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Abstract

The sustainability of many crops is hindered by the lack of genomic resources and a poor understanding of natural genetic diversity.
Particularly, application of modern breeding requires high-density linkage maps that are integrated into a highly contiguous reference ge-
nome. Here, we present a rapid method for deriving haplotypes and developing linkage maps, and its application to Mentha suaveolens,
one of the diploid progenitors of cultivated mints. Using sequence-capture via DNA hybridization to target single nucleotide polymor-
phisms (SNPs), we successfully genotyped ~5000 SNPs within the genome of >400 individuals derived from a self cross. After stringent
quality control, and identification of nonredundant SNPs, 1919 informative SNPs were retained for linkage map construction. The resulting
linkage map defined a total genetic space of 942.17 cM divided among 12 linkage groups, ranging from 56.32 to 122.61 cM in length.
The linkage map is in good agreement with pseudomolecules from our preliminary genome assembly, proving this resource effective for
the correction and validation of the reference genome. We discuss the advantages of this method for the rapid creation of linkage maps.
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Introduction

With the decreasing cost of sequencing, de novo genome assem-
blies are being developed for a multitude of species. The success-
ful development of an accurate genome assembly depends on
intrinsic factors, such as genomic complexity, heterozygosity,
and ploidy level, but also the technology used for the assembly.

Despite the many advances in sequencing technologies, it is
difficult and expensive to sequence entire plant chromosomes in
one continuous read (Dominguez Del Angel et al. 2018; Sohn and
Nam 2018; Rice and Green 2019). Instead, sequences are obtained
in fragments, which need to be combined by collapsing shared
regions. A major hindrance to genome assembly is the ubiquitous
presence of repeated sequences, which are challenging to piece
together in the correct order. This can be further complicated by
the presence of extensive heterozygosity. As a consequence, draft
genomes still face gaps in assembly, fragmentation, or misas-
sembly of sequences (Dominguez Del Angel et al. 2018; Sohn and
Nam 2018; Rice and Green 2019). While the assembly can be im-
proved via specialized sequencing and computational methods,
many are expensive and challenging to apply.

An effective and well-established method for assembly valida-
tion is the use of linkage maps. The first genetic linkage map is
over 100 years old (Sturtevant 1913). More recently, high-density
linkage maps composed of thousands of markers have been used
to correct and validate numerous genome assemblies in plant
species such as Brachypodium distachyon (Febrer et al. 2010), cotton
(Wang et al. 2015), maize (Wel et al. 2009), flax (You et al. 2018),

wheat (Ariyadasa et al. 2014), in fungi such as Gibberella zeae (Lee
et al. 2008), and in animals such as fugu (Kai et al. 2011). In
addition to assisting genome assembly, linkage maps can provide
interesting insights into a genome. For example, high recombina-
tion regions (hotspots) are typically gene-rich, while low recombi-
nation regions (coldspots) are typically transposable elements-
rich, and consist of heterochromatin (Lichten and Goldman 1995;
Gill et al. 1996; Shen et al. 2017). Linkage maps can also help pro-
vide insights into the genomic diversity and evolutionary history
of important crops (Mahoney et al. 2016). Furthermore, the devel-
opment of linkage maps can detect segregation distortion, enable
functional genetic studies, and facilitate breeding, such as by the
mapping of agronomic quantitative trait locus (QTL) (Zhang et al.
2010; Cui et al. 2015).

Linkage maps provide an independent source of data for ge-
nome assembly validation because loci are mapped based on
recombination, avoiding the problems associated with
sequence-based assembly. Linkage mapping is based on the
principle that close syntenic loci are more likely to be co-
inherited than distant ones (Morgan 1911; Sturtevant et al.
1919). While loci separated by 50 or more map units are un-
linked, gaps of this size are exceedingly rare. Accordingly, we
expect that genetic and physical mapping will place markers in
the same groups—Ilinkage groups or chromosomes, respectively
(Punnett 1927), and in the same order. Therefore, genetic map-
ping can join scaffolds that appear separated and identify
errors in assembled sequences.

Received: February 24, 2021. Accepted: June 25, 2021

© The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.


https://orcid.org/0000-0002-6796-1119
https://academic.oup.com/

2 | G3,2021,Vol. 11,No. 9

The resolution of a linkage map, and thus the extent to which
it can validate and correct small regions of a physical map,
depends on the size of the mapping population and the number
of markers targeted. Markers can be genotyped by whole-genome
resequencing, but deep coverage is costly and generates excess
data. Low coverage whole-genome resequencing is more afford-
able, but results in decreased resolution in heterozygous sites,
and thus higher computation requirements and higher error
rates. Genome complexity reduction techniques reduce the ge-
nome space sampled to a much smaller size but do not target
specific sites (Miller et al. 2007; Baird et al. 2008; Davey et al. 2011,
Elshire et al. 2011; Ali et al. 2016).

Here, we chose to specifically target single nucleotide poly-
morphism (SNP) markers evenly dispersed throughout the ge-
nome, and identified by sequencing of the parental genome.
Specifically, we employed a “solution-capture” method that
uses RNA baits (probes) complementary to target sites, in order
to selectively target DNA fragments surrounding SNPs. The
RNA probes are biotinylated which allows for the isolation of
fragment-probe heteroduplexes using magnetic streptavidin
beads (Gnirke et al. 2009). The benefits of this approach are (i)
ability to target specific loci (specificity), (ii) robustness despite
polymorphic target-regions, (iii) relatively uniform and reliable
high coverage sequencing of the targeted positions, and (iv)
cost-effectiveness for the sequencing phase and computational
analysis (Henry et al. 2014; Neves et al. 2014; Hugall et al. 2016;
Tennessen et al. 2017).

Mint (Mentha spp.) is a species with poor genomic resources.
Mint is herbaceous and perennial, and cultivated for its aromatic
essential oils. Improvement of cultivated mints has been ham-
pered by the fact that they are polyploid hybrids, clonally propa-
gated, and usually sterile. Two diploid species, Mentha suaveolens
and Mentha longifolia, have been identified as progenitors of the
polyploid cultivated mints (Harley and Brighton 1977; Gobert
et al. 2002), and their characterization is more straightforward. A
reference genome for M. longifolia was published a few years ago,
although with low contiguity (Vining et al. 2017). A physical map
of a clone from the other diploid progenitor of cultivated mints,
M. suaveolens, was previously assembled (Firl et al., manuscript in
preparation). This accession was chosen because it is self-fertile
and previous cytological observations revealed it to be diploid
with 24 chromosomes (Chambers and Hummer 1994). To validate
this assembly, and provide an additional functional genetic tool,
we constructed the first high-density linkage map for mint on an
S1 population obtained by selfing this single parental clone, using
a high-throughput hybridization-based SNP capture approach.
After strict filters, we successfully genotyped 83% of the targeted
SNPs. After removal of SNPs that were not directly informative
for this set of recombinants, 1919 informative SNPs were retained
for linkage map construction. The resulting linkage map defined
12 linkage groups in good agreement with the 12 assembled scaf-
folds, proving this resource effective for the correction and vali-
dation of the reference, as well as for providing a valuable
functional genomic resource for future investigations.

Materials and methods

Plant materials

The M. suaveolens population described in this study was based on
the line M. suaveolens 10021 (Pl 557898 or CMEN 13) obtained from
the USDA Mint Germplasm Collection (Corvallis, OR, USA). This
line was previously described as diploid (n=24) and fertile
(Chambers and Hummer 1994). To develop the mapping

population, this accession was grown to maturity under green-
house conditions (22-C and natural light), the inflorescences were
bagged before anthesis to favor self-fertilization. When completely
dried, flowers from different inflorescences were harvested and
the seeds cleaned and inspected under a dissection microscope.
Seeds were subject to a 15 minutes treatment with 12% bleach, un-
der gentle agitation and two washes with sterile water, before a
stratification treatment of 10 days in plates containing 0.5X MS
agar at 4-C in the dark. After stratification, seeds were moved to
in vitro cups with 0.5X MS agar and maintained at 21-C and artifi-
cial light. Seedlings were transferred to soil into 72 cells seedling
trays and grown under greenhouse conditions until enough tissue
from each plant could be harvested for DNA extraction.

Capture probe design

Probes were designed to target SNP positions that were identified
as heterozygous in the parental line CMEN13 after mapping of
[lumina PE150 reads from CMEN13 onto our draft genome as-
sembly of the same accession (A. Firl, manuscript in preparation).
SNP selection was based on the following criteria. First, SNPs
must display confident biallelic heterozygous counts of alleles in
the parental line CMEN13. Specifically, positions were retained
only if they exhibited >30X read coverage and were biallelic with
at least 40% of each allele. Second, SNPs were selected such that
at least one SNP was retained for every 100,000-kb. Third, SNPs
located within exons were prioritized. In some cases, no SNP
could be recovered for a given scaffold because they were short,
contained repetitive sequences, or had low heterozygosity. Once
SNPs were selected, the probes were designed and further evalu-
ated by the manufacturer, Arbor Biosciences for final selection.
The probe sequences were compared to the reference sequence
under a certain primer melting temperature (Tm) using BLAST,
and no more than five hits outside the target region were
allowed. An initial set of 4884 single-copy SNP markers were tar-
geted using a three overlapping oligonucleotide probe strategy:
one flanking each side of the SNP position and one centered on it.
Each probe hybridizes to a 99-bp region and the combined triplet
spans 140-bp. The resulting list of pseudomolecules and number
of corresponding SNPs targeted are listed in Table 1. The probes
sequences are available in Supplementary Table S2.

Sequencing library preparation

Fresh leaf tissue was harvested and frozen for genomic DNA ex-
traction. An internal protocol, similar to Qiagen DNeasy Plant Kit,
was used for the extraction of DNA. Sample quality was assessed
using agarose gel electrophoresis and quantified using fluores-
cent dye, SYBR Green I. Illumina genomic library preparation in-
put was 0.5-1,g in order to reduce the number of amplification
cycles to help minimize polymerase chain reaction duplicates,
and improve library complexity (Head et al. 2014). For this reason,
samples with less than 0.5 g starting input were not included.

Fragmentation was performed using a Covaris E220 sonicator
at the factory settings for 300bp in 130,l. The fragmented DNA
was purified using in-house magnetic beads (Rohland and Reich
2012). Libraries were then constructed using the Roche KAPA
Hyper Kit (catalog #KK8514) following the manufacturer's
instructions. Enrichment was performed with 6 cycles. Libraries
were quantified using SYBR Green I and combined in various pool
sizes (from 23 to 48 libraries per pool) in equimolar amounts for
capture. Pools were bead-cleaned and size-selected with agarose
gel-extraction targeting 200-500bp. Samples were further con-
centrated with magnetic bead cleanup and 500ng of input was
eluted to 7,1 for capture.



H.Tsaietal. | 3

Table 1 Summary of pseudomolecule statistics

Type Assembly name Size (Mbp)
Scaffold S01 62.45
S02 51.27
S03 51.75
S04 49.09
S05 46.64
S06 44.69
S07 44.57
S08 38.13
S09 37.15
S10 40.48
S11 31.60
S12 30.25
Contig X1059 0.02
X1121 0.01
X1124 0.01
X1181 0.01
X233 0.12
X321 0.45
X368 0.05
X394_1 1.35
X394_2 0.94
X394_3 0.12
X713 0.01
Scaffold 528.07
Targeted Contig 3.10
Not Targeted Contig 5.17

% Genome No. markers Markers retained
11.64 464 168
9.56 430 141
9.65 491 194
9.15 510 211
8.70 459 174
8.33 323 137
8.31 375 149
7.11 335 133
6.93 328 125
7.55 428 194
5.89 381 139
5.64 322 130
0.004 1 0
0.003 1 0
0.003 1 0
0.001 1 1
0.023 1 0
0.084 1 0
0.009 1 0
0.251 22 18
0.175 6 4
0.023 2 1
0.001 1 0

98.457 4,846 1,895
0.578 38 24
0.964 —_— —_—

Targeted scaffolds and unintegrated contigs and their respective size (Mbp), percentage of the genome, number of SNPs targeted, and number of SNPs retained for

the final linkage map.

Capture libraries were made using the MyBaits Hybridization
Capture for Targeted NGS (Arbor Biosciences) following the man-
ufacturer’s instructions with a few exceptions. The recom-
mended hybridization temperature is 65-C, but prior experience
had demonstrated that 63-C for 16 hours increased capture yield
without compromising specificity. We also substituted the sup-
plied Block C and Block O with Roche EZ Developer Mix, plant re-
peat blockers (# 06684335001). Capture enrichment was done for
10-12 cycles. Final capture libraries were purified with magnetic
beads, quantified with the Qubit dsDNA HS Assay Kit
(Invitrogen), and pooled in equimolar amounts. Pooled library
quality was assessed using the Agilent Bioanalyzer 2100 DNA Kit
and qPCR. A subset of 143 libraries were sequenced in one lane of
PE150 Illumina HiSeq4000 sequencer. The remaining 296 libraries
were sequenced in approximately 28 percent of a lane of PE150
Ilumina NovaSeq sequencer. Quality assessment and sequenc-
ing were carried out by the DNA Technologies and Expression
Analysis Core at the UC Davis Genome Center.

Read processing

A flowchart outlining the processing steps prior to linkage map
construction is found in Figure 1A. The general steps were: (i)
read quality filtering and de-multiplexing, (ii) alignment to the
reference genome, (iii) parsing of the alignment file for genotyp-
ing, and (iv) genotyping.

First, raw sequencing reads were processed using a custom
Python script called Allprep.py (https://github.com/Comai-Lab/all
prep). This script uses raw reads as input and performs the follow-
ing steps: de-multiplexing, trimming for quality (threshold greater
or equal to 20 average Phred sequencing quality score over a 5-bp
sliding window), filtering for minimal length (threshold 35-bp), and
trimming for ambiguous N bases. Second, processed reads were
aligned to the current version of the M. suaveolens genome (unpub-
lished Firl et al.) using the Burrows-Wheeler Alignment (BWA) tool
and default parameters (Li and Durbin 2009). Duplicate reads were

removed and the data were then concatenated into a single mpi-
leup.txt file using SAMtools (Li et al. 2009). Third, this mpileup file
was parsed using a custom Python script mpileup-parser.py
(https://github.com/Comai-Lab/mpileup-tools). The parser outputs
the percentages of each base call at each position and each sample
for genotyping. Fourth, each individual was genotyped at each SNP
position using a custom Python script (CallAllelesAB-vHTS.py,
Supplementary Data S1). Briefly, for each individual and each posi-
tion, read coverage was assessed and positions that do not fall
within the acceptable coverage range, 20X to 1000X, were assigned
as N/A. Furthermore, SNP positions were only retained if at least
20% at the libraries exhibited acceptable coverage. Finally, geno-
types were called A or B if only one allele of the two parental alleles
was observed, or if both alleles were present but one represented
less than 5% of the read calls. If both parental alleles were ob-
served and they each represented at least 30% of the read calls, the
genotype was called heterozygous (AB). Intermediate situations
were assigned as N/A. After genotyping, we formatted our data for
the F2 intercross analysis of R/qtl (Broman and Sen 2009).

Capture efficiency was assessed with an internal Python script
by comparing the average coverage of the regions targeted by the
probes to the average coverage over the rest of the genome.
Visual assessment was conducted to confirm reads mapped to
expected target regions using Integrative Genomics Viewer (IGV)
(Thorvaldsdottir et al. 2013).

Marker filtering

A flowchart outlining the marker and individual filtering process
is found in Figure 1B. To derive the threshold for filtering individ-
uals with excessive missing data, we looked for outliers in the dis-
tribution of numbers of typed markers per individual. For our
dataset, the threshold was set at 3500 markers. The threshold for
filtering markers that do not have sufficient numbers of geno-
typed individuals was set at 300. The R/qtl function comparegeno()
was used to identify unusually similar individuals, indicative of
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Figure 1 Overview of the data processing steps performed. (A) Flow diagram of the steps from the processing of raw sequencing reads to the start of
linkage map construction. (B) Diagram of the filtering processes, including the number of individuals and markers removed and retained at each step.

double-sampling. Pairs of individuals with 90% or more similarity
were flagged, and one from each pair was removed from analysis.
Markers with segregation distortion were retained except for
ones with greater than 90% heterozygous calls. The function
findDupMarkers() was used to identify markers with identical gen-
otypes, with the parameter exact.only=FALSE. If multiple markers
were found to have identical genotypes, the marker with the least
amount of missing data was prioritized. Markers were dropped
using the drop.markers() function.

Phase unknown dataset

Markers were phased using a strategy that closely follows the
method described by Gadau et al. (2001). Shortly, we used the fol-
lowing steps: (i) For each marker, a second artificial “mirror”
marker, with the complementary genotype, was introduced into
the dataset. For example, if the observed genotype for four indi-
viduals at a marker was AAHB, then the artificial marker would
be BBHA for the same four individuals. In effect, this doubled the
size of the marker set. (ii) The R/qtl function formLinkageGroups()
grouped markers into inferred linkage groups based on pairwise
linkage information, recombination fraction (RF) and logarithm-
of-odds (LOD). Linkage groups appeared in “mirror” pairs with
complementary genotypes. We found that the parameters max.rf
= 0.05 and min.lod = 10 produced 12 pairs (24 total) of linkage
groups that cumulatively contained the vast majority of the
markers (90%). Each linkage group pair was checked to confirm
that they contained the same number of markers in the same or-
der. (iii) Since “mirror” pairs contain the same but complemen-
tary information, keeping both members of the pairs would be
redundant. Thus, one marker from each of the “mirror” pairs was

arbitrarily discarded using the drop.markers() function, retaining
the second group with phased markers. The smaller linkage
groups that were not part of the 12 main mirror linkage group
pairs were also removed.

Creating a linkage map

Markers were reordered using the orderMarkers() function with
parameters window = 7, error.prob = 0.0001, map.function =
“haldane”, sex.sp = F. The orderMarker() function uses an algo-
rithm that locally orders markers to minimize the number of
crossovers. The window parameter value corresponds to the
number of markers included in a sliding window of permuted
markers. If multiple arrangements result in the same number of
crossovers, one is chosen at random. Thus, it is expected that the
result from each orderMarker() will be slightly different from the
next. To deal with this, we ran the marker order procedure 9 sep-
arate times until they passed the below visual inspection.

Marker order was visually assessed using the combined heat-
map of pairwise RF and LOD scores generated by the plot. RF()
function. For each linkage group, the following criteria were used
to determine if the marker placement across linkage groups and
order within the linkage group was acceptable: (i) Marker place-
ment: markers within their linkage group have low pairwise RF
and high LOD (yellow) but high pairwise RF and low LOD (blue)
outside their linkage group. (ii) Marker order: within the linkage
group comparison block, there is a solid yellow line from the bot-
tom left to top right for each.

If the criteria was not met, then markers for that specific link-
age group were reordered using the same function and parame-
ters until the above criteria is met. Supplementary Figure S2
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average coverage was calculated across all libraries. The mean coverage per targeted SNP was 96X (highlighted in red), with ~93% of SNPs falling within
the acceptable coverage thresholds (20-1000X coverage). Average coverage of the target regions, including the entire sequences covered by the probes,
was 90X, while the average coverage of the nontargeted space was 0.44X, corresponding to a 203-fold enrichment of the target sequences. (Inset) Typical
Integrative Genomics Viewer (IGV) image of reads mapping to a targeted SNP. As expected, the captured SNP (denoted at a dashed vertical line) is

covered by many reads, while few reads map off-target.

illustrates this process, with panels A and B shown as examples
of heat maps before and after marker ordering, respectively.

With so many markers, the RF/LOD heat map visual diagnos-
tic alone is not sufficient to identify the best result. Therefore, for
each linkage group, we used the compareorder() function using the
parameter error.prob = 0.0001 to compare the likelihood of the
marker orders and chose the order with the highest overall LOD
score. Finally, genetic distance between markers was estimated
using the est. map() function with default parameters.

Map assessment

To visualize the contributions from the 12 main scaffolds and the
unintegrated contigs to the linkage groups, we plotted the linkage
map by linkage group and location (cM). The 12 main scaffolds
were uniquely colored while the unintegrated contigs were all
colored in black (Figure 3). The countXO() function was used to re-
move any individual with an unexpected number of crossovers.
Comparative analysis between linkage and physical maps was
accomplished by plotting genetic distance in cM to the physical
distance in Mbp for each linkage group and corresponding scaf-
fold. The geno.table() function was used to identify loci affected by
segregation distortion. The chi-square test P-value threshold was
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®
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Bonferroni adjusted accounting for the final number of markers
(0.05/1919).

Results

Sequence capture efficiently target desired SNP
positions

To genotype this S1 population (439 individuals), we selected
4884 positions that were heterozygous in CMEN13, as SNP
markers, corresponding to a density of approximately 1 SNP per
100kb throughout the genome (see Materials and Methods).
Specifically, 4846 of these SNPs covered the 12 main scaffolds,
while the remaining 38 SNPs targeted some of the unintegrated
contigs (Table 1). The remaining scaffolds, representing .0.96% of
the genome size, were not targeted because valid SNP positions
could not be identified.

For each individual, a genomic Illumina library was con-
structed and subjected to sequence capture targeting the selected
SNP positions, and sequenced. After the raw sequencing reads
were demultiplexed and trimmed, a total of _940 million reads
were retained, or _2.14 million reads per individual (Figure 1).
After alignment to the draft reference genome, and removal of
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Figure 3 Final linkage map. Markers from each of the 12 main physical scaffolds are color-coded. Markers from smaller unintegrated contigs are colored
in black and highlighted with asterisks. Genetic distance was calculated using the Haldane mapping function.
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clonal reads, 1.5 million reads per individual remained. With the
remaining reads, average coverage at each targeted SNP was 96X
(Figure 2). SNPs with extreme mean coverage values were re-
moved, leaving _93% of the SNPs exhibiting the acceptable cover-
age threshold (between 20-1000X).

To assess capture efficiency, we estimated fold-enrichment of
targeted sequences compared to the rest of the genome in our se-
quencing reads and observed a 203-fold enrichment of the tar-
geted regions (90X mean coverage) compared to the rest of the
genome (0.44X mean coverage). To corroborate this measure-
ment, we visually inspected mapped reads to evaluate specificity
to on-target regions (Figure 2). As expected, the bulk of the reads
centered at targeted SNP positions, and tapered off on either side.
Reads only mapped to nontargeted sites sporadically.

Sequence capture enables high-quality
genotyping

To minimize genotyping errors, genotype calls that were ambigu-
ous (less than 20X coverage), or suspicious (more than 1000X cov-
erage) were discarded. Markers for which more than 20% of the
genotype calls did not meet these coverage thresholds were re-
moved, leaving 4657 markers across 439 individuals.

Further filtering was applied by tallying the number of
markers genotyped for each individual, and the number of indi-
viduals typed for each marker (Supplementary Figure S1B).
Specifically, markers with less than 300 individuals genotyped
(586 markers), and individuals with less than 3500 markers geno-
typed were filtered out (19 individuals). Finally, individuals sus-
pected of being double-sampled were removed, using a threshold
of 90% similarity. We identified 5 pairs of individuals at this
threshold and removed one individual from each pair
(Supplementary Figure S1C).

Often, markers displaying segregation distortion are discarded
when building an initial map. However, preliminary analysis
showed that some scaffolds were predominantly composed of
distorted markers. Thus, we decided to keep the distorted
markers because discarding them would compromise our ability
to construct a map. However, markers with more than 90% het-
erozygous calls were removed. With this filter, we further re-
moved 29 markers. At this point, 4042 high-quality markers
across 415 individuals remained.

Finally, tightly linked markers exhibiting identical genotypes
in all considered individuals are redundant. For this reason,
within a group of tightly linked markers, the marker with the
least amount of missing data was retained at random. A total of
1905 redundant markers were removed, leaving a total of 2137 in-
formative markers across 415 individuals for linkage analysis. In
this final set, the mean number of genotyped individuals per
marker was 402 (97% of the individuals), and the mean number
of genotyped markers per individual was 2071 (97% of the
markers). The overall final percentage of missing data was 3.1%.

Dense genotype data allows for the creation of a
dense, haplotype-phased, linkage map

First, we needed to phase the markers of the dataset, which was
performed following a method previously described (Gadau et al
2001). Working with unphased data are problematic because
unphased adjacent SNPs appear unlinked. To resolve this issue,
we introduced into the dataset a set of artificial “mirror” markers,
with the complementary genotype phase for each marker.
Considering that each marker was duplicated in this strategy, we
started the linkage group analysis with 2137 “mirror” marker
pairs, or 4274 total markers. We were able to assign 1919 of these

marker pairs to 12 linkage group pairs (corresponding to the 12
expected chromosomes), in which the markers for each linkage
group had been phased. The remaining 218 mirror marker pairs
went into separate linkage groups, with at most 7 markers each,
and were dropped (these were considered unlinked to main chro-
mosomes). Finally, we arbitrarily picked one from each pair for
linkage map construction.

While we do not have prior information regarding the
expected number of crossovers per chromosome for M. suaveolens
specifically, an acceptable range based on other plant species is
1-3 crossovers per chromosome per meiosis (Mercier et al. 2015).
The number of crossovers was within expected range for all 415
individuals, with the frequency of distribution ranging from 7 to
35, averaging 18.

The final map consisted of 1919 phased SNPs mapped to 12
linkage groups. The total length of the linkage map was 942.17
cM, with linkage groups ranging from 56.32 to 122.61 cM and av-
eraging to 78.51 cM (Table 2). The average distance between
markers was 0.5 cM across 12 linkage groups, but 7 marker pairs
in LGO02, LGO6, LGO7, LG10, and LG12 were >10 cM apart (Figure
3). The largest gap (25.53 cM) is found at the distal end of LGO2.
Some of these gaps are associated with the reassignment of
markers from the original scaffold to the different linkage groups,
or assignment of markers from unintegrated contigs to LG02 (23
markers) and LGOI (1 marker).

Comparative analysis between linkage and
physical maps

To evaluate the quality of the draft genome assembly, we com-
pared the linkage and physical maps. Specifically, we investi-
gated whether markers from the same scaffold were assigned
together to a linkage group, and evaluated if the marker order
was in agreement between scaffolds and linkage groups.
Collinearity is indicated by a sigmoidal relationship between the
physical and genetic distance (Figure 4). The near vertical region
of the sigmoid is marked by a coldspot, characterized by large
physical distance and small genetic distance, and probably indic-
ative of heterochromatic regions. Overall, we observed high syn-
teny as the majority of the markers mapped within their
expected linkage groups, with no more than 4 markers assigned
to a different scaffold for each linkage group. Some discrepancies,
such as notable inversions, are visible (red boxes in Figure 4).
Furthermore, markers at one end of LG06 and LG07 were heavily
reorganized.

Our genetic map reveals signs of strong
segregation distortion

With the S1 mapping population, we expect allele types AA, AB,
and BB to be observed 25, 50, and 25% of the time, respectively.
To detect segregation distortion, we compared these expected
percentages to the observed percentage at each marker.
Significantly distorted markers were identified using a Bonferroni
corrected chi-square test. Most linkage groups were not affected
by distortion (Table 2) with three notable exceptions: (i) the entire
length of LGO1, (ii) the distal end of LGO5 and LGO07, (iii) markers
placed inside linkage map gaps, as in LG02, LGO6, LGO7, LG10,
and LG12 (Figure 5). Most cases of distortion favored the hetero-
zygous state or homozygous state from one parent vs the other.
Segregation distortion can be indicative of artifacts in the case of
more isolated markers, but can also be indicative of specific se-
lection in the case of larger sets of consecutive markers, as ob-
served here in several linkage groups.
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Table 2 Final linkage groups and marker statistics

Linkage  No. From different

From unintegrated Marker density Length Largestgap Gaps largerthan No. distorted

Distorted markers

group markers scaffold contig (cM) (cM) (cM) 10 cM markers (%)

LGO1 168 3 0 0.52 87.65 4.78 0 168 100.00
LGO2 165 1 23 0.54 89.48 25.53 1 3 1.82
LGO3 191 0 0 0.33 63.96 3.34 0 2 1.05
LGO4 210 0 0 0.37 77.20 2.54 0 0 0.00
LGOS 176 2 0 0.38 66.11 4.97 0 92 52.27
LGO6 140 4 0 0.88 122.61 15.00 2 11 7.86
LGO7 146 0 0 0.58 84.09 13.83 1 78 53.42
LGO8 133 0 0 0.44 58.26 5.32 0 1 0.75
LGOS 125 0 1 0.45 56.32 3.67 0 1 0.80
LG10 195 1 0 0.48 92.64 23.67 1 5 2.56
LG11 140 1 0 0.41 57.72 2.74 0 2 1.43
LG12 130 0 0 0.66 86.14 13.56 2 2 1.54

The final genetic map contains 1,919 markers, spanning a total of 942.17 cM.
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Figure 4 Comparative analysis of the final linkage groups and assembly.
Marey map with genetic distance in cM represented on the x-axis, and
the physical distance in Mbp represented on the y-axis. Examples of
inversions are highlighted with red rectangles.

Discussion

We have constructed the first high-density linkage map of apple
mint (M. suaveolens), from 1919 high-quality SNPs mapped to 12
linkage groups, which correspond to the expected 12 chromo-
somes of mint (Table 1). The map length is 942.17 cM, with an av-
erage of 78.51 cM per linkage group. Average marker intervals
were 0.5 cM with some notable gaps greater than 10 cM. Overall,
the linkage map shares a lot of synteny and collinearity with the
physical map (Figure 4), confirming the quality of the physical as-
sembly. Furthermore, we were able to incorporate 24 markers
from four contigs that had been left unincorporated in the physi-
cal map. We found a few discrepancies between the physical and
linkage maps, such as possible inversions and translocations,
suggesting areas where the physical assembly can be improved
(Figure 4). In this study, 24% of the markers used for the linkage
map exhibited segregation distortion. Most of these are found in
LGO1, where all markers were affected, and LGO5 and LGO7,
where almost half a section of the linkage group contained
markers that were distorted (Figure 5).

Low sequence coverage, and the presence of missing data in
mapping datasets can cause problems in assessing the true re-
combination rate between markers and thus, lead to miscalcu-
lated genetic distances or worse, misplacement of markers when
creating genetic maps. Furthermore, markers with excess miss-
ing data provide little power toward finding linkage among the
scaffolds. Sequence capture addresses these issues by targeting
specific markers and yielding localized high coverage. This
reduces the incidence of missing data, and because of its specific-
ity, reduces the overall sequencing cost per informative marker.
We demonstrate this by successfully targeting specific and infor-
mative sites across the genome. The high specificity of our target-
ing yielded an average SNP coverage of 96X, with a 203-fold
enrichment across the targeted space compared to the rest of the
genome. This high coverage provided a reliable dataset and after
stringent filtering of markers, we were able to input 2137 markers
into genetic map construction. These remaining markers only
had 3.1% missing data, making imputation of missing marker
genotypes unnecessary.

These results are comparable to those obtained previously in
other species. For example, Tennessen et al. were able to con-
struct a dense linkage map of diploid strawberry using a single
selfed individual and sequence capture (Tennessen et al. 2014).
Similarly, high-density linkage maps were obtained using se-
quence capture in durum wheat (Holtz et al. 2016) and loblolly
pine (Neves et al. 2014), with similar numbers of markers, cover-
age, and low percentage of missing data. Previous reports also
showed that this platform could also be successfully applied to
polyploid strawberries (Tennessen et al. 2014). Moreover, capture
probes allow for a relatively high percentage of divergence be-
tween probe sequence and captured sequence, allowing for the
successful capture of homologous sequences from related spe-
cies, and enabling evolutionary studies as well (Jones and Good
2016). Together, these suggest that this approach is likely to be
successful for allopolyploid spearmint and peppermint as well.

In our experiment, the total genomic space directly targeted
was only _0.13% of the genome. This allowed us to achieve high
coverage over these targeted regions at very low cost. In our case,
sequencing of our 500 diploid mint clones using whole-genome
sequencing and a 50X coverage would have cost _$12,500, while
the combined cost of the capture probe synthesis (smallest cus-
tom capture set from Arbor Biosciences) and sequencing of the
captured libraries amounted to a total of _$7,000. As for any
large-scale experiment, the cost-benefit analysis greatly depends
on the specifics of the experiments though. As a rule, the larger
the number of individuals, and the smaller the target space, the
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Figure 5 Segregation distortion in the S1 population. Percentage of AA, BB, and AB calls for each SNP marker are represented in dark green, light green,
and brown, respectively. Markers exhibiting segregation distortion based on a chi-square test with Bonferroni adjusted P-value are marked as ticks on

the bottom track.

more cost-effective the capture becomes, since the cost of probe
design and capture probe synthesis are fixed. In our case, we
could have further decreased the cost of sequencing because we
targeted too many SNPs for the size of our population. Therefore,
many markers were redundant and we only retained approxi-
mately a third of our original marker set. The discarded markers
would be useful for eventual future fine-mapping but we could
also have started with fewer targeted SNPs and further limited
sequencing costs.

With 420 typed individuals, we also have the power to confi-
dently identify loci affected by segregation distortion. There were
occasionally distorted markers throughout all linkage groups
(<10%), some of which corresponded to apparently inflated ge-
netic distances between marker pairs. In cases where distorted
markers occur in clusters, the distortion is likely due to biological
factors rather than technical issues. However, if these are iso-
lated markers, it indicates mis-scoring of markers and should be
removed from the map. Further evaluation of these markers will
be needed to decide if their placement is reasonable. The possibil-
ity that these correspond to repeated, polymorphic regions could
be investigated by comparing observed and expected allele ratios.
Deviations could suggest the presence of copy number variation
and the subsequent removal of these markers.

Segregation distortion is very common in mapping popula-
tions (Li et al. 2010) (Taylor and Ingvarsson 2003) and distorted
loci have the potential to complicate map construction.
Removing them can be simpler, but comes with the disadvantage
of potentially excluding large segments of the genome, and may
not be beneficial. Indeed, previous modeling of the effect of in-
cluding distorted markers suggested that they did not signifi-
cantly affect marker order or map length (Hackett and Broadfoot
2003). Recently, a study in soybean looked at the effect of dis-
torted markers on the construction of a high-density linkage map
(Zuo et al. 2019) close in size to the one presented here. They con-
cluded that including distorted markers resulted in genetic maps
that were in better agreement with the genome, including more
markers, and did not affect marker grouping (Zuo et al. 2019).

Strikingly, in our map, all markers in LGO1, as well as _50% of
adjacent markers in LGOS and LGO7, exhibited segregation distor-
tion (Figure 5). The allelic ratios observed at those regions are each
consistent with a different scenario. For LGO1, the observed _50%
of BB and AB genotypes, combined with the almost complete ab-
sence of AA genotypes, suggest a strong selection against homozy-
gous A genotypes at the zygotic level, but not at the gametic level,
possibly linked to a lethal recessive allele. On the other hand, for

LGO5 and LGO7, we observed _66% AB genotypes, and _33% BB or
AA genotypes, respectively. This situation suggests a strong ga-
metic selection against one specific haplotype (selection against A
gametes for LGO5 and selection against B gametes for LG07). In all
three of these cases, understanding the mechanisms underlying
these trends would possibly provide an approach to improving fer-
tility in this species.

Genetic maps remain one of the most versatile and powerful
genetic tools (Fierst 2015). In addition to the traditional uses of
genetic maps, they now provide unique validation tools for ge-
nome assemblies (Yu et al. 2019). Specifically, dense genetic maps
such as those that can be obtained from whole-genome sequenc-
ing data, can assist in identifying large-scale assembly errors
such as inversions or translocation, help integrate unanchored
contigs, and reach chromosome-level assemblies. More impor-
tantly, by virtue of the fact that they are built from recombina-
tion information, they provide independent linkage information.
Finally, as in this study, genetic maps can provide haplotype in-
formation that can be instrumental in many downstream func-
tional genetic analyses.

The map produced here provided independent data to assist
the assembly of a high-value genome. While the linkage and
physical maps were generally in agreement, we were able to use
the information generated from the linkage map to correct the
physical assembly. Comparative analysis between the linkage
and physical maps also provided useful insights into the genomic
features of the M. suaveolens genome. For example, the physical
sequence assembly method produced chromosomal level scaf-
folds but no information on haplotype phasing. With our capture
dataset, we were able to derive phased haplotypes easily. In addi-
tion, we were able to identify regions with low recombination
(coldspots), which could correspond to centromeric regions, and
regions of high recombination (hotspots).

Our results demonstrated the value of the capture-based gen-
otyping method for the rapid generation of high-density linkage
maps. The development of a genome assembly for the ancestral
diploid, M. suaveolens, will provide an invaluable new genomic re-
source for the breeding of mint cultivars.
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