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We investigated the effects of Crotoxin (CTX), the main toxin of South American rattlesnake (Crotalus durissus terrificus) venom,
onWalker 256 tumor growth, the pain symptoms associated (hyperalgesia and allodynia), and participation of endogenous lipoxin
A
4
. Treatment with CTX (s.c.), daily, for 5 days reduced tumor growth at the 5th day after injection of Walker 256 carcinoma cells

into the plantar surface of adult rat hind paw. This observation was associated with inhibition of new blood vessel formation and
decrease in blood vessel diameter. The treatment with CTX raised plasma concentrations of lipoxin A

4
and its natural analogue 15-

epi-LXA
4
, an effect mediated by formyl peptide receptors (FPRs). In fact, the treatment with Boc-2, an inhibitor of FPRs, abolished

the increase in plasma levels of these mediators triggered by CTX. The blockage of these receptors also abolished the inhibitory
action of CTX on tumor growth and blood vessel formation and the decrease in blood vessel diameter. Together, the results herein
presented demonstrate that CTX increases plasma concentrations of lipoxin A

4
and 15-epi-LXA

4
, which might inhibit both tumor

growth and formation of new vessels via FPRs.

1. Introduction

Crotoxin (CTX) is themain toxic component of the venom of
the South American rattlesnake, Crotalus durissus terrificus
[1, 2]. The toxin is a heterodimeric complex consisting of
basic and toxic phospholipase A

2
and an acidic, nontoxic,

and nonenzymatic component named crotapotin. In addi-
tion to its toxic properties, several experimental observa-
tions indicated that CTX also has immunomodulatory, anti-
inflammatory, antimicrobial, analgesic, and antitumor effects

for review. Several studies have shown antitumor effects of
snake venoms or their isolated components [3–9]. CTX has
been shown to inhibit proliferation of various cell lines (in
vitro) and growth of various tumors in vivo [10]. As reported
by Cura and colleagues [11], CTX is toxic to several tumor
cell lines in vitro [7] and, in some of them, via epidermal
growth factor receptors [12]. The antitumoral effects of CTX
have also been reported in patients with lung and mammary
carcinoma [8]. Evidence has been accumulated that CTX
presents inhibitory effects on inflammatory response [13,
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14]. Inflammation is closely associated with cancer growth
[15]. In spite of the studies mentioned, the mechanisms
involved in the antitumor effects of the CTX still remain to
be determined.

Increased formation of prostaglandins PGE
2
and PGD

2

occurs in the beginning of an inflammatory response. After-
wards, the profile of lipid mediators activates the expression
of 15-LOX in leukocytes, which switches the mediator profile
of these cells from LTB

4
to lipoxins (LXs). Lipoxin A

4

(LXA
4
) and lipoxin B

4
(LXB
4
) are synthesized by tran-

scellular metabolism of AA due to an interaction among
neutrophils, endothelial cells, fibroblasts, and platelets local-
ized in the inflammatory exudate. Afterwards, the profile of
lipid mediators switches from proinflammatory eicosanoids
to lipoxins (LXs) that bind to G-protein-coupled LXA

4

receptor (formyl peptide receptor 2-FPR2/ALX) and trig-
gers the proinflammatory termination signal [16]. LXs are
produced from arachidonic acid via 5-lipoxygenase (5-LO)
and 15-lipoxygenase (15-LO) pathways [17]. Acetylation of
cyclooxygenase-2 (COX-2) by aspirin leads to biosynthesis
of 15-epi-lipoxins [18], the 15-epimers carbon of native LXs.
15-Epi-LXA

4
has more potent and longer lasting effects than

does the native LXA
4
that is less rapidly inactivated [19, 20],

for review.The native LXs and their stable analogues regulate
cell functions through activation of G-protein-coupled LXA

4

receptor (formyl peptide receptor, FPR2, also termed ALXR).
These receptors are expressed by neutrophils and monocytes
[21–24]. As FPRs are potentially important therapeutic tar-
gets, studies have been focused on identification of natural
and synthetic compounds having the ability to interact with
these receptors or interfere with the FRP-involved pathways
[25, 26].

LXs are involved in the development of pathological con-
ditions such as rheumatoid arthritis, asthma, sepsis, diabetes,
and tumor [16, 19, 27]. Administration of LXs and their
natural analogue 15-epi-LXA

4
causes inhibition of disease-

related inflammation and suppresses tumor growth and
cancer-associated pain [20, 28–31]. CTX treatment promotes
release of LXA

4
and 15-epi-LXA

4
in cultured macrophages

and macrophages cocultivated with tumor cells, which may
contribute to the antiproliferative activity of these leukocytes
[32].

We tested herein the hypothesis that CTX treatment
reduces tumor growth through formyl peptide receptors
(FPRs) and production of LXA

4
and 15-epi-LXA

4
. To investi-

gate this hypothesis, we used the Walker 256 tumor model
developed in the rat paw [33]. Injection of Walker 256
carcinoma cells results in the development of inflammation,
cell proliferation, and tumor tissue growth, angiogenesis [34]
and hyperalgesia [33].

Over 70% of anticancer compounds are either natural
products or natural product-derived compounds [35]. The
discovery of new drugs for different types of cancer is a hot
area of investigation since many tumors still remain unre-
sponsive to any existing treatment [36]. Evidence is presented
herein that Crotoxin may be a new therapeutic drug to be
clinically investigated so as to treat cancer. It has been shown
in clinical trials that the LXA

4
analogues present efficacy

and safety [37], expanding the pharmacological perspectives
herein proposed.

2. Material and Methods

2.1. Animals. Male Wistar rats, weighing between 160 and
180 g, were used throughout the study. The rats were housed
in an animal care facility and taken to the testing room 2
days before the experiment. Food and water were available ad
libitum. All experiments and assays were carried out in accor-
dance with the guidelines for the ethical use of conscious
animals in pain research, published by the International
Association for the Study of Pain [38]. The Institutional
Animal Care Committee of the Butantan Institute approved
the procedures used in this study (CEUAIB, protocol number
359/2006).

2.2. Crotoxin (CTX). CTX was obtained from lyophilised
venom of Crotalus durissus terrificus supplied by the Labora-
tory ofHerpetology, Butantan Institute, São Paulo, Brazil, and
maintained at −20∘C. Crude venom solution was subjected
to anion-exchange chromatography as previously described
by [39], using a Mono-Q HR 5/5 column in an FPLC system
(Pharmacia, Uppsala, Sweden). The fractions (1mL/min)
were eluted using a linear gradient of NaCl (0-1mol/L in
50mmol/L Tris-HCl, pH 7.0). Three peaks (p1, p2, and p3)
were obtained: p2 corresponded to the pure CTX fraction
(about 60% of the crude venom); peaks 1 and 3 included the
other CdtV toxins. Prior to pooling, the fractions containing
CTX were tested for homogeneity by nonreducing sodium
dodecyl sulphate-polyacrylamide gel electrophoresis (12.5%)
[40] and the phospholipase A

2
activity was assessed by a

colorimetric assay using a synthetic chromogenic substrate
[41].

2.3. Pharmacological Treatments. CTX was subcutaneously
injected (18 𝜇g per rat in 300 𝜇L of the saline), daily, for
5 days. The dose of CTX was based on previous work
[42] and did not cause clinical signs of Crotalus durissus
terrificus envenomation, such as neurotoxic faces, external
and internal ophthalmoplegia, and respiratory paralysis [43].
Other rats received LXA

4
(2.0 𝜇g per rat/300 𝜇L saline,

subcutaneously), based onVonDerWeid et al. [44].The same
volume of saline was subcutaneously administered to the
respective reference groups. To investigate the involvement
of FPRs in the CTX effect, rats were treated with Boc-2,
a selective FPRs antagonist, butoxycarbonyl-Phe-Leu-Phe-
Leu-Phe, from Phoenix Pharmaceutical Inc., USA, in a dose
of 5 𝜇g per rat, intraperitoneally, in 1mL saline containing
1% dimethyl sulfoxide [44]. Thirty minutes later, the animals
were subcutaneously injected with CTX or LXA

4
or saline, in

the same volume.The results were compared to two reference
groups; the first group received saline by the same route used
for tumor cell inoculation and the other received LXA

4
. On

the fifth day of the injection of tumor cells, the animals were
submitted to analysis of tumor growth through increase in
tumor volume, mechanical hyperalgesia and allodynia, in
addition to plasma collection for measurement of the LXA

4

and 15-epi-LXA
4
.
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2.4. Walker 256 Carcinoma Cell Inoculation. After 5 days
of intraperitoneal injection of Walker 256 carcinoma cells
(1 × 107/2mL), ascitic liquid from the peritoneal cavity was
collected to obtain fresh tumor cells and the percentage of
viable cells was determined by using 1% Trypan blue aqueous
solution in a Neubauer chamber. Cells were harvested and
a suspension of 107 cells per mL was obtained by dilution
with phosphate-buffered saline (PBS, pH 7.4). Antibiotic
(Benzylpenicillin, 120,000 units in 10mL of cell suspension,
Benzetacil; Eurofarma�, Brazil) was added to cell suspension
to avoid microbial contamination. Tumor cells (100 𝜇L) were
then subcutaneously injected into the plantar region of the rat
right hind paw; PBS (100 𝜇L) injection into the contralateral
hind pawwas used as reference for tumor growth assessment.
This was performed as described in our previous study
[33].

2.5. Tumor Growth Assessment. Tumor growth was assessed
with the aid of a pachymeter (Mitutoyo, Japan) or by
measurement of the volume increase (edema) of paws up to
the tibiotarsal articulation. The measurements were carried
out before the injection of tumor cells and PBS (in the
contralateral paw) and at chosen time intervals thereafter
according to Brigatte et al. [33]. The percentage of volume
increase was measured in each paw. The difference between
values obtained for both pawswas used as ameasure of edema
volume increase and so tumor growth.

2.6. Measurement of Plasma LXA
4
and 15-Epi-LXA

4
Levels.

On the fifth day of the experiment, after the last measurement
of the paw volume, the animals were anesthetized with
ketamine (100mg kg−1, 0.5mL/kg, Vetbrands Brasil Ltda.,
Brazil) and xylazine (10mg kg−1, 0.5mL/kg, Vetbrands Brasil
Ltda., Brazil), intraperitoneally injected, and blood samples
were obtained from the abdominal aorta in tubes containing
disodium salt of ethylene diamine tetra acetic acid (EDTA)
as anticoagulant. LXA

4
and 15-epi-LXA

4
were measured in

plasma by immunoenzymatic assays [32, 45] using specific
kits for each LX (Neogen, Lexington, KY, USA). Plasma
samples were acidified with 1NHCl to pH 3.4–3.6 and passed
slowly through an octadecylsilyl silica column (C18 Sep-Pak�
column, Waters� Corporation, USA), prewashed with 10mL
absolute ethanol and 10mL water. After activation of the
column with 10mL water, 2mL absolute ethanol, and 2mL
water again, the eicosanoids were eluted from the column
with 1mLwater, 1mL ether, and 2mLmethyl formate and the
samples dried under a stream of nitrogen. The sensitivity of
the assay was of 20 pg/mL.

2.7. Histopathological Analysis. The animals were euthanized
in a CO

2
chamber, on the fifth day after tumor cell injection.

The right hind paw was removed and fixed in 10% formalin.
Samples were embedded in paraffin, sectioned into 5 𝜇m
sections, and stained with monastral blue [46]. The number
and diameter of vessels were then determined. Micrographs
were taken in an Olympus BX 51 microscope (USA) and
measurements were carried out using the Axio Vision 4.8
program.
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Figure 1: Effect of CTXon edema induced byWalker 256 carcinoma
cell inoculation. Tumor cells (1 × 106 in 100 𝜇L) were subcutaneously
injected into the plantar region of the right hind paw of the rats.
CTX (18 𝜇g per rat in 300 𝜇L) or saline (vehicle control) was
s.c. administered daily, during 5 days (first injection on day 1,
immediately after tumor cell inoculation). The increase in paw
volume was determined in rat hind paws before and at different
times after cell inoculation. Edema is expressed as percentage of
volume increase in relation to the initial volume of the paw. Each
point represents the mean ± SEM of 5 rats. ∗𝑝 < 0.05, significantly
different from mean values for saline injected animals at fifth day
after cell injection.

2.8. Statistical Analysis. Statistical analysis of the differences
between groups was performed according to Glantz [47] by
using the GraphPad InStat software version 3.01 (GraphPad
Software Inc., San Diego, CA, USA). One-way ANOVA
followed by Bonferroni’s test was also used to prepare dose-
response curves for a single time point. 𝑝 < 0.05 was
considered for differences to be significant. The alpha level
(significance level related to the probability of rejecting a
true hypothesis) was set to 0.05. Significant differences were
then compared using Bonferroni’s test with a significance
coefficient of 0.05. The results are presented as mean values
± standard error of means.

3. Results

3.1. CTX Inhibited the Edema Induced by Inoculation ofWalker
256 Carcinoma Cells in the Plantar Region of the Rat Right
Hind Paw, Decreased Formation of New Blood Vessels, and
the Blood Vessel Diameters. The injection of tumor cells
caused a significant and progressive increase in paw volume
as compared to the values obtained before cell inoculation
(Figure 1). The edema was measurable already on the second
day (9%) after cell injection and reached up to 40% increase
on the fifth day (Figure 1). Daily subcutaneous administration
of CTX, for 5 days, caused significant decrease of paw volume
from the third day of tumor cell inoculation (third day: 49%;
fourth day: 30%; fifth day: 30%) (Figure 1). A representative
histological slide of a normal rat paw is shown in Brigatte
and colleague [33]. After 5 days of treatment with CTX,
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Figure 2: Effect of CTX on changes in number of vessels and vessel diameters induced by Walker 256 carcinoma cell inoculation. Tumor
cells (1 × 106 in 100 𝜇L) were subcutaneously injected into the plantar region of the right hind paw of the rats. CTX (18𝜇g per rat in 300 𝜇L)
or saline (vehicle control) was s.c. administered daily, during 5 days (first injection on day 1, immediately after tumor cell inoculation). (a)
The number of vessels and (b) vessel diameters (nm) were determined on the fifth day. (c) Representative histopathological slides of paws
injected with Walker 256 carcinoma cells of animals treated with saline (1 and 3) or CTX (2 and 4). Samples were obtained on the fifth day
of treatment and stained with monastral blue. (∗) The number of vessels. (→)The vessel diameter. (E), (D), and (H) represent epidermis,
dermis, and hypodermis, respectively. Detail of vessel diameters is indicated in (3) and (4) (400x). Each point represents the mean ± SEM of
5 rats. ∗𝑝 < 0.05, significantly different from mean values for saline injected rats at the fifth day after cell injection.

the number of vessels was significantly lowered (47%) as
compared to PBS treated animals (Figures 2(a), 2(c)(1), and
2(c)(2)). Also, vessel diameters (Figures 2(b) and 2(c)(3) and
2(c)(4)) were significantly smaller (37%) in CTX treated rats.

3.2. CTX Led to an Increase of LXA
4
and 15-Epi-LXA

4

Plasma Levels. Plasma LXA
4
concentration was assessed on

the fifth day of CTX treatment (Figure 3(a)). Treatment of
control (NT) rats with CTX induced a significant increase of

LXA
4
plasma levels (74%) when compared to saline treated

animals. Walker 256 tumor-bearing animals showed low
plasma concentrations of both LXA

4
and 15-epi-LXA

4
. The

treatment of tumor-bearing rats with the toxin, under the
same experimental conditions described above, induced an
increase of plasma levels of LXA

4
and 15-epi-LXA

4
(38%)

when compared to saline (Figure 3(a)). CTX induced a
significant increase in plasma concentration of the stable
analogue 15-epi-LXA

4
(by 1.65-fold) as compared to animals
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Figure 3: Effect of CTX on plasma levels of LXA
4
and 15-epi-LXA

4
in Walker 256 tumor-bearing rats. Not tumor-bearing (NT) or Walker

256 tumor-bearing rats were s.c. daily treated with saline (vehicle control) or CTX (18𝜇g per rat), during 5 days (first injection on day 1,
immediately after tumor cell inoculation or same volume of saline). Rats were also treated with Boc-2 (5𝜇g per rat /1mL, i.p.) or same
volume of saline, daily, during 5 days, 30 minutes before the s.c. injection of CTX or saline. On the fifth day of treatments, the animals were
anesthetized for the collection of blood and plasma was obtained to determine (a) LXA

4
or (b) 15-epi-LXA

4
levels. Each point represents the

mean ± SEM of 5 rats. ∗𝑝 < 0.05, significantly different from mean values for saline injected rats after cell injection. ∗∗𝑝 < 0.05, significantly
different from mean values for the Boc-2 + CTX group.

without tumor (NT) and injected with saline (Figure 3(b)).
Similar increase was observed in Walker 256 tumor-bearing
rats that received subcutaneous injection of the toxin (42%),
daily, for five days as compared to saline injected tumor-
bearing animals (Figure 3(b)).

3.3. Evidence That Formyl Peptide Receptors (FPRs) Are
Involved in the Reducing Effects of CTX on Tumor Growth and
Plasma Levels of LXA

4
and 15-Epi-LXA

4
. The treatment of

rats with no tumor (NT) with Boc-2 thirty minutes before
the subcutaneous injection of CTX blocked the increase in
plasma concentration of both LXA

4
and 15-epi-LXA

4
when

compared to treatment with saline. These results show that
the FPRs mediated the effects of CTX on production of
both lipid mediators. The Boc-2 per se did not cause marked
changes in plasma levels of LXA

4
and 15-epi-LXA

4
when

compared to saline injected rats (Figures 3(a) and 3(b)).
To evaluate the participation of LXA

4
and 15-epi-LXA

4
in

the antitumoral effects of CTX, Boc-2 was i.p. administered,
daily, 30 minutes before the subcutaneous injection of CTX
for 5 days, from the 1st day ofWalker 256 tumor cell injection.

The results showed that, on the fifth day of the tumor
inoculation, both CTX and LXA

4
(a FPRs agonist) inhibited

Walker 256 tumor growth (by 63% and 67%, resp.) (Figure 4).
Concomitantly, some animals received Boc-2 + saline or Boc-
2 + LXA

4
. It is noticeable that, on the 5th day of treatment,

Boc-2 completely abolished the reducing effect of the toxin
on tumor growth as compared to saline (Figure 4). The same
was observed for LXA

4
administration.

The pretreatment with Boc-2 also blocked the inhibitory
effect of CTX on formation of new vessels (Figure 5(a)). The
treatment with LXA

4
did not interfere with the formation of

vessels as compared to saline.On the other hand, the diameter
of the vessels was decreased by both CTX and LXA

4
and

this effect was totally abolished by Boc-2 (Figures 5(a) and
5(b)). Tissue histological slides of the paws (Figure 5(c)) were
obtained from NT animal (1) and Walker 256 tumor-bearing
rats treated with saline (2); CTX (3); LXA

4
(4); Boc-2 + saline

(5); Boc-2 + CTX (6); and Boc-2 + LXA
4
(7, 8).

Together, the data presented here suggest that the CTX
induced increased plasma levels of LXA

4
and its analogue

being probably released by leukocytes into the deep dermis
that migrated from the systemic circulation, which might
inhibit both tumor growth and formation of new vessels via
FPRs.This proposal is summarized schematically in Figure 6.

4. Discussion

Tumor growth induced by intraplantar inoculation ofWalker
256 carcinoma cells in rats was assessed by the increase in
volume of the glabrous region of the hind paw. The volume
of the cell inoculated paw started to increase on the second
day after inoculation, and thereafter it increased progressively
up to the fifth day as observed in our previous work [33].
The features of cancer pain symptoms (including hyperalgesia
and allodynia) and of tissue morphological changes observed
herein were also reported in our previous study [33].

CTX significantly inhibited tumor growth from the
second day and this inhibition remained until the fifth
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Figure 4: Effects of CTX and LXA
4
on tumor growth. Not tumor-

bearing (NT) or Walker 256 tumor-bearing rats were s.c. daily
treated with saline (vehicle control) or CTX (18 𝜇g per rat) or
LXA
4
(2.5 𝜇g per rat/1mL), during 5 days (first injection on day

1, immediately after tumor cell inoculation or same volume of
saline). Rats were also treated with Boc-2 (5𝜇g per rat/1mL, i.p.)
or the same volume of saline, daily, during 5 days, 30 minutes
before the s.c. injection of CTX or saline. On day 5 of treatments,
tumor growth was performed with aid of a micrometer, by volume
increase (edema) of paws up to the tibiotarsal articulation. Each
point represents the mean ± SEM of 5 rats. ∗𝑝 < 0.05, significantly
different from mean values for normal NT animals. ∗∗𝑝 < 0.05,
significantly different from mean values for rats injected with saline
or Boc-2.

day of study. This effect was accompanied by a decrease
in formation of new vessels and in the diameter of the
vessels, suggesting that CTX interferes with tumor growth by
impairing angiogenesis.

Recent results have shown that CTX inhibits proliferation
of human leukemic Jurkat T-cell line (Sandra Coccuzzo
Sampaio and Yara Cury, unpublished data) and LLC WRC
256 tumor cells (Odair Jorge Faiad and Sandra Coccuzzo
Sampaio, unpublished data). CTX also inhibits t.End.1 cell
function, indicating direct action of this toxin on endothelial
cells [48]. These observations are not due to alterations in
cell viability. In addition to this direct activity of the toxin
on tumor and endothelial cells, CTX raises the production
of reactive oxygen and nitrogen species and LXA

4
and its

analogue 15-epi-LXA
4
in macrophages cocultured with LLC

WRC 256 tumor cells, reducing tumor cell proliferation.
This inhibitory action is suppressed by blocking the formyl
peptide receptors using Boc-2 [32].

CTX significantly inhibited tumor growth from the sec-
ond day and this inhibition remained until the fifth day of
study.This effect was accompanied by a decrease in formation
of new vessels and in the diameter of the vessels, suggesting
that CTX inhibition of tumor growth involves impairment
in angiogenesis. Angiogenesis has been associated with the
development of several diseases such as rheumatoid arthritis,
psoriasis, and cancer [49]. Tumor growth depends on a

persistent neovascularization [50, 51] and is proportional
to the extent of angiogenesis. Inhibition of angiogenesis
causes tumor regression [52, 53]. Tumor angiogenesis is a
combination of angiogenesis and vasculogenesis and the
mainstay of tumor blood vessels derived from preexisting
ones, although the circulating endothelial precursor cells
contribute to the growth of endothelial cell mass [54]. Active
proliferation of tumor cells, which usually accompanies the
initial phase of tumor growth, is balanced by the cell death
caused by the withdrawal of blood supply to the tumor. Rapid
and exponential tumor growth requires neovascularization
whereas angiogenesis is paralleled to the process ofmetastasis
[55, 56]. We demonstrated in previous studies that CTX
inhibits secretory activity and endothelial cell function,
evidencing direct action of this toxin on endothelial cells [48].
In addition, macrophages treated with CTX inhibit in vitro
angiogenic events and the consequent formation of capillary
structures by endothelial cells in 3D matrix [57].

An inflammation state is established in association with
solid tumor growth [15]. Monocytes are recruited from
the systemic circulation into tumor tissue, in response to
chemokines secreted by tumor cells, and differentiate into
macrophages [58, 59]. Tumor-associated macrophages mod-
ulate tumor cell migration, extravasation, and also angiogen-
esis [60, 61]. Activated macrophages exert tumoricidal effect
by secreting molecules such as hydrogen peroxide (H

2
O
2
),

nitric oxide (NO), and LXs [20, 62–64].
Various leukocytes including monocytes, polymorpho-

nuclear cells, and macrophages secrete LXA
4
and 15-epi-

LXA
4
[20, 32, 62]. LXs are biosynthesised and rapidly inacti-

vated, whereas related compounds, such as 15-epi-LXA
4
, are

more stable [65]. Acetylation of cyclooxygenase-2 induced
by aspirin or other endogenous substrates (cytochrome p450
and reactive oxygen species) leads to stereoselective forma-
tion (40% R and 60% S form) of 15-epi-lipoxins that are more
potent and longer acting than the native 15-S containing LX
form [16, 18, 66]. Treatment with CTX caused a significant
increase in plasma concentrations of LXA

4
and its stable

analogue in both control and tumor-bearing rats. Similar
results were previously published [67, 68]. Despite the direct
actions of CTX on cells of the tumor microenvironment,
such as tumor and endothelial cells, production of LXA

4

and its analogue by macrophages might also be involved
in the inhibitory action of the toxin on tumor growth and
angiogenesis herein reported.

The actions of these lipid mediators were mediated
by FPRs since pretreatment with Boc-2, antagonist of the
FPR2/ALX, and FPR1 [67, 68] completely blocked it. Similar
observations have been previously published [67, 68].

Only CTX decreased the number of vessels whereas
both CTX and LXA

4
decreased vessel diameters. Chen and

colleagues [29] reported an inhibitory effect of LXA
4
and 15-

epi-LXA
4
on primary tumor growth. However, the analogue

was able to induce toxicity of tumor cells whereas LXA
4

did not cause antiproliferative effects [29]. CTX induced
formation of the analogue in large quantities, which probably
led to inhibition of angiogenesis and so tumor growth. The
inhibitory action of CTX and LXA

4
on paw volume increase,

observed at the fifth day after injection of tumor cells, was
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Figure 5: Effects of CTX and LXA
4
on formation and diameters of blood vessels. NT animals orWalker 256 tumor-bearing rats were s.c. daily

treated with saline (vehicle control) or CTX (18 𝜇g per rat) or LXA
4
(2.5 𝜇g per rat/1mL), during 5 days (first injection on day 1, immediately

after tumor cell inoculation or same volume of saline). Rats were also treated with Boc-2 (5𝜇g per rat/1mL, i.p.) or the same volume of saline
(control), daily, during 5 days, 30minutes before the s.c. injection of CTXor saline. On the fifth day of treatments, the animals were euthanized
to obtain the paws for histological analysis and determination of the (a) number of vessels and (b) vessel diameters. In (c), NT animal (1) and
Walker 256 tumor-bearing rats treated with saline (2); CTX (3); LXA

4
(4); Boc-2 + saline (5); Boc-2 + CTX (6); and Boc-2 + LXA

4
(7, 8). (∗)

Number of the vessels. The slides (E), (D), and (H) show epidermis, dermis, and hypodermis, respectively. Each point represents the mean ±
SEM of 5 rats. ∗𝑝 < 0.05 significantly different from mean values for NT rats. ∗∗𝑝 < 0.05, significantly different from mean values for saline
injected rats. #𝑝 < 0.05, significantly different from mean values for Boc-2 treated rats.
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Figure 6: Proposed scheme for CTX action onWalker 256 tumor growth suppression. Subcutaneous injection ofWalker 256 carcinoma cells
in the plantar region of the rat right hind paw promoted a marked infiltration of leukocytes into the deep dermis that migrated from the
systemic circulation. Five days after tumor cell injection, there was a marked proliferation of tumor cells. Monocyte chemotactic factors or
extracellularmatrix proteins are secreted by solid tumor, which attract and activatemacrophages. Animals treatedwithCTX showed increased
plasma levels of LXA

4
and its analogue being probably released by leukocytes (mainly macrophages but also neutrophils and monocytes).

The increased formation of LXA
4
and 15-epi-LXA

4
is accompanied by tumor growth reduction and a significant decrease in both number

and diameter of vessels and therefore pain attenuation. CTX actions require the participation of FPRs.

completely abolished by Boc-2. Lipoxins and their stable
analogues exert biological actions, such as anti-inflammatory
and antiangiogenic properties, by binding to FPRs and then
interfering with cell proliferation and tumor growth [31, 37,
69–71].

The reduction of tumor mass induced by treatment with
the toxin was associated with a decrease of the hyperalgesic
response (40%) (data not shown). This antinociceptive effect
of CTX was not mediated by opioids, since naloxone, a
nonspecific opioid receptor antagonist, did not modify it.
Evidence has been accumulated that LXs and their ana-
logues promote analgesic effects in bone cancer through
reduction in proinflammatory mediators [30]. Nogueira-
Neto and colleagues [72] showed that CTX induces a long-
lasting antinociceptive effect in neuropathic pain, induced
by transection of rat sciatic nerve, via central muscarinic,
𝛼-adrenergic, and serotonergic receptors. 5-Lipoxygenase-
derived lipid mediators are involved in the modulation of
this effect. Therefore, the analgesic effect observed on day 5

may be a result of both reduction of the tumor mass per se
and the analgesic activity described for LXs.This proposition
is reinforced by data demonstrating the ability of LXs to
modulate the events involved in tumor growth and cancer
pain [29–31].

In conclusion, CTX, the main neurotoxic component of
Crotalus durissus terrificus venom, reducedWalker 256 tumor
growth possibly due to an antiangiogenic effect. LXA

4
and 15-

epi-LXA
4
are involved in the antitumor effects of CTX. The

FPRs played a key role in the effect of the CTX on tumor
growth. These receptors mediated the increase in plasma
levels of LXA

4
and 15-epi-LXA

4
and also the actions of the

lipid mediators.

Additional Points

Highlights of this paper are as follows:
(i) Crotoxin, South American rattlesnake (Crotalus

durissus terrificus) venom.
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(ii) Antitumoral activity.

(iii) Mechanisms of action: plasma concentrations of
lipoxin A

4
and its natural analogue 15-epi-LXA

4
,

LXA
4
/15-epi-LXA

4
release; inhibition of both tumor

growth and formation of new vessels via FPRs.
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