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Despite the high global prevalence of chronic hepatitis B (CHB) infection, datasets covering the whole
. hepatitis B viral genome from large patient cohorts are lacking, greatly limiting our understanding of
. the viral genetic factors involved in this deadly disease. We performed deep sequencing of viral samples
. from patients chronically infected with HBV to investigate the association between viral genome
. variation and patients’ clinical characteristics. We discovered novel viral variants strongly associated
. with viral load and HBeAg status. Patients with viral variants C1817T and A1838G had viral loads nearly
. three orders of magnitude lower than patients without those variants. These patients consequently
. experienced earlier viral suppression while on treatment. Furthermore, we identified novel variants
. thateitherindependently or in combination with precore mutation G1896A were associated with the
. transition from HBeAg positive to the negative phase of infection. These observations are consistent
. with the hypothesis that mutation of the HBeAg open reading frame is an important factor driving CHB
patient’s HBeAg status. This analysis provides a detailed picture of HBV genetic variation in the largest
: patient cohort to date and highlights the diversity of plausible molecular mechanisms through which
. viral variation affects clinical phenotype.

Chronic hepatitis B virus (HBV) infection is a significant public health burden with over 290 million chronically
* infected individuals worldwide"*. Although effective vaccines now exist to prevent HBV infection, most cases in
. highly endemic areas are the result of perinatal transmission leading to chronic infection, for which there is no
cure.

Current clinical practice guidelines of the European Association for the Study of the Liver (EASL) recognize
five phases of HBV infection determined by a combination of clinical factors such as the viral load (serum levels
of HBV DNA), the presence of viral hepatitis B e antigen (HBeAg), hepatitis B s antigen (HBsAg) levels, alanine
aminotransferase (ALT) levels, and the stage of liver fibrosis’. These clinical factors are well known to be pre-
dictive of progression to cirrhosis, hepatocellular carcinoma, and other liver-related complications, including
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HBeAg Negative | HBeAg Positive

Clinical characteristics N =490 (33%) N=977 (67%)

Age 44.90+/—-0.50 36.89+/—0.36

Male 314 (64%) 616 (63%)
Gender

Female 176 (36%) 361 (37%)

White 138 (28%) 174 (18%)

Asian 343 (70%) 788 (81%)
Race Black 5(1%) 8 (1%)

Pacific Islander 3(1%) 3(0%)

Other 1(0%) 4(0%)

A 27 (6%) 71 (7%)

B 119 (24%) 166 (17%)

C 190 (39%) 526 (54%)
Genotype

D 150 (31%) 206 (21%)

E 4(1%) 3 (0%)

F 0(0%) 5 (1%)

HBV DNA [log,, IU/mL] | 5.934/—0.06 7.71+/—0.04

HBsAg [log10 IU/mL] 3.40+/—-0.03 4.104/—-0.02

ALT [U/L] 101.65+/—5.46 120.95+/—3.64

Table 1. Clinical characteristics of patients included in this study.

mortality*®. Since the HBV genome is the blueprint for the viral interaction with the human host, understanding
what genetic factors of the virus are correlated with these clinical parameters is essential for elucidating the molec-
ular mechanisms of the disease progression. Previous studies investigating associations between viral genetic
variants and patient clinical characteristics were largely restricted to the core promoter and precore regions of the
virus or sequenced only a small sample of viral clones per patient’. We undertook a more comprehensive analysis
of associations between HBV single nucleotide variants and patient clinical characteristics by looking at the whole
viral genome across a large patient cohort.

Results
Study populations and sample description. We performed an ultra-deep (average ~9,000x coverage)
whole HBV genome sequencing of 1467 patients (1102 in discovery and 365 in validation cohort) chronically
infected with HBV at baseline. The patient population contained HBV genotypes A (N=98), B (N=285), C
(N=716), D (N=356), E (N=7), and F (N =5) with 977 HBeAg-positive and 490 HBeAg-negative patients
(Table 1).

Genetic determinants of viral load. Across the viral genome, the most significant associations were
observed between the viral load and two non-synonymous variants C1817T (HBc gene Q > STOP; HBx
gene C > C; likelihood ratio test [LRT] p=1.7 x 107, Fig. 1a) and A1838G (HBc gene I > V; HBx gene:
STOP > STOP; LRT p=1.3 x 10781, Fig. 1a). It is well known that the transition from HBeAg positive to negative
phase of HBV infection is generally marked by a reduction in viral replication and viral load!*~'*. In order to
control for this confounding effect, patients’ HBeAg status was included as a covariate in our model during test-
ing. Regardless of HBeAg status, however, C1817T and A1838G were both highly associated with viral load. The
intra-patient frequency distribution of both variants across the patient cohort revealed a bimodal distribution,
broadly dividing patients into low and high variant intra-patient frequency groups based on a naturally observed
10% variant frequency cutoff (Supplementary Fig. 1). At this cutoff patients with high frequency of C1817T and
A1838G had median viral loads nearly three orders of magnitude lower (reduction by 2.8 log,,IU/mL of serum
HBV DNA) than patients without or with low frequency of these variants (Wilcoxon rank sum test, p <1072,
Fig. 1b and Supplementary Fig. 2; see Supplemental Table 1 for mutation prevalence among HBV genotypes). To
ensure that this observation was not sensitive to the naturally observed frequency cutoff, we performed identi-
cal comparisons grouping patients across a range of cutoffs (5-20%) all of which led to equivalent conclusions
(Supplemental Table 2). As a result of lower viral load, patients with high frequency of C1817T and A1838G
experienced earlier viral suppression while on treatment (LRT p < 1.0 X 10~ for weeks 4, 8, 12, 24, and 48). Both
C1817T and A1838G associations were validated in an independent patient cohort (N =365; LRT p=1.2 x 1077
and p < 5.2 x 1071, respectively; Supplementary Fig. 3). Furthermore, the suppressive effects of these variants on
viral load were experimentally confirmed in a transient transfection system (Supplementary Fig. 4).

Although we identified C1817T association with viral load while controlling for HBeAg status, our find-
ings do not exclude the possibility that this variant could have pleiotropic effects on multiple clinical factors.
In fact, experimental evidence indicates that mutating the second precore codon to a stop codon results in the
elimination of HBeAg expression'®. HBeAg is the product of precore mRNA which nearly completely overlaps
pregenomic (pg) RNAY, suggesting an effect of C1817T on both the precore mRNA and pgRNA transcription.
Indeed, C1817T is additionally associated with HBeAg status in our data as well (LRT p=2.8 x 107'2).
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Figure 1. HBV variants associated with viral load. (a) Manhattan plot showing association (Likelihood Ratio
Test p value, see methods) between HBV variants at a given genomic position and patient’s viral load (serum
HBYV DNA levels). Schematic below x axis represents HBV genome structure. P — polymerase, S - surface
protein, C - core protein, pC - pre-core region, X - HBx protein. Bonferroni correction leads to a significance
threshold of approximately 1.6 x 10~ indicated by red dashed line. (b) Patients with high C1817T and A1838G
variant frequency (based on 10% cutoff, see methods) had significantly lower HBV DNA levels. Wilcoxon rank
sum test: *p < 0.05; **p < 0.01; ***p < 0.001.

Aside from C1817T and A1838G variants, it is worth mentioning that C1653T, G1896A, and G1899A dis-
played the next most significant association with viral load in the discovery patient cohort (LRT p=6 x 1078,
p=6.7x 1078, and p=2.3 x 1077, respectively). Although their associations with viral load did not reach strin-
gent p value cutoff (p < 1.6 x 107°) in the validation cohort, their trending p values warrant future confirmation.
Earlier studies suggest that these variants impact viral replication process via different molecular mechanisms.
Specifically, C1653T alters the binding site of the CAAT enhancer-binding protein of the alpha-box within
the HBV enhancer II region'®, which is known to transcriptionally regulate the pgRNA. Variants G1896A
and G1899A, on the other hand, impact the base pairing of the stem structure within the epsilon region of the
pgRNA!619-21 affecting the secondary RNA structure and consequently the encapsidation of the pgRNA, a crucial
step prior to the generation of the rcDNA.

Viral variants associated with patient HBeAg status. The next clinical phenotype we found to be
strongly associated with certain HBV variants was patient HBeAg status. The variant with the strongest associa-
tion was G1896A (LRT; p=5.43 x 10~%, Fig. 2a). Aside from its previously mentioned role in the epsilon region
of the pgRNA, G1896A introduces a stop codon in the precore region abolishing HBeAg production'*-'*. The
confirmation of this well-known mutation validates our approach. More importantly, we found that G1896A is
not a necessary variant determining patient’s HBeAg status. Despite deep sequencing coverage at the G1896A
locus (median gy = 8949), a substantial portion of 24% (22% excluding HBV genotype A, see Discussion) of
HBeAg-negative patients had undetectable frequency of G1896A variant (Fig. 2b).

Our unbiased approach led us to the discovery of additional variants highly associated with patient’s HBeAg
status: G1899A, A1838G, T2045A, G2345A, G2352A, T2441C, A2189C, T2443C, C1962A, G2237C, and others
(LRT; p<9.55x 10713 Fig. 2b,¢; see Supplementary Table 3 and Fig. 5). To further evaluate the relevance of
G1896A in conjunction with other variants in determining patient HBeAg status, we built several classification
models to assess the collective predictive power and rank the significance of each variant. In fact, a classification
model based solely on G1896A frequency attains only a relatively modest performance predicting HBeAg status
with a low true negative rate (Specificity =0.60, AUC=0.81). This observation is largely explained by the afore-
mentioned fact that 24% of HBeAg-negative patients lacked G1896A whereas 7.3% of HBeAg-positive patients
had G1896A at higher than 0.66 in frequency (Fig. 2b).

Next, we assessed the predictive power of additional variants by building a random-forest classifier using
a total of 37 significant variants, including G1896A (see methods for viral variant selection). We found that
inclusion of additional variants yields a significantly better classification performance (specificity = 0.89, accu-
racy = 0.92, precision = 0.95, sensitivity = 0.93, AUC = 0.96, Fig. 2¢,d). To address potential overfitting issues, this
classification model was applied to the independent validation patient cohort and yielded a comparable perfor-
mance (specificity = 0.97, accuracy = 0.93, precision = 0.95, sensitivity = 0.87, AUC =0.92). Although G1896A
frequently disrupts the production of HBeAg via the introduction of a premature stop codon, other mutations are
likely to achieve a similar clinical effect via different molecular means.

In order to further understand the potential functional impacts of these variants on HBeAg status, we overlaid
these variants onto the HBeAg 3D crystal structure®” (Fig. 3). The location of these variants suggests potential
disruption of the HBeAg dimer. For example, variant G1899A induces Gly to Asp change (Gly/Asp29) in a loop
at the dimer interface interacting with the same residue from the other dimer at a distance of ~6 A. Mutation to
a bigger and acidic aspartate likely induces charge-charge repulsion resulting in destabilization of the observed
dimer form. Variant G2237C corresponds to Glu/GIn142 located at the end of an a-helix, forming a strong
salt-bridge interaction with Argl41 and stabilizing the domain structure in this region. This mutation likely dest-
abilizes this strong interaction leading to structural defects. While the association between G1896A and patient
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Figure 2. HBV variants associated with patient’s HBeAg status. (a) Manhattan plot showing an association
(Likelihood Ratio Test p value, see methods) between HBV variants at a given genomic position and patient’s
HBeAg status. Bonferroni correction results in a significance threshold of approximately 1.6 x 10 indicated by the
red dashed line. See Supplementary Table 3 for a detailed list of variants associated with HBeAg status. Schematic
below x axis represents HBV genome structure. P — polymerase, S - surface protein, C - core protein, pC - pre-
core region, X — HBx protein. (b) Heatmap of HBV variants associated with HBeAg status and detected across
1102 patients of the discovery cohort. The 37 variants selected for classification modeling are displayed. The top
row indicates patient’s HBeAg status. Columns (patients, N =1102) are ordered by HBeAg status and by G1896A
frequency. Rows (HBV variants) are ordered given variant’s genome position. Black box highlights HBeAg negative
patients without detectable viral G1896A variant. The green box highlights HBeAg positive patients with a high
frequency of viral G1896A variant. (c) Mean decrease in Gini index, reflecting a relative importance of a variant
within a HBeAg status classifier model, is shown for top 20 variants. See Supplementary Table 3 for a detailed list of
variants used in the model and their mean decrease in Gini index. (d) ROC and AUC from random forest model
classifying patient'’s HBeAg status within the discovery patient cohort (N=1102).

HBeAg status is highly significant, the presence of G1896A alone cannot completely explain patient HBeAg sta-
tus. Our data therefore suggest that, in the absence of G1896A, combinations of other variants are likely interfer-
ing with HBeAg production or protein structure resulting in HBeAg negative phenotype.

Association of other clinical characteristics with viral variants. We also investigated possible asso-
ciations between HBV variants and HBsAg and ALT levels, fibrosis, and a loss of HBsAg. We either did not find a
strong association for these clinical factors in the discovery patient set or the initial association was not validated
in the independent cohort.

Discussion
This analysis, which systematically inspected the whole HBV genome for variants in a large patient population,
identified novel HBV genetic factors of viral load, which is one of the strongest independent risk predictors for
disease progression, cirrhosis, and increased mortality from HCC and chronic liver disease**-*. Interventional
studies demonstrated that reduction of the viral load strongly correlated with an improvement in liver histol-
0gy?**1-3. Our data show that increased frequency of viral variants C1817T and A1838G were associated with
significantly lower serum levels of HBV DNA at baseline.

Due to the extremely compact and functionally overlapping architecture of the HBV genome, it is challenging
to determine the precise mechanism of action for these variants. Some clues can be taken from an elegant study
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Figure 3. HBeAg dimer structure. Two views of the HBeAg dimer structure (PDB: 3V6Z) with one monomer
in teal surface representation and the other in green cartoon representation. Shown is a subset of HBV variants
labeled by HBV genome position. The four HBeAg residues harboring 1896, 1899, 2151, and 2159 variants are

at the dimer interface and are colored in red; six HBeAg residues harboring 1961/1962, 2045, 2063, 2139, 2189,
and 2237 variants are within intra-dimer interaction region and are colored in orange.

by Lewellyn and Loeb** who identified cis-acting sequences contributing to the template switching during the
plus-strand DNA synthesis of HBV. In particular, h3E and hM regions are in close proximity with each other and
facilitate primer translocation and circularization of relaxed-circular (rc) DNA, an essential step of viral replica-
tion. The A1838G variant is located within this h3E region where nucleotide substitutions in the in vitro model
resulted in a significant decrease in the production of rcDNA'. These experimental results are in keeping with
our observation that patients carrying this variant in the h3E region display significantly reduced viral load when
compared to wildtype.

The C1817T variant lies in the second codon of precore inducing a stop codon. Coincidentally, this variant
also resides directly upstream of the pgRNA which is a precursor to the HBV rcDNA. Given its proximity to the
transcription start site, we hypothesize that C1817T affects the transcriptional regulation of pgRNA leading to the
reduction of the viral load. Our association findings and this experimental evidence suggest these two variants
likely utilize two different molecular mechanisms through which they negatively impact viral load - modification
of h3E region involved in plus-strand DNA synthesis and a regulatory effect on pgRNA transcription.

Although patients with high frequency of C1817T and A1838G variants experienced earlier viral suppression
while on treatment, given the effectiveness of the latest reverse transcriptase inhibitors, the difference in viral
load reduction diminishes after 48 weeks. We believe that monitoring of these specific variants in clinical trials
investigating the efficacy of drugs with other mechanisms of action (such as Toll-Like Receptor Agonists, immune
checkpoint inhibitors, therapeutic vaccines, capsid/core inhibitors, etc.) may be more relevant to clinical practice.

Next, our data is consistent with the hypothesis that change in patient’s HBeAg status is primarily a
mutation-driven process. Whether the HBeAg mutations are driven by the error-prone HBV polymerase or by
the host innate immune system through Apolipoprotein B mRNA Editing Catalytic Polypeptide-like gene fam-
ily (APOBEC), for example, the integrity of the HBeAg coding sequence seems to be the determining factor.
Although G1896A had the most significant association with HBeAg status, we identified other variants that were
important for understanding a patient’s HBeAg status. While G1896A disrupts the production of HBeAg via
a premature stop codon in the precore region, other variants likely inhibit dimerization or protein folding of
HBeAg. This observation further highlights the intriguing diversity of the molecular mechanisms through which
viral variants affect a specific clinical phenotype. It is worth mentioning that G1896A variants in HBV genotype
A and some genotype C strains are rare due to genotype-specific constraints in the base-pairing of the pgRNA
secondary structure?**® and other mutations become solely responsible for the disruption of HBeAg production.
Previous studies described additional variants in the core promoter including C1653T, T1753C, A1762T, and
G1764A and their correlation with the downregulation of precore mRNA?*"7. The reported clinical impact of
these variants entailed associations with HBeAg status; however, these connections have not always been consist-
ent across all studies®**-*%. While our study did not identify any significant association with A1762T and G1764A,
we found T1753C to be strongly associated with HBeAg status in our dataset (Supplementary Table 2). C1653T
exhibited only marginal signal with viral load.

HBsAg is a hallmark serological marker of HBV infection and its reduction to undetectable levels along with
patient’s development of anti-HBsAg antibodies (HBsAg seroconversion) is clinically considered a functional
cure. Uncovering viral variants associated with HBsAg levels would be of tremendous interest to both scientists
and clinicians, however, we did not observe any consistent associations. This finding is in line with clinical obser-
vations that it is very challenging to lower serum levels of HBsAg despite successful nucleoside inhibition of viral
replication. One hypothesis would be that integrated HBV DNA significantly contributes to the serum levels of
HBsAg, as has been shown in chimpanzees**, which would confound any possible association with viral variation.

This work adds to the current knowledge of associations between viral genetic factors and patient clinical
characteristics. Future employment of long-read technology capable of spanning the entire ~3.2Kb HBV genome
could help us further resolve mutation linkage and give us insights into the joint effect of multiple variants.

SCIENTIFICREPORTS|  (2079) 9:10529 | https://doi.org/10.1038/s41598-019-46609-7 5


https://doi.org/10.1038/s41598-019-46609-7

www.nature.com/scientificreports/

As this study examined associations between viral variation and clinical parameters, future investigations com-
bining human genetic variations might provide additional perspective on viral-human genetic interaction and
co-evolutions?®*. In summary, our data not only identifies novel variants associated with major clinical factors
but will also serve as a resource to the research and medical community where novel treatment strategies (e.g.
development of HBV surface/capsid inhibitors and DNA editing approaches) depend on the understanding of
viral sequence variation across global patient cohorts.

Materials and Methods

Ethics statement and patient samples. Baseline serum samples analyzed in this study came from
1102 patients enrolled in two global phase 3 studies of tenofovir alafenamide (TAF) versus tenofovir disoproxil
fumarate (TDF) for the treatment of HBeAg-negative and -positive chronic hepatitis B (GS-US-320-0108 and
GS-US-320-0110) and 365 patients enrolled in GS-US-174-0149 clinical trial, evaluating TDF and peg-inter-
feron alpha-2a combination therapy in treatment-naive patients chronically infected with HBV. Patient samples
that were part of this analysis were collected from 21 countries (Australia, Canada, France, Germany, Greece,
Hong Kong, India, Italy, Japan, Netherlands, New Zealand, Poland, Romania, Russia, Singapore, South Korea,
Spain, Taiwan, Turkey, United Kingdom, and United States). All patients signed an informed consent form prior
to screening and in accordance with local regulatory and ethics committee requirements. Experimental pro-
tocol in these trials was approved by Gilead Sciences and all local regulatory agencies (see ClinicalTrials.gov:
NCT01277601, NCT01940341, and NCT01940471 for trials GS-US-174-0149, GS-US-320-0108, and GS-US-
320-0110, respectively).

HBV genome sequencing and mapping. DNA isolation was performed using Qiagen MinElute kit
for serum samples with viral load <100,000 IU/mL and Roche MagNA Pure robot 32 for samples with viral
loads > 100,000 1U/ml. HBV whole genome was amplified following Gunther et al.**. Whole genome HBV ampli-
cons were sequenced on Illumina MiSeq with 150 bp paired-end reads. Low quality bases (Q < 20) at 5’ and 3’ of
each read were trimmed with Trimmomatic (v0.35) and reads shorter than 50 bp were removed. Subsequently,
paired reads were merged based on overlapping regions and sequencing error correction was performed using
PEAR (v0.9.6). Unmerged reads were discarded. Read mapping was performed with BWA (0.7.9a) and the refer-
ence genome for each sample was chosen from HBVdb.ibcp.fr*® given patient’s genotype, which was determined
via laboratory genotyping assay. Accession numbers: genotype A —- EU054331, genotype B - AB219428, genotype
C - GQ924620, genotype D - FJ904433. It is important to note that these genotype specific reference sequences
were only used to facilitate sequence alignment and were not used for variant calling. Therefore the selection of
specific HBV reference sequences does not impact what constitutes a reference or variant allele (see Variant call-
ing and calculating wildtype frequency section for more details).

Variant calling and calculating wildtype frequency. Because collapsing viral genomes within each
patient into a single viral consensus sequence will remove potentially valuable genetic information, we calcu-
lated wildtype frequency for each viral genome position and for each patient. Since several HBV genotypes can
be genetically more than ~10% divergent, determining wildtype allele across all genotypes is not plausible and,
furthermore, may also remove information for loci with more than two alleles. We therefore calculated wildtype
frequency by calling variants from a genotype consensus generated from across our HBeAg positive patient pop-
ulation. This approach also partially controls for genotype specific effects during association testing. We chose
HBeAg positive patients for genotype consensus reconstruction because this disease stage represents an earlier
phase of infection. After read mapping, we generated primary consensus sequence (based on highest allele fre-
quency) with custom scripts for each HBeAg positive patient. Primary consensus sequences were pooled given
the HBV genotype determined from clinical assay and for each genotype we generated a secondary consensus.
Because the depth of coverage of our sequencing experiments was very high (often exceeding 9000x coverage)
across large patient cohort (977 HBeAg positive patients), the primary and secondary consensus call could always
be made implementing the majority rule since no two variants within a patient or across patients had exactly
the same frequency. Using an appropriate genotype specific secondary consensus, we called variants for each
patient (both HBeAg positive and negative) using samtools mpileup® (version 1.3). The parameters for base pair
and mapping quality were -Q 20 -q 20 -d 50000 and variants were subsequently filtered with varscan®! (version
2.3.9) package given parameters for minimum number of reads, minimum frequency, and minimum p value (-
min-reads2 5-min-var-freq. 0.02-p-value 0.1-min-coverage 100-min-avg-qual 25). We further removed variants
with a strand bias greater than 5. Assessing sequencing benchmarks from control plasmids and experimenting
with minimum variant frequency cutoffs, we applied a minimum variant frequency cutoff of 2% to eliminate any
background noise introduced via PCR and sequencing errors.

Calculating association between viral variants and clinical traits. Associations between viral var-
iants (viral wildtype frequency) and patient’s clinical variables were analyzed using Generalized Linear Models
(GLM) while adjusting for appropriate co-factors. Specifically, for each response variable tested, we compared
m, (model without HBV variant frequency co-factor) with m, (model with HBV variant frequency co-factor).
Likelihood Ratio Test between m; and m, was performed to assess whether addition of HBV variant frequency
significantly improved model fit. Models of clinical traits such as ALT, HBsAg levels, and HBV DNA levels were
adjusted for HBV genotype, gender, age, race, and HBeAg status. Models of HBsAg and HBV DNA treatment
response were adjusted for HBV genotype, gender, race, age, HBeAg status, treatment arm, and treatment expe-
rience. Model of HBeAg status was adjusted for HBV genotype, gender, race, and age. Models of HBeAg and
HBsAg loss were adjusted for HBV genotype, gender, race, age, baseline levels of HBV DNA and HBsAg, treat-
ment arm, and treatment experience. Multiple testing correction via Bonferroni method led to a significance
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threshold of approximately 1.6 x 1075. All modeling was performed independently on discovery and validation
sets of patients. Associations significant in both cohorts are reported here and became candidates for further
exploration.

Predictive modeling of HBeAg status. To investigate how well HBV variants can predict patient'’s HBeAg
status, we built a random forest classification model. Because the number of features (N =2281) greatly exceeded
the number of patients (N =1102) in the discovery cohort, we performed a feature selection assisted with Elastic
Net method*2. Specifically, we combined top 10 variants individually found to be associated with HBeAg status
with variants selected by Elastic Net, which explained at least ~50% of HBeAg status variation. The reason for
this strategy was two-fold. First, we wanted to select top variants by the fraction of HBeAg status variation they
collectively explain, rather than by choosing specific association p value cutoff. Second, we decided to supplement
the selection of top variants supplied by Elastic Net due to a known behavior, where one of two highly correlated
variants gets dropped by Elastic Net. This approach yielded 37 variants. Using these 37 variants we then built a
random forest model (number of trees to grow =2000) for the classification of patient’s HBeAg status. Validation
of the random forest model was performed on an independent set of patient data (N = 365).

Site directed mutagenesis and transient transfection system assay. Site directed mutants (SDM)
were created for the C1817T and A1838G mutations, both individually and in combination. Primers were
designed for the SDM mutagenesis process in order to introduce the substitutions into a plasmid vector contain-
ing the HBV genotype A 1.1x genome length laboratory strain pHY92 under the control of a CMV promoter.
The entire HBV genome of the construct was sequenced to confirm that no additional mutations had been intro-
duced during the SDM process. Intracellular and extracellular HBV DNA were assessed 7 days after transient
transfection of the SDM and pHY92 constructs into HepG2 cells (ATCC, VA) using FuGENE 6 (Promega, WI).
HBV DNA in the supernatant was quantified using the branched DNA technology QuantiGene® 2.0 (Thermo
Fischer Scientific, MA) per manufacturer’s instructions. HBV DNA in the cells was quantified using quantitative
PCR specific to the HBV X gene. For SDM constructs, fold changes in HBV DNA production with respect to the
corresponding reference sample pHY92 were reported. The transfection experiments were performed only in the
pHY92 genotype A background context and may not fully extrapolate to other HBV genotypes. However, given
the comparatively lower replication rate of genotype A strains®, this experiment may reflect a conservative esti-
mate of mutation effect on HBV DNA production.

HBeAg 3D structure. The structure of HBeAg dimer was downloaded from the Protein Data Bank (www.
rcsb.org). The structure was prepared using the ProteinPrep utility in Maestro (www.schrodinger.com) and vis-
ualizations and analysis were generated using Pymol (www.schrodinger.com). The residue numbering in the
discussion is offset by 419 from the residue numbering in the X-ray.

Data Availability
All sequencing files with associated metadata included in this study were deposited at EGA European Ge-
nome-Phenome Archive (ega-archive.org) under accession code EGAS00001003689.
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