shown in Fig. 5, 
BTS prioritizes disease and cell type associations consistent with previous studies, including 
myeloid dendritic cells for IBD (Baumgart et al., 2005), T cells for RA (Weyand et al., 2000), and 
monocytes for SLE (Hirose et al., 2019) (ChromHMM enhancers) and CAD (Ghattas et al., 
2013) (active histone marks, enhancer and DNase-hypersensitive regions). See 
Supplementary Tables 5a-d for detailed list of all prioritized annotations, genomic regions, and 
variants for each tested GWAS dataset. 
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Figure 5. BTS results across four immune-related and cardiovascular GWAS traits. Shown are 
identified functional contexts (X axis) and genomic regions (Y axis) at the cell-type level for each 
of the traits (CAD, IBD, SLE, and RA panels on the right). For each region and functional 
context, the top variant posterior is shown (shades of gray) with a star (*) indicating posterior 
increase of at least 0.2 in that context compared to the null model without annotation. BTS 
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identifies specific cell types and genomic feature types (open chromatin, histone marks, 
enhancers on the X axis) for each of the traits (e.g., CD4 T cell for RA; myeloid dendritic cells 
for IBD; aorta blood vessel and CD4 alpha-beta T cells for CAD; heart left ventricle for SLE). 

Moreover, BTS prioritized regions which have been implicated in IBD (Supplementary Fig. S2). 
Among these are an intergenic region near the gene coding for the transcription factor CEBPA 
(Zhou et al., 2019), or genes coding for interleukins and their receptors, such as IL10 (Ip et al., 
2017) and ILR1 (Dosh et al., 2019). Importantly, while recent functional work on IBD (Stankey et 
al., 2024) identified intergenic region directing macrophage inflammation through ETS2, the 
ETS2-PSMG1 region was prioritized by BTS in granulocytes (Supplementary Fig. S2), 
belonging to the same myeloid family with macrophage.  
 

Running time improvement 
BTS only took minutes to process genome-wide GWAS data, which involved tens of thousands 
of variants and hundreds of annotation tracks (Fig. 6). Compared to reference implementation 
fastPaintor/Paintor v3.0 (Kichaev et al., 2017), BTS is faster by two orders of magnitude (Fig. 
6c; Section “BTS statistical model”), being able to compute an annotation-specific model in 
under one second on average (Fig. 6a,b). This comes at the cost of a pre-processing step that 
takes a few seconds but is only carried out once for the entire analysis. Moreover, BTS scales 
linearly (Fig. 6a,b) with both the number of genomic regions and the number of annotation 
tracks, which guarantees reasonable running times for even larger datasets.  
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Figure 6. BTS running time. A. BTS running time as a function of the number of annotation 
tracks used for functional evaluation. BTS scales linearly with the number of input annotation 
tracks. Note the constant running time for pre-computing annotation-independent Bayes factors. 
B. BTS running time as a function of the number of genomic regions. BTS scales linearly with 
the number of genomic regions of interest. C. Comparison of the per-model BTS running time 
and the running time using the reference implementation (fastPaintor 3.0 (Kichaev et al., 2017)). 
BTS improves running time by a factor of 44-259x (average 120x) across the four GWAS 
datasets analyzed. 

Methods 

BTS GWAS summary statistics analysis workflow 
We provide an end-to-end functional variant fine-mapping and context-mapping pipeline for 
analysis of GWAS summary statistics based on user-supplied full GWAS summary statistics as 
input (Fig. 1; Supplementary Fig. S1; Supplementary Methods). The BTS GWAS summary 
statistics pipeline aims to automate genome-wide post-GWAS functional analysis and provide a 
systematic and more complete report of all potentially causal variants, genomic loci, and likely 
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functional contexts including cell type and tissue-specific regulatory mechanisms underlying 
observed GWAS signals. 
 
To do this, input GWAS summary statistics are first preprocessed to resolve reference and non-
reference (alternative) alleles and normalize effect sizes to consistently reflect effects of the 
alternative alleles. Using the normalized GWAS summary statistics, a set of genomic regions for 
further downstream analyses and all potential candidate variants are then identified. This is 
achieved through identification of pairwise-independent GWAS signals (tag variants) by 
performing linkage disequilibrium-based pruning (LD r2>0.7) of all genome-wide significant (p < 
5e-8) GWAS variants. Based on the identified tag variants, the candidate set of potentially 
causal variants is then formed as a set of variants in LD with the tagging variants (LD r2>0.7), 
including the tag variants themselves. LD-based genomic regions for analysis are constructed 
by defining the LD region for each of the tag variants as a genomic region with the left and right 
boundaries corresponding to the leftmost and rightmost variants linked with the tag variant. The 
leftmost and rightmost variants are restricted to be within 1Mbp from the tag variant and have no 
more than 1000 variants between them and the tag variant. The final set of non-overlapping 
genomic regions for downstream analyses is obtained by merging any overlapping LD-based 
regions into larger regions. 
 
For each such identified genomic region, the pipeline will then generate all the information 
required to fit the BTS model (Section “BTS statistical model”) including the pairwise LD-based 
variant correlation matrix L (n x n, where n is the number of variants in the region), functional 
annotation matrix A (n x NA), and a vector of GWAS summary statistics Z (Z-scores) (n x 1). 
 
Pairwise LD calculation for all variants located in the locus is conducted based on the reference 
genotype panel (Byrska-Bishop et al., 2022; Genomes Project et al., 2015). Functional 
annotation matrix A is obtained by querying FILER FG database (Kuksa et al., 2022) for each of 
the NA genomic annotations and FG data tracks of interest and noting annotation overlaps for 
each of the variants (Ai,j will be set to 1 if variant i overlaps annotation j). The summary of 
included annotations and detailed list of annotation tracks used are provided in Supplementary 
Tables S2,S4. Summary statistics (Z-scores) are extracted from the input GWAS summary 
statistics after reference and alternative allele resolution and effect normalization to consistently 
reflect the effect of the non-reference (alternative) allele. 
 
BTS algorithm (Fig. 1; Methods; Section “BTS algorithm”) will then be applied to fit the model 
and estimate variant and locus posteriors and functional annotation enrichment for each of the 
target annotations (Fig. 3). To find potentially causal variants within each locus, BTS uses 
variant LD matrix and Z-scores from GWAS summary statistics to pre-compute and store Bayes 
factors for each possible causal variant configuration in every locus. BTS then uses an EM-
based algorithm to iteratively estimate annotation enrichment coefficients and compute 
annotation-specific causal priors for each of the analyzed variants. These functional annotation-
specific priors are then combined with pre-computed configuration Bayes factors to obtain 
context-specific causal variant posteriors. 
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Evaluation results reported in Sections “Prioritizing regions, variants and their contexts with 
BTS”, “Cross-trait BTS evaluation” were generated by applying this pipeline to CAD (van der 
Harst & Verweij, 2018), IBD (Liu et al., 2015), RA (Bentham et al., 2015), and SLE (Stahl et al., 
2010) GWAS summary statistics. 
 

BTS statistical model 
To accommodate for correlation between variants (linkage disequilibrium, LD) as well as the 
tissue and cell-type-specific functions of variants and genomic regions, we adopt the Bayesian 
probabilistic framework first proposed in (Kichaev et al., 2014). We consider the following 
information for all n variants in a genomic region of interest: 1) a vector Z of GWAS Z-scores 
(standardized regression coefficients; observed), 2) a vector A of variant tissue and cell type-
specific annotations (observed), 3) LD (linkage disequilibrium) correlation matrix Σ, and a vector 
C of variant causal status (unobserved; latent binary variable: set to 1 for causal variants, and 0 
otherwise), a vector Λ of unknown true effect sizes for each variant. To model each genomic 
region, we use a Bayesian model in which the likelihood of observing Z is a multivariate normal 
parametrized by causal configuration C, true effect sizes Λ, and LD correlation matrix Σ: 

𝑃(𝑍|𝐶, 𝛬, 𝛴) = 𝑁(𝑍; 𝛴(𝛬 ∘ 𝐶), 𝛴). (1) 
 

where  𝛬 ∘ 𝐶 is an element-wise vector product. 
The true effect size Λ is also modeled as normal, with mean 0 and diagonal variance, using the 
scalar 𝑊 as a model parameter: 

𝑃(𝛬|𝐶) = 𝑁(𝛬; 0,𝑊𝐼!) (2) 
where 𝑊𝐼! is a scaled diagonal matrix, with diagonal elements of 𝐼! set to 0 and 1 according to 
the causal configuration C. 
 
Integrating out Λ gives the following formula for the full likelihood as proved in (Kichaev et al., 
2014): 

𝑃(𝑍|𝐶, 𝛴) = 𝑁(𝑍; 0, 𝛴 +𝑊𝛴𝐼!𝛴). (3) 
 
Bayes factor (BF) for a causal variant configuration C in any particular genomic region: 

𝐵𝐹! =
𝑃(𝑍|𝐶)

𝑃(𝑍|𝐶 = 0)
	

=
𝑁(𝑍; 0, Σ +𝑊ΣI!Σ)

𝑁(𝑍; 0, Σ)
	

[𝑳𝒆𝒎𝒎𝒂	𝟏] =
𝑁(𝑍"; 0, Σ"" +𝑊Σ""# )

𝑁(𝑍"; 0, Σ"")
	

[𝑳𝒆𝒎𝒎𝒂	𝟐] = 𝑑𝑒𝑡(𝐼 +𝑊Σ"")$"/#𝑒𝑥𝑝 I
𝑊
2
𝑍"&(𝐼 +𝑊Σ"")$"𝑍"J , (4) 

where the first simplification (Lemma 1) reduces BF computation from full vectors and matrices 
to the much smaller 𝑍" = 𝑍':!!)", 	and	Σ"" = Σ':!!)" corresponding to the Z-scores and correlation 
between the causal variants (𝐶' = 1), and the second simplification (Lemma 2) further reduces 
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BF computation to a single matrix inversion of a positive semi-definite matrix (see 
Supplementary Methods). 
 
The prior probability of causality for each variant i is modeled as a logistic function of its 
annotation A: 

𝑃𝑟𝑖𝑜𝑟(𝐶') = 𝑃(𝐶' = 1|𝐴, 𝐸) = 1/U1 + 𝑒𝑥𝑝(−𝐸𝐴)W (5) 
 

where the annotation effect size coefficient E for annotation A is estimated genome-wide and is 
shared by all variants in all regions. Note that for variants overlapping annotation A with positive 
effect E, their prior probability of causality will be greater than prior probabilities for variants 
located outside of annotation A. Prior for causal configuration 𝐶* for region j is then a product of 
all n individual variant priors 𝑃U𝐶',*W 
 

𝑃𝑟𝑖𝑜𝑟U𝐶*W =Y 𝑃U𝐶'*Z𝐴, 𝐸W
'

=Y 𝑃U𝐶'* = 1Z𝐴, 𝐸W!!"𝑃U𝐶'* = 0Z𝐴, 𝐸W"$!!"
'

(6) 

 
The full data likelihood across all genomic regions j is a product of individual region data 
likelihoods 

𝐿(𝑍; 𝐸, 𝐴) =Y ] 𝑃U𝑍*Z𝐶*W	𝑃U𝐶*Z𝐸, 𝐴W
!"*

, (7) 

The computational complexity for each region j is then consists of prior computation and data 
likelihood computation (Eq. 3) for every possible causal variant configuration C, 𝑂(|𝐶| × (𝐿 +
𝑑,)). 
 
To improve computational efficiency, we first note that 𝑃(𝐶' = 0|𝐴, 𝐸) = 1 − 𝑃(𝐶' = 1|𝐴, 𝐸) =
1/(1 + 𝑒𝑥𝑝(𝐸𝐴)) and a full variant configuration probability can be computed in O(d) time 
(where d is the maximum number of independent causal variants) as an update to the null 
configuration probability: 

                            
𝑃(𝐶|𝐸, 𝐴) = 𝑃(𝐶-|𝐸)∏ 𝑃(𝐶' = 1|𝐸, 𝐴)/𝑃(𝐶' = 0|𝐸)':!!)" , (8) 

 
where C0 is a null configuration (all variants are non-causal) and the P(C0) term is only 
computed once per locus. 
 
Marginalizing over C, and restricting to configurations that have at most d causal variants, we 
obtain the posterior probability that a variant i is causal in a particular genomic region: 
 

𝑃(𝐶' = 1|𝑍, Σ, 𝐴, 𝐸) = ] 𝑃(𝐶|𝑍, Σ, 𝐴, 𝐸)
!:!!)"

	

=
∑ 𝑃(𝑍|𝐶, Σ)𝑃(𝐶|𝐸, 𝐴)!:!!)"

∑ 𝑃(𝑍|𝐶, Σ)𝑃(𝐶|𝐸, 𝐴).//	!
 

=
∑ 𝐵𝐹!!:!!)" 𝑃(𝐶|𝐸, 𝐴)
∑ 𝐵𝐹!.//	! 𝑃(𝐶|𝐸, 𝐴)

(9) 
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expressed in terms of the Bayes factors 𝐵𝐹! = 𝑃(𝑍|𝐶)/𝑃(𝑍|𝐶-)  (Eq. 4) and configuration priors 
P(C) (Eq. 6). 
 
More conceptually, the variant posterior in (Eq. 9) is a dot product between a vector of 
annotation-independent Bayes factors 𝐵𝐹1 and a vector of annotation-dependent variant priors 
𝑃(𝐶), where each vector is indexed by causal variant configurations C with up to d causal 
variants (i.e. each vector is of |C|=∑ U2/W

/)3
/)-  dimensionality, where n is the number of variants in 

the locus). These vectors can be computed independently from each other, as Bayes factors 
(BF) only depend on GWAS summary statistics and LD matrix (Eq. 4), while the variant priors 
only depend on annotations and their enrichment coefficients (Eq. 5,6). 
 
Given access to the precomputed Bayes factors for each possible configuration C, the overall 
complexity of computing variant posteriors (using Eq. 8,9) is then linear 𝑂(|𝐶| × 𝑑) for any given 
genome-wide annotation A, which is a 𝑂(𝐿 + 𝑑#) improvement compared to non-factorized 
model (Eq. 7) 𝑂(|𝐶| × (𝐿 + 𝑑,)) with the on-the-fly prior and Bayes factor computation. 
 
The model outputs the variant causal posterior probabilities (Eq. 9) for each of analyzed variants 
and the estimated annotation effect size coefficients EA for each tested annotation A.  
 

BTS algorithm 
We use an expectation-maximization (EM) algorithm (Kichaev et al., 2014) to fit the statistical 
model in Eq. 9. Intuitively, this is an iterative algorithm which optimizes overall likelihood and 
takes turns updating the posterior probabilities and enrichment coefficients, until a convergence 
criterion is reached. 
 
Given multiple annotations, with a possibly complex correlation structure, it is standard practice 
(Kichaev et al., 2014; Pickrell, 2014) to perform feature selection, by first fitting a separate 
model for each annotation, and then selecting a few high-ranking annotations for a final model. 
Therefore, our systematic approach to annotations requires that thousands of models be fitted 
for all annotation, tissue, and cell types. 
 
Our key observation is that, in (Eq. 9), the posterior probability decomposes into a factor which 
only involves the GWAS data, and one which only involves annotations. Furthermore, the factor 
involving GWAS data is the same for all iterations of the EM algorithm. Because of this, BTS 
computes it only once, and distributes it to all models and EM iterations as necessary. Since 
likelihood computation is the most time-intensive part of fitting the model, the choice to only 
perform it once is responsible for the bulk of our computational improvements. 
 
This algorithm design choice is a trade-off between speed and memory: to compute the 
likelihood only once, BTS must store it until all models have been processed. The amount of 
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time and memory spent on likelihood computations is proportional to the number of allowed 
causal configurations: 

● If there are N variants, and any subset of them could be the causal set, then there are 2N 
causal sets to be enumerated. Due to the nature of exponential growth, this is 
impractical even for moderately large regions (N>30) and impossible for large ones 
(N>80). 

● BTS implements a common solution to this problem, which is to only consider 
configurations of size smaller or equal to d (Asimit et al., 2019; Kichaev et al., 2014), a 
user-provided parameter, with default value 2. Then storing the likelihood of such 
configurations requires O(Nd) memory for a region with N variants. 

● If d=2, the necessary memory is equal to that of storing the LD matrix, so BTS gains two 
orders of magnitude in speed, at the cost of only doubling its memory use. 

● For d>2, we mitigate the memory use by only storing those likelihoods which are at most 
t orders of magnitude smaller than the largest, where t is a user-provided parameter, 
with default value 12. In our experiments with d=3,4,5, this optimization reduces memory 
use by 100-fold, and does not change the final results within the first 5 significant digits. 
Our experiments suggest that BTS can accommodate values of d up to 5 without 
significant memory issues, while for d>5 runtime increases severely. 

 
We obtain further computational improvements by using the matrix inversion lemma (Lemma 2)  
to compute Bayes factors (Supplementary Methods) and more efficiently computing variant 
configuration probabilities (Eq. 8). When computing likelihood ratios, BTS needs to evaluate the 
ratio of multivariate normal densities with different variance matrices. Naively, this involves 
inverting each variance matrix. The matrix inversion lemma provides an equivalent expression 
in which a single matrix needs to be inverted and has the following benefits: 

● Decreased computation time, since matrix inversion is the most time-consuming part of 
likelihood computation. 

● The covariance matrices are singular in the case of variants in perfect LD. In our 
formulation, the matrix to be inverted is strictly positive definite, which improves 
numerical stability and removes the need for regularization. 

 
Figure 1 summarizes the BTS algorithm: 

● A module for computing Bayesian factors and likelihoods. 
● A loop which distributes annotations and likelihoods to each model to be fit. 
● Aggregation of results, and prioritization of annotations, loci and variants. 

 
BTS GWAS summary statistics pipeline using core BTS algorithm is outlined in Supplementary 
Figure S1.  

Mitigation of LD mismatch 
We investigated the effects of LD mismatch, which can occur whenever in-sample LD for the 
GWAS cohort is unavailable, and a reference genotype panel is used instead. There are 
existing methods to flag regions with high suspicion of LD mismatch (DENTIST (Chen et al., 
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2021), SLALOM (Kanai et al., 2022)), but they do not address the problem after identifying it. 
Moreover, SLALOM only flags a region if the mismatch involves the variant with highest 
association, which is not completely general. 
 
Our approach is to quantify the spurious effect of LD mismatch on likelihood computations and 
provide guidance in choosing algorithm parameters so that this effect is minimized. In the 
supplementary material (see Supplementary Methods), we show that, for two variants in 
perfect LD, with Z-scores a, b, the likelihood of the configuration where both are causal is: 

(1 + 2𝑊)$"/#		𝑒𝑥𝑝(	 4
#("6#4)

[	(𝑎# 	+ 𝑏#) 	+ 	𝑊(𝑎 − 𝑏)#	]	),    (10) 

where W is the prior variance from (Eq. 2). Since the variants are perfectly correlated, it should 
be the case that a=b in the absence of LD mismatch. In practice, we often observe LD=1 but 
a≠b; one Z-score could be large while the other is close to zero. In this case, the term W(a-b)2 in 
the exponent is the spurious effect which should be minimized. If W is much larger than 1, then 
the spurious second term can end up dominating the first one. However, if W is much smaller 
than 1, then the null configuration can end up dominating all others, leading to posterior 
probabilities close to 0. To balance these requirements, BTS uses W=1. 

Discussion 
In this paper we report BTS, a new algorithm that performs joint fine-mapping of variants and 
context-mapping using genome-wide functional annotations. The algorithm has multiple 
statistical and algorithmic innovations to allow one to characterize genetic association signals 
across the genome against thousands of functional assay experiments across different tissue 
and cell types. The algorithm provides easily interpretable results that highlight important 
cellular and tissue context of genetic trait associations with genome-wide enrichment and 
statistical confidence. The BTS algorithm implementation is highly scalable and can allow 
multiple (up to d=5) independent association signals in each locus. 
 
We applied BTS to summary statistics from four GWASs (immune-related and cardiovascular) 
and compared them against different publicly available functional genomic annotations across 
>200 tissue and cell types. BTS successfully prioritized relevant tissue and cellular types known 
to be associated with the disease biology, validating the underlying statistical model and 
showing the value of our approach to translate genetic findings to biological mechanisms of 
disease. 
 
BTS has certain limitations. First, currently available functional annotations are still limited in 
their specificity in cell and tissue types, and this remains to be addressed in the future as the 
research community continues to generate highly specific functional experiments. Additionally, 
users can provide their own specialized functional annotations when running BTS. Second, the 
number of independent causal variants (parameter d) per locus needs to be chosen in advance 
and the memory use is still exponential, which prohibits analysis of high-order genetic 
interactions. In practice this might not be a serious limitation as the algorithm is still scalable up 
to d=5.  
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There are several useful usage scenarios for BTS by biologists, geneticists and other 
researchers. As complex diseases involve multiple cell types and their interactions, the choice 
of input tracks and genomic features can reflect multiple hypotheses involving suspected or 
potentially causal tissues, cell types, and disease mechanisms. BTS can then be used to test 
these hypotheses and select and prioritize tissues, cell types, genomic mechanisms, functional 
genomic regions, and variants. We note that compared to enrichment-based frameworks such 
as LDSC (Bulik-Sullivan et al., 2015) and S-LDSC (Finucane et al., 2015) that are commonly 
used to gain insight into potentially relevant cell types, tissues, BTS not only identifies relevant 
functional context(s), but also allows to identify and prioritize functional genomic regions for 
each of these potential contexts and provides fine-mapping/prioritization for variants within each 
of the analyzed genomic regions and for each of analyzed contexts. While multiple overlapping 
tracks are typically used to show or prioritize functional regions and individual variants (e.g. in 
the genome browser), BTS can also output per-annotation or per-locus variant posteriors which 
can be used to select variants with high causal posteriors across annotations. Overall, BTS 
provides data-driven discovery and prioritization by combining GWAS signals and FG and 
annotation data. 
 
There are many directions for future development of this work. First, although BTS ranks region 
and annotation pairs in its output, it does not rank regions by themselves, nor does the 
algorithm provide affected target genes (e.g., as in Activity-by-contact (Fulco et al., 2019), 
Effector Index (Forgetta et al., 2022) models) regulated by the causal variants. Incorporation of 
expression QTL data or chromatin interaction data could address the second problem, and this 
idea is explored in many other papers including the INFERNO algorithm we reported previously 
(INFERNO (Amlie-Wolf et al., 2018), FUMA (Watanabe et al., 2017), SparkINFERNO (Kuksa et 
al., 2020)). BTS may also be expanded to accommodate for other types of annotations such as 
experimental functional assays (MPRAs) at gene or transcript level, and predicted functional 
activity or pathogenicity of variants (e.g., GENO-NET (He et al., 2018), CADD (Rentzsch et al., 
2021; Rentzsch et al., 2019); JARVIS (Vitsios et al., 2021); PoPS (Weeks et al., 2023)), but new 
statistical models need to be developed to integrate these types of data. 
 
An advantage of BTS is its scalability which allows us to explore thousands of genome-wide 
functional annotations and systematically explore the biological mechanism and cellular and 
tissue context without bias. One may extend our algorithm to analyze multiple traits and tissues 
jointly or carry out combinatorial analysis of multiple cell type and tissue functional surveys 
across many genomic features. Applications of such approach to the growing body of GWAS 
and WGS-based studies, along with further experimental validations, could lead to significant 
insights into disease-underlying variants, loci, and molecular mechanisms.  

Data availability 
GWAS summary statistics used in this study were obtained from EMBL-EBI GWAS catalog for 
IBD (https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST003001-
GCST004000/GCST003043/IBD_trans_ethnic_association_summ_stats_b37.txt.gz),  
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RA (http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST000001-
GCST001000/GCST000679/stahl_2010_20453842_ra_efo0000685_1_gwas.sumstats.tsv.gz), 
and SLE (http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST003001-
GCST004000/GCST003156/bentham_2015_26502338_sle_efo0002690_1_gwas.sumstats.tsv.
gz), and from MRC IEU OpenGWAS database for CAD (https://gwas.mrcieu.ac.uk/files/ebi-a-
GCST005195/ebi-a-GCST005195.vcf.gz).  
ENCODE (https://encodeproject.org ), Roadmap Epigenomics 
(http://www.roadmapepigenomics.org/), and EpiMap (https://compbio.mit.edu/epimap/) 
functional annotations used in BTS evaluations and 1000 Genomes 
(https://www.internationalgenome.org/) reference genotype panel data for LD computation were 
obtained from the FILER database (https://lisanwanglab.org/FILER). BTS results on tested 
GWASs are available from https://doi.org/10.5281/zenodo.14521100. BTS runs on HPC 
clusters, single servers or cloud-based instances and is available at 
https://hub.docker.com/r/wanglab/bts (Docker container) and  https://bitbucket.org/wanglab-
upenn/bts-pipeline (BTS pipeline source code). BTS core R package is also available at 
https://bitbucket.com/wanglab-upenn/BTS-R. 
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