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INTRODUCTION

Flax (Linum usitatissimum L.) is widely used to produce fiber and seed. Linseed is the richest
source of omega-3 fatty acids, which reduce the risk of cancer and cardiovascular diseases,
and lignans, which have antibacterial, antifungicide, antioxidant, and anticarcinogenic activities,
and also contains easily digestible proteins, dietary fibers, vitamins, and minerals (Muir and
Westcott, 2003; Goyal et al., 2014; Imran et al., 2015; Kezimana et al., 2018; Parikh et al., 2018;
Cullis, 2019; Mali et al., 2019). Linseed is used in environment-friendly paints and varnishes
and also in animal feed to obtain products with increased content of polyunsaturated fatty
acids (Kouba and Mourot, 2011; Singh et al., 2011; Goyal et al., 2014). Flax fiber is valuable
for the production of textile and composite materials (Costa et al., 2018; Baley et al., 2019). To
obtain high and stable yields of organic flax products, it is necessary to cultivate varieties that
are resistant to adverse environmental factors and possess a complex of economically valuable
traits. The use of traditional methods of breeding requires up to 12–15 years to create a new
cultivar. Biotechnologies, including genome editing and marker-assisted and genomic selection,
can significantly increase the accuracy and efficiency of the breeding process (Dwivedi et al., 2018;
Cobb et al., 2019; Gionfriddo et al., 2019; Mascher et al., 2019; Varshney et al., 2019). For the
development and introduction of biotechnologies into practice and breeding of improved cultivars
of L. usitatissimum, large-scale studies of genomes and transcriptomes on representative sets of flax
samples with diverse characteristics are needed.

The flax genome was sequenced and a significant number of transcriptomic studies were
performed (Wang et al., 2012; You et al., 2018; Cullis, 2019; Akhmetshina et al., 2020) that
laid the foundation for identification of genes that are responsible for valuable traits. Using
transcriptome sequencing, the search was performed for genes that are associated with the
following flax features:

1) Fiber characteristics in varieties Baihua (Long et al., 2012), Zhongya 2 (Guo et al., 2017), and
Mogilevsky (Gorshkov et al., 2017; Mokshina et al., 2017; Gorshkova et al., 2018);

2) Seed characteristics in varieties NEW and Shuangya 4 (Xie et al., 2019);
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3) Response to Fusarium oxysporum infection in varieties CDC
Bethune, Lutea (Galindo-Gonzalez and Deyholos, 2016),
Dakota, #3896, AP5, TOST (Dmitriev et al., 2017), and Nike
(Preisner et al., 2018);

4) Response to drought in variety T-397 (Dash et al., 2017);
5) Response to unfavorable soil pH and content of macro- and

microelements in varieties Heiya No.19 (Yu et al., 2014),
Hermes, TMP1919, Lira, Orshanskiy (Dmitriev et al., 2016a),
CDC Bethune, Stormont Cirrus (Dmitriev et al., 2016b),
Norlin, Mogilevsky (Dmitriev et al., 2019), and Agatha (Wu
et al., 2019).

However, in most studies, only one or two cultivars/lines were
used, but for the comparative analysis and search for a gene
function, much more genotypes with diverse agronomically
important traits should be investigated. In the present work, we
performed transcriptome sequencing of five different tissues of
six flax cultivars/lines with a diverse feature set.

MATERIALS AND METHODS

Plant Materials
Five flax cultivars (Alizee, Atlant, Diplomat, LM98, and
Universal) and one line (#3896) were chosen for the present study
based on their breeding value and differences in agronomically
important parameters such as productivity, fiber and seed
characteristics, and resistance to stresses. The characteristics of
examined genotypes are represented in Table 1 (Ryzhov et al.,
2012; Rozhmina and Loshakova, 2016; Pavlova et al., 2018;
Kolotov, 2020; Rozhmina et al., 2020). Seeds were obtained from
the Institute for Flax (Torzhok, Russia).

Flax seeds were sterilized in 1% sodium hypochlorite for
2min. Seedlings were grown in Petri dishes for 7 days, and
then roots and shoots were collected from five plants for each
cultivar/line and frozen in liquid nitrogen until further use. Also,
plants were grown in the greenhouse for 6 weeks to the flowering
stage, and after that, plant materials were collected from leaves,
stems (the upper and middle part of the plant), and flowers of
five plants for each cultivar/line and immediately frozen in liquid
nitrogen until further use. Samples were stored at −75◦C before
RNA extraction.

RNA Extraction and Transcriptome
Sequencing
RNAwas extracted from pools of five plants for each combination
of tissue-genotype. Plant materials were homogenized using
MagNA Lyser (Roche, Switzerland) in 600 µl of RNA lysis buffer
from a Quick-RNAMiniprep Kit (Zymo Research, United States)
with solid-glass beads (Sigma-Aldrich, United States) and
then RNA was extracted according to the Quick-RNA
Miniprep Kit protocol with in-column DNase I treatment.
Quality and concentration of RNA were evaluated using 2100
Bioanalyzer (Agilent Technologies, United States) and a Qubit
2.0 fluorometer (Thermo Fisher Scientific, United States). RIN
(RNA Integrity Number) values were more than 8 and close
between samples. NEBNext Poly(A) mRNA Magnetic Isolation
Module (New England Biolabs, United Kingdom) and NEBNext T
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Ultra II Directional RNA Library Prep Kit for Illumina (New
England Biolabs) were used for isolation of mRNA from 1 µg
of total RNA and cDNA library preparation according to the
manufacturer’s protocols. In total, 30 libraries were obtained—
from roots and shoots of seedlings and leaves, flowers, and
stems of adult plants for each of six flax cultivars/lines. The
quality of cDNA libraries was evaluated using 2100 Bioanalyzer
(Agilent Technologies)—they had an optimal length distribution
and were free of adapter dimers. After that, the libraries were
sequenced on NextSeq 500 (Illumina, United States) with a read
length of 86 bp.

Preliminary Data Analysis
Transcriptome sequencing of 30 cDNA libraries from five
different tissues (leaves, flowers, stems, seedling roots, and
seedling shoots) of six flax cultivars/lines (#3896, Alizee, Atlant,
Diplomat, LM98, andUniversal) was performed, and from 6 to 16
million reads were obtained for each library. The raw data were
deposited in the NCBI Sequence Read Archive (SRA) under the
BioProject accession number PRJNA634481.

Reads for each library were trimmed with Trimmomatic
(Bolger et al., 2014) and mapped to the NCBI representative L.
usitatissimum genome (GenBank assembly: GCA_000224295.2)
using STAR (Dobin et al., 2013), and plots were generated using
MultiQC (Ewels et al., 2016). For the majority of samples, more
than 87% of reads were uniquely mapped to the L. usitatissimum
genome and about 8–10% of reads were mapped to several loci
(Supplementary Data 1).

For evaluation of gene expression in examined flax tissues and
genotypes, reads mapped to the L. usitatissimum genome were
quantified using BEDTools (Quinlan and Hall, 2010). Expression
levels were quantified as read counts per million (CPM) for
200-bp intervals (in case of absence of reads aligned to the
particular region, intervals were increased). Obtained results are
represented in Supplementary Data 2. This table is a valuable
resource for differential expression analysis.

For visualization of differences between gene expression
profiles of flax tissues and genotypes, multidimensional scaling
(MDS) plots were generated using edgeR (Robinson et al., 2010).
MDS for 30 flax samples (five tissues of six genotypes) from
the current project are represented in Figure 1. As can be seen
from the figure, samples were grouped according to the type
of plant material: flowers and roots formed two distant groups,
while leaves, stems, and seedling shoots were close to each
other. Next, the present data were combined with the data
from four NCBI BioProjects, in which transcriptome sequencing
was performed for flax shoots (PRJNA229810), bast fiber and
xylem (PRJNA251268), roots (PRJNA412801), and developing
seeds (PRJNA539945). We used only forward reads and trimmed
them to 70 nucleotides to unify data and reduce the batch
effect. Grouping of expression data for five different research
projects, including the current one, was again consistent with the
type of plant material. Three groups were revealed: group 1—
flowers and seeds, group 2—roots, and group 3—leaves, stems,
and shoots (Supplementary Data 3). This points to the quality
of the obtained data and the possibility of a joint analysis of
expression data from several research projects that is important

for the identification of common regularities in gene expression
for particular flax organs and tissues.

Due to the sequencing of a representative set of tissues
and genotypes (five tissues of six cultivars/lines), the obtained
data are the basis for gene expression analysis in a particular
tissue that is important for understanding the key molecular
processes occurring in flax plants. Moreover, using these data,
the search for genes with the most significant differences in
expression between flax genotypes with diverse characteristics
can be performed that is necessary for revealing associations
between cultivar/line phenotype and gene expression profile. For
example, we compared gene expression levels between groups
of two linseed and four fiber flax genotypes under study. As
annotation is currently absent for the NCBI representative flax
genome or other flax genome assemblies (https://www.ncbi.nlm.
nih.gov/genome/browse/#!/eukaryotes/6953/), the representative
genome (GenBank assembly: GCA_000224295.2) was divided
into 1,000-bp intervals, the expression level was quantified
as CPM for each interval, and differential expression analysis
was performed using edgeR (Robinson et al., 2010). For
each tissue, genomic regions were sorted according to the
score calculated as –log(p-value)∗abs(logFC), where p-value was
estimated using quasi-likelihood methods (Lund et al., 2012)
and FC (fold change) was equal to the ratio of average CPM in
the fiber flax group to average CPM in the linseed group. The
highest number of differentially expressed transcripts between
linseed and fiber flax genotypes was revealed for seedling
shoots and leaves, while the lowest was revealed for flowers
(Supplementary Data 4–8).

Our data are also valuable for preliminary analysis of
the expression of particular genes, gene families, or genes
involved in the same pathway. This can be performed using
Supplementary Data 1—knowing the coordinates of particular
genes in the flax genome, one can find data on their
expression in different genotypes and tissues. An example of
such analysis is presented in our previous work on expression
of cinnamyl-alcohol dehydrogenase (CAD) encoding genes
in roots of flax cultivars/lines susceptible (TOST and AP5)
and resistant (#3896 and Dakota) to F. oxysporum infection
under control and the biotic stress conditions (Novakovskiy
et al., 2019). Basing on the data of the present study,
we performed a similar analysis of expression of 13 CAD
genes in five tissues of six examined cultivars/lines. The
results are represented in Supplementary Data 9. Tissue-specific
expression was identified—CAD2A, CAD4B, CAD5A, CAD5B,
and CAD6 genes were expressed predominantly in seedling
roots, while CAD3B was expressed in seedling shoots. Genotype-
specific expression profiles were also observed, especially for
CAD2B, CAD3A, CAD4A, CAD7, and CAD8 genes. It is worth
noting that the present data on expression profiles of CAD
genes in seedling roots are highly concordant with the results
of our aforementioned work (Novakovskiy et al., 2019). In both
studies, CAD6 had the highest expression within CAD genes
in roots free from F. oxysporum infection, and CAD3A had
the lowest one; expression levels of the other genes were also
very similar between studies, indicating the reproducibility of
our experiments.
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FIGURE 1 | Multidimensional scaling plot for gene expression profiles of five tissues (leaves, flowers, stems, seedling roots, and seedling shoots) of six flax

cultivars/lines (#3896, Alizee, Atlant, Diplomat, LM98, and Universal). Different tissues are marked with different colors: leaves—cyan, flowers—blue, stems—orange,

seedling roots—green, and seedling shoots—lime.

Our dataset can also be used to search for polymorphisms
in expressed regions of the genome within the studied flax
genotypes. As an example, variant calling was performed using
VarScan (Koboldt et al., 2012) for 13 CAD genes, and the
largest number (eight) of single-nucleotide polymorphisms
(SNPs) was identified for CAD6—positions CP027622.1
2160315, CP027622.1 2161357, CP027622.1 2161475,
CP027622.1 2161540, CP027622.1 2162146, CP027622.1
2162234, CP027622.1 2162246, and CP027622.1 2162410
according to the NCBI representative L. usitatissimum genome
GCA_000224295.2. Therefore, this gene may be of interest for
the DNA certification of flax cultivars.

The present dataset is especially valuable for revealing trends
of interest at the level of gene expression or DNA polymorphisms
in expressed genomic regions. However, the validation of the
identified trends on extended sample sets is necessary, and for
these purposes, other approaches, such as quantitative PCR and

targeted sequencing, are more appropriate. Besides, our data are
valuable for obtaining complete flax genome annotation, whose
absence for the NCBI representative L. usitatissimum genome
complicates molecular genetic studies of this crop.

CONCLUSIONS

The obtained data on 30 flax transcriptomes are the basis for the
evaluation of expression of genes of interest in particular tissues
and genotypes, search for genes with differential expression
between genotypes with diverse characteristics, identification
of polymorphisms in particular genes, and assessment of
genetic diversity. Such information is necessary to establish
associations between gene expression or DNA polymorphisms
and valuable traits. Thus, the present dataset opens up novel
opportunities for functional research, development of genome
editing, and marker-assisted and genomic breeding. It creates
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the necessary basis for the effective application of biotechnology
approaches on flax that will allow the breeding of cultivars with
desirable characteristics.
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