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ABSTRACT

The speed at which new genomes are being se-
quenced highlights the need for genome-wide meth-
ods capable of predicting protein–DNA interactions.
Here, we present PADA1, a generic algorithm that ac-
curately models structural complexes and predicts
the DNA-binding regions of resolved protein struc-
tures. PADA1 relies on a library of protein and double-
stranded DNA fragment pairs obtained from a train-
ing set of 2103 DNA–protein complexes. It includes a
fast statistical force field computed from atom-atom
distances, to evaluate and filter the 3D docking mod-
els. Using published benchmark validation sets and
212 DNA–protein structures published after 2016 we
predicted the DNA-binding regions with an RMSD of
<1.8 Å per residue in >95% of the cases. We show
that the quality of the docked templates is compat-
ible with FoldX protein design tool suite to identify
the crystallized DNA molecule sequence as the most
energetically favorable in 80% of the cases. We high-
lighted the biological potential of PADA1 by recon-
stituting DNA and protein conformational changes
upon protein mutagenesis of a meganuclease and its
variants, and by predicting DNA-binding regions and
nucleotide sequences in proteins crystallized with-
out DNA. These results opens up new perspectives
for the engineering of DNA–protein interfaces.

INTRODUCTION

It is estimated that around 6% of the eukaryotic genome
encodes for DNA-binding proteins (1,2). These proteins,
which form DNA–protein interactions (DPIs) through dif-
ferent types of protein domains and domain architectures,

are involved in numerous processes including DNA repli-
cation, DNA repair, gene regulation, recombination, DNA
packing, etc. Currently, although there are >120 000 struc-
tures deposited in the PDB (3), only ∼5000 of them in-
volve DNA–protein complexes. When considering the rate
at which new genomes are being sequenced, the resolu-
tion of novel DNA–protein structures is relatively scarce.
As such, we need to develop methods not only capable of
predicting whether a protein can interact with DNA, but
also capable of determining the protein’s 3D binding re-
gion, and the DNA sequence to which it can bind (4). Sev-
eral sequence-based (direct read-out) methods have already
been developed for predicting whether a protein can bind
to DNA, and by means of sequence homology, also deter-
mine which residues are involved in the interaction (5–9).
However, although these methods are useful in many spe-
cific cases, they lack 3D information, such as atomic dis-
tances and dihedral restraints, regarding the interactions.
As a consequence, these methods are unable to predict the
DNA sequence that is recognized by a protein, the effect of
mutations found in sequenced genomes and are not suitable
for rational protein design, or to interpret the effect of these
mutations. Structural-based (indirect read-out) methods on
the other hand, have the potential to address these issues.
In this case, both the 3D structure of a target protein (or
a good homology model) and an algorithm that can dock
DNA structures, identify the best docking, and search for
the best DNA recognition sequence are required.

The development of a general method to blindly pre-
dict double-stranded DNA–protein (dsDP) binding sites
still poses an important challenge (10). Historically, dock-
ing models have been designed in numerous ways, each with
their own characteristics and limitations. For instance, ap-
proaches based on molecular dynamics (11,12) require long
computations to simulate a small fraction of time, which
in many cases is not enough to achieve the equilibrium.
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Other methods such as Monte-Carlo sampling (13–15) are
based on non-observed structural configurations, and rigid
solid approaches (16) are unable to deal with small, binding-
induced backbone conformational changes. Furthermore,
alternative methods are often biased towards specific fami-
lies of proteins, and thereby fail to predict docking for pro-
teins outside these targeted families (17–21). While some ac-
curate methods use canonical DNA templates (22), they re-
quire both protein and DNA structures as input (23). Scor-
ing functions for the previously cited methods use empirical
knowledge-based or physical force fields. Other strategies
use ab-initio methods (24), which although very accurate,
can require huge computational resources or time. Some
of the scoring functions include different energy terms,
such as base coplanarity and electrostatics (25) as the main
force driving binding, while others include H-bonding and
Lennard–Jones (26) (to check for clashing elements) po-
tential. These methods are computationally expensive since
they calculate all pairwise atomic interactions, and therefore
cannot be used with large protein datasets. Some of these
cited methods were developed before 2006, and as such do
not take into account the current completeness of the PDB.
This makes it hard to measure their accuracy because de-
posited dsDP complexes were about a quarter of the current
number (Supplementary Figure S5).

An alternative possibility, which is exploited by protein
design algorithms like Rosetta (27) and FoldX (28), uses
libraries made of protein fragments (29) and the spatial
relationships (interactions) between these fragments (30)
to model protein–protein and protein–peptide interactions.
This strategy relies on the following assumptions: (i) the
conformational space of single protein structures can be
described by combining recurrent structural patterns (31);
(ii) protein interactions can be captured in motifs of repet-
itive patterns (32–35); (iii) there are enough structures to
cover the largest part of the possible conformational space
of protein–protein interactions and (iv) exhaustive frag-
ment libraries can be used to generate conformational back-
bone ensembles for predicting protein folding and/or pro-
tein complexes.

Here, based on the above assumptions, we have developed
the protein-assisted DNA assembly version 1 (PADA1)
algorithm to predict and model the binding of double-
stranded DNA (dsDNA) to proteins. PADA1 includes an
empirical interaction model generator in combination with
an ultra-fast statistical knowledge-based force field, which
together perform dsDP docking. This algorithm uses frag-
ment pairs (peptide or pepX paired to short dsDNA or
dnaX) that represent empirical, compatible backbone con-
formations found in nature. Our interaction database con-
tains ∼18 million (17 920 450) atomic coordinates of pepX
and dnaX pairs (intX), and is ready to be trained with more
interactions as dsDP complexes continue to be deposited in
the PDB. For a validation set of 212 structures deposited
after 2016, our algorithm was able to predict the DNA-
binding region with an RMSD per residue of <1.8 Å in 209
cases (>95%, see Validation section). DNA–protein struc-
tures modeled by PADA1 can be used in combination with
protein design software like FoldX to predict DNA recogni-
tion sequences. This cooperativity between PADA1, used to
predict backbone compatibility, and FoldX, for sidechain

refinement and interface optimization, turns ModelX in
a powerful modelling toolsuite with potential further ap-
plications in other kind of interactions like protein–RNA,
protein–protein and protein–drug interactions. Using dif-
ferent examples, we not only highlight the potential bio-
logical application of PADA1, but also demonstrate how
it can be used to discover DNA-binding regions, dock ds-
DNA molecules, generate conformational diversity, and in
combination with protein design force fields, identify DNA
recognition sequences.

MATERIALS AND METHODS

Algorithm and database remarks

PADA1 is a command-line tool included in a more complex
object-oriented application named ModelX. It is written in
C++ and stores all data in a relational MySQL database
using the InnoDB engine. It is compiled with only C11++
support for the three main platforms (Linux-64bit, MacOS-
64bit, Windows-32bit) and Raspberry PI. It uses Mysqlpp
(https://tangentsoft.net/mysql++) as database connector
and Boost (http://www.boost.org) for eventual standardiza-
tion. The software is a portable executable with the only de-
pendency of the MySQL database, and can be downloaded
freely for academic users from http://modelx.crg.es. The ap-
plication has a standard C-type layer of parameters that are
set with default values to make things easier for the users.
Parallelization is easy by overwriting these default param-
eters. The executable can be interactively queried for help
about the program arguments and command mode. The al-
gorithm has been developed using design patterns, inher-
itance, a data access object layer (DAO), and a complex
class hierarchy that allows it, as ModelXDB, to be easily
extended for other biomolecules such as RNA, ssDNA or
small drugs. The database is optimized for speed, with keys
and indexes for the fields that will be used for querying from
inside the code. The database was digested for several com-
binations (intX) of pepX-dnaX fragment lengths (i.e. pep-
tide fragments of 6–12 amino acids in length and dsDNA
fragments of 4–8 bp in length) Moreover, it can be trained
with new interacting structural motifs as they are deposited
in the PDB, thereby increasing its prediction capabilities. In
fact, the release of dsDP structures in the PDB has followed
an exponential trend since the first structure was deposited
in 1986 (36). We thus expect to further improve the predic-
tion capabilities of our algorithm in the upcoming years by
releasing newer and more complete versions of the database.
The Mysqlpp connector allows data retrieval from either lo-
cal or remote databases. The commands for building frag-
ment libraries are hidden from the user. A FoldX force field
connector for rapid evaluation within the ModelX tool-
suite was developed in-house allowing to accurately com-
pute free energies over structures taking sidechain atoms
into account in docking refinement steps.

The PADA1 fragment retrieval and superimposition methods

The ModelXDB stores the C�Nter-C�Cter distance for ev-
ery pepX fragment, and uses it to retrieve pepX fragment
lengths within a given distance uncertainty (dubiety param-
eter, default = 0.1 Å). The PADA1 algorithm then scans
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along an input PDB protein, superimposing different pepX
fragment lengths as anchor segments to retrieve compati-
ble 3D interactions with dnaX. These pepX fragments have
slightly different backbone conformations that mimic flexi-
bility upon binding, and are used to place the corresponding
interacting DNA fragment onto the input protein. In this
manner, we are able to generate dsDNA clouds containing
compatible interacting models. These clouds can be used to
explore backbone flexibility upon binding and sidechain re-
finement using FoldX.

The superimposition method (Supplementary Figure S2)
is used to scan an input protein with compatible peptide
fragments. Using an overlapping sliding window on the in-
put protein, we select (by default) peptides of six amino
acids in length (pepx-length parameter). Scan peptide ge-
ometry is used to retrieve pepXs with similar C�Nter-
C�Cter distances. For the scanned peptide, we convert
C�Nter and C�Cter into a vector (Scan P) and by means
of one translation and two rotations we reference it to the
x-axis of a Cartesian coordinate system. The timeline for
the required referencing movements is stored inside the pep-
tide object. After retrieval of pepXs, using the same strategy
the database pepX is referenced and rotated through the x-
axis (Supplementary Figure S2a) in order to find the best
overlap, also applying these movements to the dnaX that
is stored with it in the interaction database. The timeline
for the scanned pepX is also stored. We consider two pep-
tides to be overlapping when the angles between C�Nter–
C�Nter from the scan peptide and C�Nter–C�Nter from
the pepX are smaller than 5◦ (default cb-angle parameter).
The atoms consecutive to C�Nter and C�Cter in the pepX
peptide are not allowed to deviate more than 0.5 Å (de-
fault fit-threshold parameter) from the scan peptide. Thus,
for a fit level of 2 (default fit-level parameter), the best over-
lap is obtained considering the minimum distance between
these atoms and their first neighbors. A fit level of 3, on
the other hand, also takes into account the correspond-
ing second neighbor distances, and so on for longer pep-
tides (Supplementary Figure S2B). The distance distribu-
tions (Supplementary Figure S1) that give rise to the force
field were computed for the backbone atomic pairs using
only dsDNA fragments and dsDNA–dsRNA hybrids. As
the differences among the means and the standard devia-
tions were in the order of the mili-Armstrong for both cases,
we decided to include the hybrid information when building
the force field.

Dock positioning and optimization strategy

Once a good fitting peptide is found, we apply the timeline
(movements) of the scanned pepX in reverse, to both the
referenced database pepX and its corresponding dnaX in
order to place them on the input protein. Afterwards, we
delete the database pepX and evaluate the docking model
using the developed force field. Also, is possible to substi-
tute the WT pepX by the scanned pepX in order to generate
flexibility on the DNA-binding protein. In order to increase
the speed of this method, we first evaluate the energy of the
atoms that are closer than 18 Å to the scanned pepX, and if
this energy is favorable, we then evaluate it again for the full
neighbourhood to accept or reject the docked fragments.

Statistical knowledge based force field

The energetic evaluation in the PADA1 force field is per-
formed using the equation �G = –RTLn(Kp), where R is
the Boltzmann constant and Kp is Pr/Po. These parame-
ters are calculated with a statistical test. Pr is the probabil-
ity of finding a pair of atomic contacts for a given amino
acid, a correction based on the deviation from the extracted
normal distribution for that pair of atoms is included. Po is
the probability of finding a pair of atomic contacts for any
amino acid, also a correction based on the deviation from
the extracted normal distribution for that pair is included.
In the case of glycine, which has dihedral angles compatible
with other amino acids, a dummy C� was placed averaging
the C� coordinates of two alanines included in the dihedral
database: one with the smaller difference from �, and the
other with the smaller difference from � .

Sequence profiling pipeline

To test the ability of our method at predicting the bind-
ing nucleotide sequence, we developed a validation pipeline
consisting of the following steps: (i) DNA molecules are re-
moved from the target crystal structure; (ii) the FoldX soft-
ware processes each unbounded structure in order to re-
lax the sidechains and mimic an ‘apo’ configuration; (iii)
PADA1 is used to dock dsDNA over the apo protein struc-
ture and (iv) FoldX is used again to repair the interface of
the proposed DNA docks and ‘apo’ structures, and to mu-
tate each DNA base pair to all four nucleotides to find the
more energetically favorable sequence. All residues contact-
ing the DNA are compared with the original crystallized
version. To evaluate the accuracy of the predictions, only
those nucleotides contacting the protein target are taken
into account.

DNA–protein interface flexibility

For the meganuclease analysis discussed in the results sec-
tion, the following strategy was applied: i) after removing
all deposited structures of the protein from the database,
we performed a docking over the constructed models with
PADA1, relaxing the dubiety (0.5 Å) and cb-angle (8◦) pa-
rameters to give flexibility to the binding site; ii) FoldX was
used (DNAScan command) to measure the binding energy
differences between both the WT and the constructed pro-
teins in combination with the WT DNA, the crystallized
XPC DNA and an XPC-built dock made by visually merg-
ing those dsDNA docked fragments with best overlapping.
The resulting ��G values reproduce the experimental rel-
ative affinity observations (see results and Figure 6D).

To generate backbone conformational variability on the
DNA, we developed a branch and bound algorithm (Glue-
Docks command, Supplementary Figure S6) that auto-
matically glues the compatible fragments of a cloud re-
turned by a docking run resulting in an ensemble of ex-
tended fragments. The algorithm combines in a new ex-
tended fragment, fragments having overlapping residues be-
low 0.4 RMSD threshold (rmsd-threshold parameter). The
new fragment is recursively combined with the remaining
fragments until reaching the maximum longitude for each
possible extension. The fragments are connected through
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O3′–P5′ atoms and the bound distances of the recently
formed phosphodiester bond are checked, if the bond dis-
tance violates the maximum O3′–P5′ distance found in our
database we perform a phosphate repair. Phosphate repair
is done by exchanging fragments (C3′–O3′)NUC1–(PO2–
O5′)NUC2 (PhoX) from database dinucleotides having the
same C3′–O5′ distances than the one containing the wrong
distances for the O3′–P5′ bond. The strategy to graft the
PhoX is the same that the one used to replace the peptides
for the BackboneMove command: the wrong PhoX is ref-
erence to the x-axis by means of one translation and two
rotations and so the database-fragments, the lasts are ro-
tated around the axis till the best overlap (smallest RMSD)
beetwen the firsts nucleotides of the dinucleotide is found,
then we apply the timeline from the wrong bonded dinu-
cleotide to the database PhoX fragment in order to place it
back in the glued structure. This allows us to analyze the
flexibility of the docked fragments and the maximal longi-
tude of the dsDNA docked strands (Figure 7A). Once the
dsDNA strands are computed, protein backbone flexibil-
ity upon binding can be studied using the command Back-
boneMove. The command first evaluates the protein regions
with high free energy residues and replace them with geo-
metrically compatible pepX fragments using the same strat-
egy described in the fragment retrieval section above (allow-
ing more or less pep-mismatches with its computational per-
formance impact). Replacement is carried out from higher
to lower protein energy regions in a step-descendant man-
ner.

RESULTS

ModelXDB: Database genesis

To generate the ModelXDB database (Figure 1), we started
with 4300 DNA–protein X-ray complexes extracted from
the PDB. We filtered out any complexes which had low
resolution (worse than 3.4 Å), intercalating agents, struc-
tural defects, duplicated atoms, and/or only single-stranded
DNA. After filtering, we ended up with 2103 high quality
structures that were in silico digested to generate the Mod-
elXDB in four steps: (i) all atoms and their coordinates
were included in the database for further modeling pur-
poses; (ii) dsDNA fragments were broken into smaller frag-
ments of different lengths (4–8 bases, dnaXs), their coor-
dinates stored in the database, and nucleotide hybridization
partners (pair bases) found using the software x3DNA (37);
(iii) for every dsDNA fragment, we mined all the contacting
protein residues and retained all pepXs of 6–12 amino acids
and (iv) all combinations of interacting pepX and dnaX
fragments (in which at least one of the atoms was closer
than the threshold distance of 4.5 Å to another atom of
the second molecule) were stored in the database and linked
through their database identifiers. After these four steps, we
ended up with a database of peptides and short dsDNA
fragments containing ∼70 million (69 237 308) spatial rela-
tionships that could be used for structural interaction mod-
eling. We did not filter the training set by sequence similarity
because redundant sequences can possess different configu-
rations that can posteriorly be used to generate conforma-

tional flexibility. The database was optimized and indexed
for high-throughput querying.

The PADA1 fragment retrieval

The ModelXDB stores C�Nter–C�Cter distances for every
pepX fragment. This distance is used to retrieve pepX frag-
ment lengths with a given distance uncertainty (dubiety pa-
rameter). The PADA1 algorithm scans along a PDB input
protein and superimposes different pepX fragment lengths
as anchor segments to retrieve compatible 3D interactions
with dnaXs (see Materials and Methods). These pepX frag-
ments have slightly different backbone conformations that
can mimic flexibility upon binding, and are used to place
the corresponding interacting DNA fragment onto the in-
put protein (Figure 2A and B). In this manner, we are able
to generate dsDNA clouds containing compatible interact-
ing models (Figure 2D). These clouds can be used, as well,
for sidechain refinement using FoldX (see below).

Statistical knowledge based force field and filtering of spuri-
ous docking

To distinguish between true binders and false positives, it
is necessary to define a scoring function, or force field. For
this purpose, we considered only those structures of the in-
teracting fragment database which had a resolution equal
to or lower than 2.5 Å (1295 structures). For every pepX–
dnaX pair (intX), we measured the atomic all-to-all dis-
tances between the pepX protein fragment and the corre-
sponding dnaX fragment. Then, using the atomic distance
distributions (Supplementary Figure S1), we extracted the
statistical parameters (mean and standard deviation of the
distances) for all possible contacts between the protein and
dsDNA fragments included in the interaction database. All-
to-all distances between contacting nucleotide-amino acid
pairs were measured (a contact is considered when at least
one atom of the amino acid, including sidechains, is 4 Å or
less from any atom in the nucleotide). Statistics were com-
puted in two ways: (i) by not considering the nucleotide
identity (i.e. unbiased force field); and (ii) by considering
the identity of the nucleotide to which a DNA atom be-
longs (i.e., nucleotide-based force field) We used the un-
biased force field for removing DNA fragments from the
cloud, and the nucleotide-based one to search for the DNA
sequence that is recognized by the target protein. Using a
Boltzmann device (38) with the Kono (39) modification of
the Sippl method, we calculated the force field free ener-
gies for every pair of amino acid and DNA base. This was
computed using the protein (N, C�, C�, C, O) and DNA
(P, OP1, OP2, O5′, C5′, C4′, O4′, C3′, O3′, C2′, C1′) back-
bone atoms for residues that were closer than 4 Å. For both
force fields the identity of the amino acid is considered on
the probabilistic terms of the scoring function (see Materi-
als and Methods). The global energy of a dsDNA–protein
interaction was calculated by adding together all the atom-
atom partial free energies. As expected, the propensity of a
nucleotide to bind an amino acid is higher for lysine and
arginine (40) (Figure 3, upper panel).

Rather than evaluating all atoms in the input structure,
only protein backbone atoms and C�s that are up to 18
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Figure 1. Database and force field genesis: (A) Digestion of complexes into peptide–dsDNA (pepX–dnaX) fragment pairs as database records (intXs);
Poor quality structures (ie NMR, bad resolution) are filtered in this step. (B) Atomic distance measurement and force field generation.

Figure 2. Docking procedure: (A) a protein fragment (yellow) is used to query the pepX database for a compatible fragment; (B) the retrieved pepX
fragment (red) is superimposed on the yellow one placing the associated DNA fragment (dnaX, purple); (C) backbone dnaX atoms are evaluated with the
PADA1 force field; (D) an example with a histone octamer showing all dnaX docked models (cyan) fully covering the crystallographic DNA (red).

Å (the default pep-threshold parameter value) away from
the scanning peptide were considered in a first round. Then
a second round is performed with the selected fragments
in which all the backbone atoms of the input protein are
included. In both rounds, docking models are accepted if
their energy values are lower than those established by the
energy-threshold parameter (default −0.1 kcal/mol per nu-
cleotide). The force field energy is used to reduce the confor-
mational diversity and approach the crystallographic con-

formation by choosing the most favorable result for every
scanned peptide´s cluster of solutions (clusters have <1.5 Å
RMSD per residue). Since the forcefield propensities can be
loaded into memory the statistical evaluation can be per-
formed for large sets of docks in an ultra rapid manner.
By combining binding energy with the number of contact-
ing nucleotides, spurious dockings can be removed (Fig-
ure 3, and Supplementary Figures S4 and S5). Although
our database includes all combinations of dnaX fragment
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Figure 3. (Upper) DNA-amino acid binding propensities for all residues against any given nucleotide on the ModelXDB. (Lower) Examples (PDBs: 5b31,
5fur, 5ciy, top panel) of PADA1 predictions: fragment clouds (cyan) are filtered using the PADA1 force field going from a disperse cloud (medium panel)
to a refined cluster (bottom panel) containing the most energetically favorable docks. Crystallographic DNA in red.

lengths (4–8 amino acids) paired to pepX fragments lengths
(6 to 12 bases), we only used those pepX fragments of 6
amino acids with dnaX fragments of 4–6 bases. Once spu-
rious docks are filtered a knowledge based forcefield (like
FoldX, integrated within ModelX to PADA1, or others like
Rosseta) could be used in order to refine the dsDP interfaces
at sidechine level.

Validation

We used three different datasets for validation purposes: (i)
212 dsDP complexes released after 2016 and not included
in our database (Supplementary Table S2); (ii) a standard
benchmark validation set (41) of 47 proteins crystallized

with and without DNA (Supplementary Table S3) and (iii)
all available validation sets (42–46) mentioned in a recent
review (10) as a standard for benchmarking DNA docking
algorithms. We also include a small set of negative controls,
containing for example, YFP (PDB: 1kyp), a FAB region of
an antibody (PDB: 1bog), and serum albumin (PDB: 1n5u).
For all validations, we excluded the PDBs which belonged
to the evaluated protein.

Given that the computational cost of allowing six mis-
matches for the scan with peptides of length six (exhaustive
mode) is very expensive, we explored the validity of our pre-
dictions allowing for only 1–3 mismatches (pep-mismatches
parameter, see Methods). We used the crystallographic ds-
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DNA of the validation sets to calculate the RMSD of the
predicted docking fragments for each nucleotide using the
following atoms: C1′, C2′, C3′, O3′, C4′, O4′, C5′, O5′,
P, OP1, OP2. When allowing one and two sequence mis-
matches with the first validation set, we obtained a ROC
curve with an extremely low number of false positives (Fig-
ure 4A). However, upon using three mismatches, the num-
ber of false positives was increased (Figure 4A). Using the
number of contacts between the protein and the DNA, as
well as the interaction energy (Figure 5F), we were able to
filter out the majority of the false positives (Figure 4B).

For the 212 PDB validation set, only three crystal struc-
tures (PDBs: 5exh, 5j3e, and 5tct) did not yield docking re-
sults upon allowing 1–3 pep-mismatches. In the case of 5tct,
we recovered the binding zone within the five best dockings
after allowing for six mismatches and ranking the results
by energy and contacts (Figure 5D). In contrast, the 5exh
and 5j3e structures represent true, novel structural config-
urations not found in our database, the most probable rea-
son is the PDB incompleteness of the interaction landscape
containing no suitable IntXs to properly model the inter-
face present on those two complexes. Further versions of
DNAXB will be populated with more structures in order to
overcome this limitation.

With respect to the standard benchmark validation set,
our docking algorithm predicted the binding zone with an
RMSD of <1.8 Å per residue in 96% of the cases. As ex-
pected, no dockings were found for the set of proteins that
do not bind DNA when setting the pep-mismatches value
to 1. However, upon enabling PADA1 to allow up to six
mismatches, at least one dock was found for 141 of the
250 structures of the negative dataset. Nonetheless, these
docked DNA molecules were filtered out in all cases us-
ing the contacting nucleotides and computed energy filters
(Supplementary Figure S4).

PADA1 biological applications

In the previous section, we clearly demonstrate the high per-
formance of PADA1 using different validation sets. How-
ever, in all cases, we used structures crystallized with bound
DNA. For true biological applications, PADA1 should be
able to predict the DNA-binding region, and if possible, the
DNA sequences recognized by proteins crystallized without
DNA. Furthermore, it should be capable of predicting the
effect of protein point mutations on DNA structure and the
sequence recognized by the mutant protein. In the following
section, we will demonstrate the ability of PADA1 to tackle
both these applications using different examples.

To demonstrate that we can predict the DNA recognition
sequence of a protein that was crystallized without DNA,
we selected the TAL-effector family. This protein family
was chosen as a validation case because the DNA recog-
nition sequence can easily be inferred from its protein se-
quence (47). As shown in Figure 5A, we were able to find
not only the binding region but also the binding motif of
a TAL-effector protein (PDB: 4cj9 (48), Uniprot accession
E5AV36).

The UniProt entry P19436, is a non-specific HU histone-
like DNA-binding protein (49) that was partially crystal-
lized in its apo form (PDB: 5eka (50)). It is known that

residues R53 and K68 of this protein are involved in DNA
binding. In the crystal structure, only R53 is present as
residue K68 belongs to an unresolved region. This protein
binds DNA in a dimeric conformation but the 5eka struc-
ture presents only one monomer. Despite all these difficul-
ties (incomplete coverage, incomplete quaternary structure,
and non-specific binding nature of the protein), our algo-
rithm accurately predicts the binding region around residue
R53 (Figure 5B). This example highlights the benefits of a
peptide/DNA fragment-based prediction strategy over typ-
ical protein/DNA-based methods.

The 3D crystal structure of the DNA-directed RNA poly-
merase subunit alpha of Bacillus subtilis (UniProt P20429)
has been resolved (PDB: 3gfk (51)) without DNA. Simi-
larly, the Escherichia coli ortholog, which has the highest
sequence identity (only 42%, with a sequence coverage of
82%), has also had its crystal structure solved (PDB: 5ciz).
By executing PADA1 with parameters that allowed any pep-
tide sequence, we were able to identify the binding zone
(Figure 5E).

As another example, the human AND-1 adaptor pro-
tein has recently been crystallized (PDB: 5gvb (52)), and
based on its homology with yeast genes, it is thought that
the multi-helical domain acts as a DNA-binding groove.
Our predictions place several dnaX fragments in the multi-
helical domain, with an especially dense cloud (contain-
ing the best docks according to our filtering criteria, see
Supplementary Figure S4) in the zone between helices �2
and �4, exactly where the binding groove is reported to be
(Figure 5F). Accordingly, the non-DNA-binding domain
was predicted to have no docks. In addition, we tested the
ability of PADA1 to correctly predict not only the DNA-
binding region but also the DNA recognition sequence.
For this purpose, we chose a set of 13 crystal structures
from the validation set (Supplementary Tables S1 and S2)
which belonged to different proteins (distinct UniProt and
Pfam families), and subjected them to a sequence validation
pipeline (See methods). This test computed a total of 2348
docks (each six nucleotides in length) over the analyzed pro-
teins. The proportion of favorable and unfavorable contacts
in the dsDNA–protein interface is variable, but the best pre-
dicted sequence conserves at least 80% of the contacting nu-
cleotides of the crystal structure in most of the predictions
(∼80%). Furthermore, accuracy is reduced (<50% of con-
tacting nucleotides correctly predicted) in only less than 6%
of the docks (Figure 5C). Supplementary Table S1 contains
detailed information of these predictions.

When used in combination with FoldX, PADA1 has a
great potential for protein engineering. As an illustrative ex-
ample, we took a WT meganuclease (PDB: 4aqu) and en-
gineered (See methods) two mutated protein structures in-
silico: the Ini3-4 and Amel3-4 configurations (Figure 6). Is
known that these mutant proteins alter the DNA binding
conformation and bind to a DNA motif named XPC in a
more specific manner compared to the WT (53). We show
that by using PADA1, we can retrieve the conformation of
the mutated DNA, and correctly distinguish between exper-
imental specificities for the different DNA motifs against
the different engineered mutants. Algorithms to automa-
tize this process are included within the modelX toolsuite
(GlueDocks and BackboneMove commands; Figure 7A and
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Figure 4. Density maps and roc curves: (A) ROC curves for all predicted 4 base pair length dnaX fragments against the 212 validation complexes considering
an RMSD threshold per residue <1.8 Å allowing 1 (pink), 2 (purple), 3 (cyan) sequence mismatches in the search; (B) ROC curves for three mismatches
before (cyan) and after (red) filtering results by contacts and energy; (C) ROC space density map, X-axis represents RMSD per residue and Y-axis binding
energy for 1 mismatch predictions; (D) histogram with the frequency of cases for a given area under the curve or TP/FN rate for 1 (pink), 2 (purple), and
3 (blue) mismatches.

Materials and Methods) to model both the flexibility of the
protein and the dsDNA backbone flexibility (see Figure 7B
and Materials and Methods). These algorithms also anal-
yse the stability and change in specificity for the different
combinations in protein and DNA sequences by sidechain
refinement. For the mentioned WT meganuclease, a set of
strands with similar lengths than the crystallographic DNA
remained after the GlueDocks execution over an exahustive-
mode Docking (Figure 7A). The cleavage region for the
�glued� strands presents strong rigidity, while some flex-
ibility arises in the adjacent zones. This allows the user to
analyze the plausibility of binding for different DNA mo-
tifs subsequently moving the protein backbones in order to
induce a fit for the new complex using the BackboneMove
command (Figure 7B).

DISCUSSION

The validations performed in this study emphasize the high
accuracy of PADA1 in predicting DNA-binding regions.
This method is based on a novel built database that has

a wide coverage of backbone conformational spaces of
dsDNA–protein interfaces. The peptide-DNA scan basis
of this method enables the correct prediction of binding
regions even when crystallographic information is incom-
plete, such as for structures with unresolved protein re-
gions. From the statistics analysis of the validation sets,
we find that our predicted binding regions are mostly cor-
rect. Our method yields a very low rate of false positives
that only increases when the number of allowed peptide se-
quence mismatches is increased. Exhaustive-mode searches
can be filtered to reduce noisy predictions by incorporating
energy ranking, nucleotide contact number threshold, se-
quence similarity and/or protein family of the crystal struc-
ture where the docks come from.

The limitations of our method are, of course, related with
the coverage of the PDB over the structural space of DNA–
protein interactions. This coverage will continue to expand
however, as new structures are released. Nonetheless, after
applying exhaustive-mode search parameters, we still ob-
tained good results for novel protein configurations, as well
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Figure 5. Accuracy on the docking predictions: In all cases cyan colour is used for docked DNA and red for the crystallographic one. (A) TAL effector
(PDB: 4jc9), protein–DNA interface regions and nucleotide sequence specificity are correctly predicted. (B) Left and right: Cartoon and VdW surface
style for a dimeric structure with DNA (PDB: 1p71; Upper) and the related protein crystallized as a monomer missing part of the structure (PDB: 5eka;
lower). Predicted docked DNA in both structures in cyan. (C) histogram of sequence specificity accuracy over 13 proteins of different PFam family. (D)
Humanized yeast ACC carboxyltransferase (PDB: 5tct) binding region (zoomed) was found within the five best energy docks. (E) the DNA-directed RNA
polymerase subunit alpha of Bacillus subtilis (PDB: 3gfk, grey) superimposed to the overlapping domain of the E.coli ortholog with low sequence identity
(PDB: 5ciz chainB, magenta). (F) The helical bundle of AND-1 human protein (PDB: 5gvb) present a dense cloud of docked fragments (left side) in the
binding groove formed by the �2 and �4 helices. Within the six best energy docks for AND-1 human protein we found three docks (right side) placed
within the predicted binding region.

as for proteins with low sequence identity to the peptide
sequences in ModelXDB. Unfortunately however, for such
cases the docking quality is probably not good enough for
predicting DNA recognition sequences. The prediction abil-
ity for structurally unexplored interfaces is hard to measure
since this interaction space is sparse and depends on multi-
ple factors (54).

Protein sequence redundancy stemming from the in-silico
digestion of the complexes, is a valuable advantage that pro-
vides flexibility in the modelling of either the docked DNA
or the input protein, and as we have shown using a meganu-
clease, allows to model structural changes induced by mu-
tation.

The PADA1 force field, which was designed to permit
rapid evaluation of the docked DNA, is accurate enough to
achieve the desired goals. However, once the binding zone
and the dnaX cloud are determined, the necessity of a finer
force field emerges, depending on the specific case study. The

FoldX tool allows both sidechain refinement upon docking,
and greater precision with respect to other terms, such as
hydrogen bonds, solvation, � interactions, Van der Waals
forces, clashes, and electrostatics, which were not incorpo-
rated in the PADA1 force field. Through combining these
tools, we were able to reproduce, using only the structure
of the protein, the rational design of a meganuclease–dsDP
complex and the experimental specificities over different
DNA recognition sequences. We have also developed algo-
rithms to automatize this process and generate conforma-
tional diversity for the protein and DNA backbone. In fur-
ther versions of the software we plan to deepen this aspect
(i.e. automatically modelling all the backbone moves ener-
getically favorable for the docked dsDNA strands and com-
puting its PSSM upon DNA mutagenesis) by repairing the
sidechains (with FoldX RepairPDB command) and select-
ing those with best free energy values calculated with FoldX
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Figure 6. I-Crel Amel3-4 (PDB: 4aqu) engineered protein: (A) DNA Docked molecules obtained using PADA1 default parameters in blue, XPC DNA in
red. (B) Dockings obtained with relaxed parameters (dubiety = 0.5, cb-angle = 8◦). (C) The merged DNA fragment using RMSD criteria against XPC
DNA superimposed on the crystallographic DNA. (D) Energy variation for both Ini3-4 and Amel3-4 engineered proteins against the different DNAs. The
built models show the same specificity tendencies experimentally reported for crystallographic DNAs (WT and XPC), and the PADA1 built dock shows
that the full in-silico analysis reproduces the experimental affinity tendencies studied.

Figure 7. Modeling of flexibility upon binding. (A) DNA flexibility prediction: We first remove the Crystallographic DNA, then we do DNA Docking
and select the fragments that will be used for reconstructing the DNA molecule. Once the fragments are selected we join those that are compatible using
(GlueDocks; see Materials and Methods). As can be seen the cleavage site is quite rigid, while the DNA backbone becomes more flexible farther away from
it. This flexibility could be used to design protein mutants that will recognize other DNA sequences. (B) Protein flexibility prediction: the BackboneMove
command can be used to model protein backbone variability over the high free energy regions generated upon DNA flexibility prediction.
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Pssm command (Figure 7B). It is expected that it can lead
to engineer new interfaces and predict its specificities.

Last but not least, PADA1 was tested as an in silico pre-
dictor of DNA recognition sequences with accurate results.
The main limitation with respect to this, is the structural
coverage of DPIs. Currently, we can correctly predict the
dsDNA-binding region in 98% of the 212 DNA structures
of the validation dataset, and the sequence profile in 80%
of the cases. It is expected that the continual increase in the
number of available structures will enhance the accuracy of
our force field, and at the same time remove the necessity of
exhaustive searches. This in turn, will improve DNA posi-
tioning on the docking site, reduce the number of false pos-
itives, and decrease the computation time of our docking
algorithm.
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