
Vol. 30 no. 3 2014, pages 392–397
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btt677

Systems biology Advance Access publication November 21, 2013

Protein-driven inference of miRNA–disease associations
Søren Mørk1,2, Sune Pletscher-Frankild3, Albert Palleja Caro3,4, Jan Gorodkin1,2,* and
Lars Juhl Jensen3,*
1Center for non-coding RNA in Technology and Health, 2Department of Veterinary Clinical and Animal Sciences,
3Department of Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research and 4The Novo Nordisk
Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark

Associate Editor: Ivo Hofacker

ABSTRACT

Motivation: MicroRNAs (miRNAs) are a highly abundant class of non-

coding RNA genes involved in cellular regulation and thus also diseases.

Despite miRNAs being important disease factors, miRNA–disease as-

sociations remain low in number and of variable reliability. Furthermore,

existing databases and prediction methods do not explicitly facilitate

forming hypotheses about the possible molecular causes of the asso-

ciation, thereby making the path to experimental follow-up longer.

Results: Here we present miRPD in which miRNA–Protein–Disease as-

sociations are explicitly inferred. Besides linking miRNAs to diseases, it

directly suggests the underlying proteins involved, which can be used to

form hypotheses that can be experimentally tested. The inference of

miRNAs and diseases is made by coupling known and predicted

miRNA–protein associations with protein–disease associations text

mined from the literature. We present scoring schemes that allow us

to rank miRNA–disease associations inferred from both curated and

predicted miRNA targets by reliability and thereby to create high- and

medium-confidence sets of associations. Analyzing these, we find stat-

istically significant enrichment for proteins involved in pathways related

to cancer and type I diabetes mellitus, suggesting either a literature bias

or a genuine biological trend. We show by example how the associ-

ations can be used to extract proteins for disease hypothesis.

Availability and implementation: All datasets, software and a search-

able Web site are available at http://mirpd.jensenlab.org.
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1 INTRODUCTION

Since the initial discovery of microRNAs (miRNAs) 20 years

ago, (Lee et al., 1993; Wightman et al., 1993), the number of

known miRNAs has grown to thousands of currently annotated

miRNAs from a wide variety of species [e.g. the inventory of

miRBase (Kozomara and Griffiths-Jones, 2011)]. MicroRNAs

are increasingly being recognized as key regulatory players

(Friedman et al., 2009; Lim et al., 2005), and dysregulation of

them is hence an obvious source of aberrant cell behavior. Not

surprisingly, miRNAs have been associated with a large number

of diseases (Esteller, 2011; Mendell and Olson, 2012) including

schizophrenia (Feng et al., 2009), cardiovascular diseases (Small

and Olson, 2011) and cancer (He et al., 2005; Võsa et al., 2011).

MicroRNAs function by base pairing with 30-UTRs of mes-

senger RNAs (mRNAs), triggering their translational repression

or degradation (Ambros, 2004; Bartel, 2004, 2009; Meister and
Tuschl, 2004). The targeting depends on either complete se-

quence complementarity for inducing transcript degradation or

partial sequence complementarity for translational repression. In

addition to the base pairing between the miRNA and the

mRNA, targeting also depends on the local sequence context

of the target site and on a number of proteins participants

(Grimson et al., 2007). Owing to this complexity, miRNA

target prediction remains a significant computational challenge,

although advances in recent years have considerably improved

the reliability with which miRNA::mRNA interactions (from

now on referred to as miRNA–protein associations) can be pre-
dicted (Betel et al., 2010; Garcia et al., 2011; Kertesz et al., 2007;

Krek et al., 2005). Moreover, experimental validation of miRNA

target predictions is difficult and the number of functionally

verified targets sites remains low (Kuhn et al., 2008).

Because of their potential for wide-spread involvement in dis-
eases, a number of resources have emerged containing experi-

mentally verified miRNA–disease associations obtained via text

mining (Dweep et al., 2011; Jiang et al., 2009; Lu et al., 2008;

Ruepp et al., 2010; Yang et al., 2010). However, the majority of

miRNA–disease associations has presumably not been dis-

covered yet and thus cannot be mined from the literature. In

concordance with this, de novo prediction of miRNA–disease

associations is receiving increasing attention (Chen and Zhang,

2013; Chen et al., 2012; Jiang et al., 2010; Rossi et al., 2011; Xiao

et al., 2012; Xu et al., 2013).
To our knowledge, none of the existing methods for predicting

miRNA–disease associations provide any biological hypothesis

underpinning the predictions. Therefore, we here present an ap-

proach in which miRNAs are linked to diseases via proteins,

thereby directly providing biological hypotheses. Specifically,
we infer miRNA–disease associations by network analysis of

known or predicted miRNA–protein associations and text-

mined protein–disease associations. To account for the variable

reliability of both types of associations, we provide a scoring

scheme that allows for ranking of the inferences by confidence.

2 MATERIALS AND METHODS

2.1 miRNA–protein associations

We use miRNA–protein associations from three sources: a set of text

mining-based miRNA-target associations from Croft et al. (2012) and*To whom correspondence should be addressed.
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predictions from two state-of-the-art miRNA-target methods, namely,

MiRanda version 5 (Betel et al., 2010) and TargetScan version 6.2

(Garcia et al., 2011). To enable comparison and integration of these

sources, we mapped all miRNAs to miRbase identifiers and all targets

to Ensembl protein identifiers (ENSPs) using the STRING aliases file

(Franceschini et al., 2013). Each association between a miRNA (M)

and a protein (P) has a quality measure assigned to it, referred to as

TðM,PÞ. In case of the manually curated Croft dataset, we used as

score the number of Medline abstracts supporting the association. For

MiRanda and TargetScan, we used the mirSVR and Contextþ scores,

respectively. In the small proportion of cases where MiRanda or

TargetScan predicts multiple target sites for the same miRNA within a

single mRNA, we sum their scores. Table 1 summarizes the miRNA–

protein association datasets.

2.2 Protein–disease associations

To obtain protein–disease associations to be used for prediction of

miRNA–disease associations, we downloaded the complete dataset

from the DISEASES database (http://diseases.jensenlab.org; S.P.F.,

A.P.C. og L.J.J., manuscript in preparation). To identify proteins and

diseases mentioned in Medline abstracts, this resource makes use of the

efficient tagger described in Pafilis et al. (2013) to identify names of

human proteins from the STRING database (Franceschini et al., 2013)

and disease names from the Disease Ontology (Schriml et al., 2012). The

protein–disease associations were automatically mined from Medline ab-

stracts and have quality scores assigned to them. The scores are computed

using a slightly modified version of the co-occurrence-based text-mining

scores in STRING v9.1 (Franceschini et al., 2013), which for complete-

ness is outlined as follows.

The scoring scheme takes into account co-occurrences within an ab-

stract and within individual sentences of the abstract and combines them

in a weighting scheme. First, a weighted count (CðP,DÞ) is calculated for

each pair of a protein P and a disease D over n abstracts:

CðP,DÞ ¼
Xn
k¼1

wa�akðP,DÞ þ ws�skðP,DÞ

where wa ¼ 3 and ws ¼ 0:2 are the weights for co-occurrence within the

same abstract and the same sentence, respectively. The delta functions

�akðP,DÞ and �skðP,DÞ are 1, if P andD are co-mentioned in abstract k or

a sentence therein. Based on the weighted counts, the co-occurrence score

[SðP,DÞ] is defined as follows:

SðP,DÞ ¼ CðP,DÞ�
CðP,DÞCð�, �Þ

CðP, �ÞCð�,DÞ

� �1��

where CðP, �Þ is the sum over diseases paired with protein P, Cð�,DÞ is

the sum over all proteins paired with diseaseD and the normalizing factor

Cð�, �Þ is the sum over all pairs of proteins and diseases. The weighting

factor � ¼ 0:6.
Because these scores will change both with the growth of Medline and

disease terms in the Disease Ontology, we convert them into the more

robust and easier to interpret Z-scores (ZðP,DÞ) relative to a background

distribution. To this end, we assume that the empirically observed score

distribution is a mixture of lower-scoring random background and the

higher-scoring true signal. We model the background distribution as a

Gaussian and estimate its mean as the mode of the mixture distribution.

Because we have empirically observed that the 40th percentile in this case

coincides with the mode, we estimate the variance based on the distance

between the 20th and 40th percentiles.

Finally, we filtered out associations involving 1992 broad disease

concepts from the Disease Ontology to obtain a set of 234 834 scored

protein–disease associations among 14 871 proteins and 2586 diseases.

In addition to the protein–disease associations derived from text

mining, we have used two other sources of protein–disease associations.

One is derived from Uniprot, the other from The Genetics Home

Reference (GHR). Both datasets have been mapped to Disease

Ontology terms and filtered for the same generic disease terms as the

text mining-derived protein–disease associations. The protein–disease as-

sociations from Uniprot and GHR are unscored and are hence given a

score of 1 such as to be used with our scoring schemes. The Uniprot-

based dataset consists of 1632 proteins and 161 diseases in 3469 associ-

ations. The GHR dataset consists of 950 proteins and 468 diseases in

2509 associations.

2.3 Inference of miRNA–disease associations

To infer miRNA–disease associations and rank them by confidence, we

need a scoring scheme that combines the miRNA–protein association

scores, TðM,PÞ, and protein–disease association scores, ZðP,DÞ.

Let ðM,PÞ denote the association between miRNA M and protein P,

and let PM denote the set of proteins associated with M.

Correspondingly, let ðP,DÞ denote the association between protein P

and disease D, and let PD denote the set of all proteins associated to

disease D. We can then define a score between miRNA M and disease

D as follows:

UðM,DÞ ¼
X

P�2PM\PD

TðM,P�Þ ZðP�,DÞ

where TðM,P�Þ and ZðP�,DÞ are the already described miRNA–protein

and protein–disease association scores, respectively.

As an alternative scoring function, we used only the best scoring pro-

tein connection between a miRNA and a disease instead of the sum over

all connections:

VðM,DÞ ¼ max
P�2PM\PD

TðM,P�Þ ZðP�,DÞ

For each of the two scoring functions and for each of the three sets of

miRNA–protein associations (Table 1), we produced a list of inferred

miRNA–disease associations ranked by score. The scoring schemes use

the product of the two subscores in order not to affect the rank of the

final scored miRNA–disease associations due to differences in scale

among the subscores. These six ranked lists can be downloaded from

http://mirpd.jensenlab.org.

2.4 Prediction performance evaluation

To benchmark our method for predicting miRNA–disease associations,

we used the manually curated gold standard set of direct associations

between miRNAs and diseases from Jiang et al. (2010). To allow for

direct comparison with the datasets described earlier in the text, we

mapped the miRNAs and diseases to miRbase and Disease Ontology

identifiers, respectively. After mapping, the set consisted of 236 associ-

ations among 92 miRNAs and 48 diseases.

For each of the six ranked lists of inferred miRNA–disease associ-

ations, we first disregarded all associations that involved an miRNA or

a disease not at all present in the gold standard. Next we ranked the

remaining inferred associations in decreasing order by their scores,

UðM,DÞ and VðM,DÞ, respectively. To measure the agreement with the

Table 1. Sources of miRNA–protein associations

Dataset Data type Pairs miRNAs Proteins TðM,PÞ

Croft Curated 146 49 127 Number of

abstracts

MiRanda Predictions 630 373 711 16 518 mirSVR

TargetScan Predictions 502 064 1537 14 190 Contextþ
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gold standard, we calculated the cumulative number of gold standard

associations identified as function of rank.

To show that the method is better than random selection of miRNA–

disease pairs, we as background use equiprobable sampling of all possible

pairs that can be made from the miRNAs and diseases in the gold stand-

ard. In Figure 1 this corresponds to a straight line with a slope of

236=ð92 � 48Þ.

2.5 Pathway enrichment analysis

To analyze if the proteins that mediate miRNA–disease associations are

predominantly involved in certain biological pathways, we started from

the three sets of medium-confidence miRNA–protein–disease associ-

ations described in Section 3. Because some of the multiple proteins

that together support a certain miRNA–disease association may contrib-

ute little, we focused the analysis on the set of proteins that gives the

highest single contribution to at least one miRNA–disease association.

This resulted in 93922 and 376 unique proteins for the Croft-, MiRanda-

and TargeScan-based datasets, respectively. For use in the statistical

analysis, we further compiled a list of the 14871 proteins involved in

protein–disease associations according to the text mining of Medline ab-

stracts described earlier in the text. On these lists we used the DAVID

tool (Huang et al., 2009a, b) to identify statistically significantly enriched

KEGG pathways (Kanehisa et al., 2012) for each of the three lists of

proteins connecting miRNAs and diseases relative to the background set.

We also used DAVID to identify enriched Gene Ontology terms, which

gave results consistent with the pathway analysis (data not shown).

Owing to the sparsity of the protein–disease associations derived from

Uniprot and GHR, only few (528) of the benchmark miRNA–disease

associations are of miRNAs or diseases that are present in the input data,

hindering reliable prediction performance evaluation.

3 RESULTS

3.1 Resource of miRNA–protein–disease associations

We have combined three sets of curated and predicted miRNA–

protein association approaches with text-mined protein–disease
associations and scored the resulting miRNA–disease associ-

ations using the two scoring schemes described in Section 2
[UðM,DÞ and VðM,DÞ]. To make the data easily available for

use by other researchers, we have set up a web resource (http://
mirpd.jensenlab.org) that enables users to search, e.g. for a cer-

tain miRNA.

3.2 Assessment of inferred associations

To assess the quality of the associations in the resource, we com-

pare the miRNAs–protein–disease associations to the small gold
standard set of miRNA–disease associations from Chen and

Zhang (2013). Because the latter set presumably is only a tiny
fraction of the actual miRNA–disease associations, it is impos-

sible to estimate the number of false positives and hence the
positive predictive value. However, because it is possible to esti-

mate the number of true positives, we can plot this as function of
the total number of positive predictions and compare it with the

expectation from a random background model (Fig. 1a).
Figure 1a shows that irrespective of the source of miRNA–

protein associations, the inferred miRNA–protein–disease asso-
ciations capture more of the miRNA–disease associations from

the gold standard than expected at random. Unsurprisingly, the
reliability of the inferred associations depends on the quality of

the miRNA–protein associations. The most reliable inferred

associations are obtained when using the manually curated set

of miRNA–protein associations (Croft et al., 2012); however,
this also results in considerably fewer associations than when

making use of predicted miRNA–protein associations. We also

see that MiRanda predictions result in a slightly better ranking

Fig. 1. Benchmarking the quality of inferred miRNA–disease associ-

ations. The miRNA–disease associations inferred from three sets of

miRNA–protein associations were ranked according to the scores

UðM,DÞ. (a) Number of correct miRNA–disease associations obtained

according to the gold standard from Chen and Zhang (2013) as a func-

tion of rank. (b) Fold enrichment of correct miRNA–disease associations

over the expectation from a random background model. We only show

enrichments starting from rank 25, as the counts are too low to reliably

estimate the enrichment below this rank. Notice that only predicted

miRNA–disease associations where the miRNA or the disease is present

in the benchmark dataset is presented here, resulting in fewer data points

than in the full prediction sets
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than that of TargetScan predictions. Using the alternative scor-
ing scheme VðM,DÞ gave comparable but worse results (data not

shown).
An alternative way to plot the data is to instead plot the fold

enrichment of correct miRNA–disease associations over the

expectation from a random background model (Fig. 1b). The
major advantage of using fold enrichment is that it can be ac-

curately estimated using even an incomplete gold standard set.
Consistent with Figure 1a, the highest fold enrichment of up to

10 is seen for the top-ranked inferences based on the manually
curated miRNA–protein associations from Croft et al. (2012).

Inferences based on MiRanda and TargetScan both give up to
6-fold enrichment, with the fold enrichment for the MiRanda-

based inferences dropping off slower than for the TargetScan-
based ones.

For convenience, we define high-confidence and medium-con-
fidence subsets of the miRNA–protein–disease associations

inferred from the Croft-, MiRanda- and TargetScan-based
miRNA–protein associations. From inspection of Figure 1b,

we decided to use the score cutoffs corresponding to 5-fold
and 3.5-fold enrichment to define the high-confidence and

medium-confidence sets, respectively. In total the medium-confi-
dence sets contain 14 599 miRNA–protein–disease associations

among 1169 miRNAs, 1570 proteins and 738 disease terms.
These filtered as well as the complete unfiltered lists of inferred

miRNA–protein–disease associations are available for download
at http://mirpd.jensenlab.org.

3.3 Functional categorization of intermediate proteins

To characterize the functions, proteins that mediate the inference
of miRNA–disease associations, we focused on the proteins

within the three sets of medium-confidence associations that
most strongly connect the miRNAs and diseases (see Section 2

for details). For each of these, we identified statistically signifi-
cantly pathways from the KEGG database (Kanehisa et al.,

2012), which are listed in Table 2. The lists are dominated by
pathways for various forms of cancer as well as signal-transduc-

tion pathways known to play important roles in cancer such as
ErbB and p53 signaling.

Besides cancer-related pathways, the analyses of both the
MiRanda- and TargetScan-based miRNA–protein–disease asso-

ciations show an enrichment for proteins involved in Type I dia-
betes mellitus as well as viral myocarditis. Existing literature

already suggests a role for miRNAs in both of these diseases
(Poy et al., 2004; Xu et al., 2012); however, our method expands

on this by directly suggesting which proteins may mediate a cer-
tain miRNA–disease association.

3.4 Case study: miRNA-181 and diabetes mellitus

The pathway analysis revealed a statistically significant enrich-
ment for proteins involved in the type I diabetes mellitus path-

way. To demonstrate the ability of our miRNA–protein–disease
associations to pinpoint potentially causal proteins, we examined

the links between miRNAs and diabetes in more detail.
For the medium-confidence miRNA–disease associations

based on the TargetScan miRNA–protein associations, 64
miRNAs are associated with diabetes mellitus. Of these, the

four members of the miR-181 family (miR-181a, miR-181b,

miR-181c and miR-181d) stand out, ranking fifth to eight most
diabetes-related miRNAs in that prediction set. MicroRNA-181
is known from the literature to be associated with diabetes (Li

et al., 2011).
The protein that most strongly connects miR-181 to diabetes

mellitus is glutamate decarboxylase 2, which is one of the eight

proteins also found on the type I diabetes mellitus pathway
(Table 2). Another protein that stands out is sirtuin-1, which
ranks 9th, 9th, 7th and 8th for miR-181a, miR-181b, miR-181c

and miR-181d, respectively. It is a nicotinamide adenine di-
nucleotide-dependent deacetylase that acts as a positive regulator
of insulin signaling (Liang et al., 2009). Moreover, it has been

shown that downregulation of miR-181a upregulates sirtuin-1
and increases insulin sensitivity in hepatic cells (Zhou et al.,
2012).

This illustrates that using the protein-driven miRNA–disease
associations not only reveals potentially new miRNAs involved
in diseases but also provides candidate proteins as molecular

hypotheses underpinning the associations, which can be tested,
e.g. through knockdown of the mRNA or mutagenesis of the

miRNA target region.

4 DISCUSSION

Whereas the awareness of miRNA–disease associations is grow-
ing, existing methods for identifying such associations falls in
two broad categories: (i) text mining and curation of direct as-

sociations from literature and (ii) machine learning-based predic-
tion methods. Generally, these approaches do not consider or

attempt to identify the proteins that presumably mediate most of
the interactions between miRNAs and diseases. Consequently,
these studies contain relative few pointers for how further experi-

mental analysis of specific cases (predictions) can be carried out.
We meet this challenge by developing a method, miRPD, which
explicitly includes the protein link between miRNA and disease.

Even though this protein-driven approach overall result in fewer
miRNAs and diseases than previously published studies, having
the protein as an explicit part of the output readily allows the

researcher to take up more far more explicit actions toward
design of experiments.
We have showed that our approach, which explicitly combines

miRNA–protein and protein–disease associations, results in
miRNA–disease associations of much better quality than that
of a random background. This was observed consistently for

three sets of miRNA–protein associations: a hand-curated set
of miRNA targets and the two popular target predictions meth-

ods MiRanda and TargetScan. In all three cases, we were able to
obtain a high-confidence set of miRNA–protein–disease associ-
ations for which the rankings held a 5-fold enrichment over

random. We similarly defined three medium-confidence sets
with 3.5-fold enrichment.
Our resource (http://mirpd.jensenlab.org) provides a search

interface for the three medium-confidence sets of 14 599
miRNA–protein–disease associations, connecting 1169
miRNAs to 738 diseases through 1570 proteins, that is automat-

ically updated whenever new protein–disease associations
become available, and features hyperlink for the protein entries
to http//:diseases.jensenlab.org. This was exemplified by a case

study of the involvement of miR-181 and diabetes mellitus,
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which revealed glutamate decarboxylase 2 and sirtuin-1 as likely

causal molecular links between the miRNA and the disease.
Analyzing the proteins that most strongly connect miRNAs to

diseases, we found a strong enrichment for cancer-related KEGG

pathways. This can be due to (i) study bias in the miRNA field,

or (ii) miRNAs actually being more involved in cancer than in

other diseases. The latter is consistent with cancer being a disease

of cellular regulation.

To our knowledge, we here provide the first resource of

miRNA–disease associations, which explicitly lists proteins that

are likely to mediate the association. The perspectives for further

development of the method include taking into account expres-

sion data, combining target prediction methods into a single

scoring scheme and including, e.g. other types of data such as

co-expression and CliP-Seq.
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Table 2. Statistically enriched KEGG pathways among proteins connect-

ing miRNAs to diseases

KEGG pathway Number

of proteins

P-value

Croft (93 proteins)

Bladder cancer 9 1.7E-6

Pathways in cancer 18 3.8E-6

ErbB signaling pathway 9 1.8E-4

Prostate cancer 9 1.7E-4

Pancreatic cancer 8 3.2E-4

Chronic myeloid leukemia 8 3.2E-4

Melanoma 7 2.1E-3

Endometrial cancer 6 3.7E-3

Non-small cell lung cancer 6 3.9E-3

Small cell lung cancer 7 3.7E-3

Glioma 6 6.1E-3

MiRanda (922 proteins)

Pathways in cancer 89 5.5E-14

Bladder cancer 25 5.8E-11

Hematopoietic cell lineage 32 3.8E-8

Cytokine–cytokine receptor interaction 63 3.1E-8

Chronic myeloid leukemia 27 1.8E-6

Colorectal cancer 29 1.7E-6

Prostate cancer 30 1.5E-6

Asthma 14 7.5E-6

Pancreatic cancer 25 1.0E-5

Glioma 22 3.6E-5

Endometrial cancer 19 1.2E-4

Complement and coagulation cascades 22 1.2E-4

Viral myocarditis 21 1.5E-4

Non-small cell lung cancer 19 1.8E-4

Melanoma 22 2.6E-4

Autoimmune thyroid disease 16 3.2E-4

p53 signaling pathway 21 3.1E-4

Hypertrophic cardiomyopathy 23 4.9E-4

ErbB signaling pathway 24 5.1E-4

Type I diabetes mellitus 14 5.4E-4

Jak-STAT signaling pathway 34 6.1E-4

Acute myeloid leukemia 18 7.5E-4

Renal cell carcinoma 20 1.5E-3

Primary immunodeficiency 13 1.5E-3

Intestinal immune network for IgA

production

15 1.6E-3

Allograft rejection 12 1.7E-3

Focal adhesion 40 1.7E-3

Small cell lung cancer 22 2.0E-3

Dilated cardiomyopathy 22 3.2E-3

Thyroid cancer 11 5.0E-3

B cell receptor signaling pathway 19 5.7E-3

Maturity onset diabetes of the young 10 6.0E-3

T cell receptor signaling pathway 24 5.8E-3

TargetScan (376 proteins)

Pathways in cancer 86 8.1E-39

Colorectal cancer 30 1.6E-15

Bladder cancer 22 5.0E-15

Prostate cancer 30 3.7E-15

Melanoma 27 6.0E-15

Glioma 25 2.0E-14

Pancreatic cancer 26 7.9E-14

Chronic myeloid leukemia 25 1.5E-12

(continued)

Table 2. Continued

KEGG pathway Number

of proteins

P-value

Focal adhesion 38 3.0E-11

Renal cell carcinoma 21 2.1E-9

ErbB signaling pathway 22 1.6E-8

Endometrial cancer 17 3.8E-8

Non-small cell lung cancer 17 6.6E-8

Acute myeloid leukemia 16 8.3E-7

Thyroid cancer 12 8.2E-7

p53 signaling pathway 17 1.5E-6

Small cell lung cancer 18 7.6E-6

Cytokine–cytokine receptor

interaction

33 9.5E-6

MAPK signaling pathway 32 5.6E-5

Neurotrophin signaling pathway 20 8.0E-5

Adherens junction 15 1.3E-4

Cell cycle 19 2.6E-4

T cell receptor signaling pathway 17 4.5E-4

Gap junction 14 2.4E-3

mTOR signaling pathway 10 5.0E-3

Hematopoietic cell lineage 13 6.2E-3

VEGF signaling pathway 12 6.1E-3

Apoptosis 13 6.4E-3

Viral myocarditis 11 6.3E-3

Melanogenesis 14 6.8E-3

Type I diabetes mellitus 8 7.9E-3

Regulation of actin cytoskeleton 22 8.9E-3

The DAVID tool (Huang et al., 2009a, b) was used to identify statistically signifi-

cantly enriched KEGG pathways (Kanehisa et al., 2012) for each of the three

medium-confidence sets of miRNA–protein–disease associations. The P-values

listed have been corrected for multiple testing using the Benjamini–Hochberg pro-

cedure, and all pathways with a corrected P-value of 1E-3 or better are shown.
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