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A B S T R A C T

The automated diagnosis of lumbar spondylolisthesis lacks standardized criteria and the diag
nostic of lumbar spondylolisthesis itself inherently relies on the subjective judgment of experts, 
resulting in a lack of standardized criteria. The objective of this study is to develop a novel, fully 
automated diagnostic system for lumbar spondylolisthesis. A two-stage system was developed, 
consisting of a Mask R-CNN with Prime Sample Attention (PISA) for vertebral segmentation in the 
first stage and a Light Gradient Boosting Machine (LGBM) for spondylolisthesis diagnosis in the 
second stage. The training data was developed by a total of 936 X-ray images including neutral, 
extension, and flexion lateral radiographs retrospectively gathered from 312 patients diagnosed 
with lumbar spondylolisthesis between January 2021 and March 2022. From a model perspective, 
there were a total of 4680 vertebrae, of which 1056 (22.6 %) were spondylolisthesis and the rest 
were normal. The Bbox mAP50, Bbox mAP75, Segm mAP50, and Segm mAP75 of Mask R-CNN 
with PISA were 0.9852, 0.9179, 0.9741, and 0.8957, respectively. The Accuracy, AUC, Recall, 
Precision, and F1-score of LGBM were 0.9660, 0.9843, 0.9020, 0.9020, and 0.9020, respectively. 
This study presents a robust system for the diagnosis of lumbar spondylolisthesis, providing ac
curate detection, classification, and localization of lumbar spondylolisthesis.

1. Introduction

Lumbar spondylolisthesis stands as one of the most prevailing lumbar disorders [1–4]. The stability of the lumbar spine hinges upon 
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the integrity of the vertebral arch, intervertebral disc, ligaments, and surrounding soft tissues. Disruptions of these components due to 
degenerative processes can culminate in vertebral slippage, with relative displacement observed between the adjacent vertebrae. The 
most suitable non-invasive examination method for detecting spondylolisthesis is the standing lumbar lateral radiograph based on 
relevant guidelines [5,6]. Although methods for assessing patients with a confirmed diagnosis of spondylolisthesis have been widely 
applied in clinical practice, such as the Meyerding classification for evaluating the degree of slippage and the Wiltse classification for 
assessing its etiology [7,8], determining the presence of spondylolisthesis in a broader population that includes a large number of 
healthy individuals and asymptomatic cases remains an unresolved issue. Some subtle slippages are challenging to differentiate be
tween normal variations and those indicative of spondylolisthesis, complicating the diagnostic process. Some studies have indicated 
that inter-observer and intra-observer variability in lumbar spine diagnosis can reach up to 15 % [9]. The decision for whether or not 
relative vertebral displacement exists is largely subjective (even by experts) and lacks any standardized and quantifiable distance or 
angular criteria [1].

Over recent years, deep learning models have demonstrated remarkable proficiency in the detection and segmentation of specific 
targets in spinal X-ray images [10–22]. Automatic detection and segmentation of the entire spine or specific regions such as the cervical 
and lumbar spine have already been achieved [14,16,18,19]. Furthermore, leveraging key vertebral landmarks obtained from deep 
learning models, some researchers are focusing on the automatic measurement of spine-related angles and distances [11–13,15]. This 
approach significantly reduces time and cost, and these automatically measured angles and distances can serve as key features for 
diagnosing or assessing spinal diseases such as scoliosis [15] and sagittal spinal imbalance [22]. Trinh et al. [21], manually defined 
geometric features between lumbar vertebrae for the detection of lumbar spondylolisthesis, building upon key vertebral landmarks 
identified by computer vision models. Nevertheless, manually defined features struggle to capture the rich information between 
vertebral bodies, leaving considerable room for improvement in diagnostic accuracy.

The objective of our study is to develop an automated diagnostic system using two-stage machine learning models for lumbar 
spondylolisthesis. In the first stage, the system employs an instance segmentation model, commonly used in the medical imaging 
domain, to annotate lateral lumbar X-rays. It then extracts the coordinates of key vertebral landmarks and performs coordinate 
refinement and feature extraction through a post-processing module. In the second stage, the diagnosis of lumbar spondylolisthesis is 
carried out based on the Light Gradient Boosting Machine (LGBM) model, utilizing the key point coordinates and their geometric 
features in lateral X-ray images obtained in neutral, extension, and flexion positions. The system also returns the specific lumbar 
vertebrae exhibiting spondylolisthesis on each X-ray image. Overall, this system is capable of automatically providing a diagnosis of 
lumbar spondylolisthesis and localizing the specific vertebrae affected by spondylolisthesis from the initial X-ray evaluation.

2. Methods

The diagnostic method for lumbar spondylolisthesis that we propose is illustrated in Fig. 1. Initially, we acquire X-ray images from 
three different perspectives: neutral, lordotic, and kyphotic. The image processing procedure comprises two main stages.

The image processing is divided into two independent parts. On one hand, the locations of the lumbar vertebrae in the images are 
extracted using an instance segmentation model, which subsequently provides the vertebral coordinates and geometric features. On 
the other hand, due to the different facial orientations during X-ray image acquisition, we determine the facial orientation by 
comparing the areas of the left and right sides after threshold segmentation. Using this orientation information, we unify the co
ordinates of all X-ray images to the right side.

After obtaining the coordinates of each lumbar vertebral body, we calculate the “Slip ratio” based on the geometric relationship 
between the lumbar vertebrae. We then combine the length, width, slope, and other information of the lumbar vertebrae from different 
view images, along with the lumbar vertebral numbering information, to construct a 28-dimensional feature vector for each lumbar 

Fig. 1. The proposed architecture for lumbar spondylolisthesis diagnosis.
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vertebra. Using these feature vectors, we train a Light GBM model for diagnosing lumbar spondylolisthesis, treating each lumbar 
vertebra as a unit.

2.1. Study design and participants

This research, aimed at developing and validating a diagnostic model, was designed as a single-center retrospective medical study. 
Approval for the study was obtained from the Peking University Third Hospital Institutional Review Board in March 3rd, 2022 
(S2022290). Informed consent was waived due to the retrospective nature of the investigation.

X-ray images from patients diagnosed with lumbar spondylolisthesis between January 2021 and March 2022 were retrospectively 
gathered. Inclusion criteria were as follows: (1) confirmed diagnosis of spondylolisthesis diagnosis according to surgical notes, (2) 
availability of preoperative neutral, lordotic, and kyphotic lateral lumbar X-ray images, and (3) each X-ray image containing a 
minimum of 6 vertebral segments from L1 to S1. Exclusion criteria included patients who had a previous history of lumbar surgery, any 
other forms of spinal deformity, or incomplete pre-operative X-ray studies.

2.2. Dataset

In the first phase of the study, the sample comprised X-ray images, totaling 936 X-ray images (paired in three positions) from 312 
patients, including 88 males (28.2 %) and 224 females (71.8 %). During the division of the training, validation, and test sets, it was 
ensured that the three images of the same patient were included in the same set. In the second phase, the sample consisted of a 28- 
dimensional feature vector constructed for each lumbar vertebra in the paired three positions. Since each set of paired X-ray im
ages contained five samples (L1 to L5 vertebrae), there were a total of 1560 samples, of which 352 (22.6 %) were positive samples 
indicating spondylolisthesis, and the remaining were negative samples representing normal vertebrae. Additionally, both forms of 
spondylolisthesis (anterior slipping and the less common posterior slipping) were defined as positive samples. The datasets for both 
phases were divided into training (70 %), validation (10 %), and test sets (20 %). The baseline characteristics are displayed in Table 1.

2.3. Development of instance segmentation model

To achieve the diagnosis of lumbar spondylolisthesis, it is essential to determine the coordinates of each lumbar vertebra to obtain 
the geometric relationships between the vertebral bodies, which are crucial for identifying spondylolisthesis. The instance segmen
tation model serves as the first-stage model in the automated diagnostic system for lumbar spondylolisthesis. Its task is to extract the 
coordinates of each lumbar vertebra from the original X-ray images, thereby facilitating the subsequent second-stage spondylolisthesis 
diagnosis based on these coordinates.

To accurately obtain the coordinates of each vertebral body, performing instance segmentation on the vertebrae is a relatively 
intuitive approach. Instance segmentation is a complex task that requires the simultaneous completion of both object detection and 
semantic segmentation. There are two branches of instance segmentation algorithm, one is top-down segmentation based on object 
detection and detection, and the other is bottom-up instance segmentation based on semantic segmentation. Due to the fact that the 
content we annotate on the dataset is the coordinates of the box for object detection, it is suitable to use a top-down instance seg
mentation based on object detection. Mask R-CNN [23], which is based on the prototype of Faster R-CNN [24], adds branches for 
segmentation tasks to achieve instance segmentation, which naturally aligns with our data annotation format and tasks. Similar 
methods have proven effective in diagnosing other spinal diseases [25]. Therefore, we first adopt Mask R-CNN to perform instance 
segmentation. In Mask R-CNN, Each Region of Interest (ROI) predicts a segmentation mask using a small Fully Convolutional Network 
(FCN) [26] to retain spatial structure information. This allows instance segmentation to be achieved based on object detection.

Mask R-CNN is a seminal instance segmentation model composed of several key components [23]. The backbone feature extraction 
network, typically a pre-trained convolutional neural network like ResNet or VGG, is responsible for encoding visual features from the 
input image. The Region Proposal Network (RPN) generates candidate object regions of interest (RoIs) [24]. The RoI Align module 
then aligns these variable-sized RoIs to a fixed-size feature representation [27].

In the Mask R-CNN model, the multi task loss for each sampled RoI is defined as L, which consists of classification loss Lcls, 
regression loss Lbox, and mask loss Lmask, respectively. Among them, Lcls and Lbox are exactly the same as the definition of Faster R-CNN. 
The mask branch of Mask R-CNN has a K × M dimensional output for each RoI, encoding K binary masks with a resolution of m× m, 
where K represents the total number of categories. For this, apply sigmoid to each pixel and Lmask is defined as the average binary cross 
loss. 

Table 1 
Baseline characteristics.

Lumbar segment Numbers of slipping vertebrae Ratio of anterior slipping

L1 22 95.5 %
L2 31 83.9 %
L3 57 93.0 %
L4 168 94.6 %
L5 74 95.9 %
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L = Lcls + Lbox + Lmask 

We utilize the pre-trained ResNet50 model directly in our feature extraction network and RPN, which, as a result of its training on 
the ImageNet dataset, exhibits robust generalization and representation abilities. This enables the extraction of high-level features 
from images, a crucial aspect for both object detection and instance segmentation tasks. These networks are particularly suited for fine- 
tuning through transfer learning of the pre-trained models, bypassing the necessity for complete retraining. This strategy optimizes 
resource usage and significantly curtails training duration. To tailor the pre-trained model to our distinctive dataset it is imperative to 
train the object detection and segmentation networks specifically on tasks of object detection and segmentation. This necessity arises 
from the requirement to acquire classification and regression weights grounded in the context of lumbar instance segmentation, 
alongside understanding pixel-wise segmentation details.

Our dataset, exclusively composed of unique X-ray images, is partitioned with 70 % allocated for training, 20 % for testing, and 10 
% reserved for validation purposes. We undertake the fine-tuning of both the feature extraction and region proposal networks, and 
initiate the training of the object detection and segmentation networks from scratch.

As computer vision evolves, various models refining Mask R-CNN have emerged. We consequently conducted experiments 
comparing these advanced models, all rooted in Mask R-CNN. Our focus: assessing their performance enhancements and practical 
efficacy, illuminating progress in instance segmentation methodologies.

(1) Mask Scoring R-CNN. Mask R-CNN assumes equal importance for all object masks, conflicting with the variable IoU between 
predicted and actual masks. Mask Scoring R-CNN tackles this by adding a branch to score masks, enhancing metric precision. 
This aids differentiation between accurate and inaccurate predictions, improving instance segmentation in COCO AP tests by 
favoring more accurate forecasts.

(2) Cascade R-CNN [28]. Cascade Mask R-CNN implements a multi-stage cascade. Each stage refines detection boxes from prior 
stages through dedicated regressors. By using outputs from preceding stages as inputs to subsequent ones and progressively 
applying stricter IoU filters, it enhances box accuracy. This cascading design mitigates overfitting and boosts detection preci
sion, enhancing overall instance segmentation capability.

(3) Global Context-aware RoI Extractor (GRoIE) [29]. GRoIE enhances RoI extraction with a global approach, using all FPN layers 
for richer context compared to conventional single-layer selection. By integrating non-local features and attention, it 
strengthens long-range dependencies and focuses on key regions, thereby significantly upgrading the RoI extractor and model 
performance.

(4) Prime Sample Attention (PISA) [30]. PISA augments Mask R-CNN via the integration of Prime Sample Attention (PSA), stra
tegically selecting informative instances based on computed relevance scores that reflect inter-sample similarity. Central to its 
innovation is the introduction of Prime Loss, a composite of classification and importance losses, designed to refine both 
segmentation accuracy and the PSA sampling strategy with a focus on pivotal “Prime Samples.” Additionally, PISA employs a 
concise network module to gauge mask quality, implementing IoU-HLR for ranking positive samples and Score-HLR for the 
hierarchical ranking of negative samples within each mini-batch, thereby further elevating instance segmentation efficacy.

After ranking, a simple Linear map is used to convert the ranking into real numbers. For class j, assuming there are a total of nj 

samples ranked as {r1,…, rn}, where 0 ≤ ri ≤ nmax, convert each ri to ui using a linear function, as shown in the equation. Then use 
Exponential function to further convert the sample importance into loss weight wi, where γ It is a degree factor that represents the 
priority that important samples will be given, β It is the deviation that determines the minimum sample weight. 

ui =
nmax − ri

nmax 

wi =((1 − β)ui + β)γ 

By the new weighting scheme, the classification loss Lcls in mask R-CNN can be rewritten as the following equation, where n and m 
are the number of positive and negative samples, si and ŝi represents the prediction score and classification objective score. In addition, 
in order to maintain the total loss unchanged, standardized wʹ

i was standardized to wʹ
i. 

Lcls =
∑n

i=1
wʹ

iCE(si, ŝi) +
∑m

j=1
wʹ

jCE
(
sj, ŝj

)

wʹ
i =wi

∑n
i=1CE(si, ŝi)

∑n
i=1wiCE(si, ŝi)

wʹ
j =wj

∑m
j=1CE

(
sj, ŝj

)

∑m
j=1wiCE

(
sj, ŝj

)

This ranking strategy places the positive samples with the highest IoU around each object and the negative samples with the highest 
score in each cluster at the top of the ranking list, and focuses the training process on these samples through a simple weighting 
scheme. In addition, since the quality of regression determines the importance of samples, the classifier should output higher scores for 
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prime samples. Therefore, a classification aware regression loss is used to correlate the optimization of the two branches, in order to 
propagate the gradient from the regression branch to the classification branch. Using Lcarl instead of the original regression loss L (di,

d̂i), where ci represents the prediction probability of ground truth after linear transformation. 

Lcarl =
∑n

i=1
ciL (di, d̂i)

Using Lcarl, the classification branch can be supervised by regression loss. The scores of unimportant samples are greatly suppressed, 
while increasing attention to primary samples. Finally, this method achieved a relative improvement of 3.16 % on the bounding box 
mAP and 2.90 % on the instance segmentation mAP.

2.4. Image reprocessing

The instance segmentation model aforementioned accomplishes the separation of individual lumbar vertebrae from raw X-ray 
images. In order to facilitate the development of a subsequent lumbar spondylolisthesis diagnosis model, it is imperative to extract the 
coordinate points of key landmarks on the vertebrae. However, inconsistencies in facial orientations within the X-ray dataset can 
potentially introduce biases during feature extraction. Prior to extracting coordinates and geometric features of the vertebrae, 
establishing a uniform directional standard is therefore essential. Assuming that all subjects in the X-ray images face towards the right, 
corrective measures must be applied to images where the face is oriented to the left to align them accordingly.

Prior to correction, automated determination of the facial orientation is paramount. Given that human skeletons appear in gray
scale within X-ray imagery, we initiate our approach from a grayscale perspective, employing threshold segmentation on the images. 
The orientation is ascertained by contrasting the areas on the left and right sides of the image. To enhance the effectiveness of threshold 
segmentation, histogram equalization [31] is employed to amplify image contrast and calibrate grayscale levels, facilitating clearer 
distinction the bone and non-bone parts of the image more distinguishable.

Subsequent to histogram equalization, the Otsu method [32] is invoked for thresholding, transforming the image into a binary 
format. This method relies on criteria that minimize within-class variance and maximize between-class variance for threshold 
determination, rendering it a favored approach for image segmentation due to its simplicity, robust adaptability, and broad appli
cability. Following thresholding, an image opening procedure eliminates minor internal cavities within the depicted human silhouette, 
culminating in the acquisition of the overall body contour. Orientation is ascertained by contrasting the sectional areas on the left and 
right hemispheres of the image. Fig. 2 illustrates the outcomes of histogram equalization and thresholding on the initial image, vividly 
demonstrating how this suite of image processing techniques readily discerns facial orientation through area comparison.

Upon ascertaining the human body’s orientation, to guarantee uniformity in the feature data presented to the succeeding machine 
learning model, the coordinates of all anatomical landmarks within images depicting leftward-facing profiles undergo inversion. The 
corrected vertebral bodies are shown in the figure after orientation correction and the image after coordinate correction is shown in 
Fig. 3.

Fig. 2. Schematic diagram of the entire process of image threshold segmentation.
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2.5. Development of model for diagnosis classification

After instance segmentation and coordinate correction, the diagnostic system assesses lumbar spondylolisthesis based on positional 
relations among adjacent vertebral landmarks. As shown in Fig. 4, the horizontal arrow in the coordinate system represents the ventral 
direction. Through the results of instance segmentation, we can take four points from the upper left corner, upper right corner, lower 
left corner, and lower right corner of each instance as our landmarks, so six landmarks (Point A, B, C, D, E, and F) are extracted from 
two adjacent bounding boxes, and the distance between Point G and Point D is taken as the vertex distance between the vertebrae. A 
straight line drawn from Point A to Point B was expressed as AB, and the distance between Point A and Point B was expressed as LAB. 
Based on the 4 extracted lines (AB, BC, DE, DF) between the landmarks, the length and slope (with reference to the horizontal di
rection) of each line are calculated. Simultaneously, grounded in medical precedent, the “Slip Ratio” (the same as P-Grade [21]) is 
deduced by scrutinizing the correlation between superior and inferior vertebral landmarks. Meyerding’s and Taillard’s method [7,33] 
was referred to measure the Slip Ratio, the value was calculated as LDG/LDE (Fig. 4). This ratio represents the coherence of the vertebrae 
from top to bottom. Since we have three X-rays of different views for each vertebra, along with the serial number vertebra, there are a 
total of 28 dimensions of features.

Since the directly extracted features are relatively intuitive and low-level, and the actual lumbar spondylolisthesis is determined by 
the relative position relationship between these lines, feature crossing is used to explore deeper features for model training. The 
specific implementation of feature crossing is to directly multiply or divide the normalized features from different domains. During 
model training, the model automatically retains the second-order features that have a significant impact on the results. To overcome 
the imbalance in the distribution of original samples, the SMOTE oversampling method [34] is used to enhance the samples of 
spondylolisthesis. Random oversampling algorithms are prone to overfitting, which can lead to models that are too specific and not 
general enough. SMOTE oversampling changes the data distribution of imbalanced datasets by adding generated samples of the mi
nority class, which is a popular method for improving the performance of classification models on imbalanced data. SMOTE syn
thesizes new samples by linear interpolation between two minority class samples, effectively alleviating the overfitting caused by 
random oversampling.

From the outcomes of instance segmentation, landmarks are extracted, followed by the derivation of 28-dimensional features from 
the intervertebral region. These features undergo normalization and crossing to enrich the feature space, facilitating the training of 
machine learning models. Considering the modest dimensionality of samples and moderate dataset size, ensemble tree models prove 
more advantageous over deep learning models in this context. Consequently, we use the Light Gradient Boosting Machine (LGBM) [35] 
model as the classifier. Within the realm of ensemble tree models, LGBM and XGBoost35 have garnered prominence for their exemplary 
efficiency and versatility. Owing to their shared foundation in decision tree-based gradient boosting, LGBM and XGBoost each com
mand a distinct, influential role as elite classifiers in the machine learning sphere, with remarkable performance especially in 
classifications.

2.6. Evaluation and interpretability analysis of models

Mean Average Precision(mAP), widely used in COCO format datasets [36], was applied to evaluate the performance of the models 
for instance segmentation. It included bounding box mAP(Bbox mAP) and segmentation mAP(Segm mAP), and mAP at different IoU 
(mAP50 and mAP75).

To evaluate the performance of the models for diagnosis of lumbar spondylolisthesis, the accuracy, recall, precision, F1-score of the 
model were evaluated and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was calculated, too.

To further understand which feature contribute more to the results in the model, SHAP values were used to interpret the LGBM 
model and help us understand the impact of each feature on the predicted outcome. The Shapley value from game theory is used to 
allocate the contribution of each feature to the predicted outcome. For each predicted sample, the model generates a predicted value, 
and the SHAP value [37] is the value assigned to each feature in that sample. The idea behind SHAP values is to allocate total revenue 

Fig. 3. Example of an image with coordinate correction based on facial orientation.
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by calculating the expected marginal contribution of each feature to all possible coalitions.
Model construction, evaluation and analysis of the validation measures were performed using Python 3.8.8, and the instance 

segmentation model is trained and predicted using the mmdetection framework [38] version 2.0.0, with one NVIDIA GeForce RTX 
3060 GPU device and pytorch 1.8.0. Machine learning models (including LGBM and XGBoost etc.) are trained and predicted by the 
pycaret 2.3.5 framework [39].

2.7. Code availability

Our code has been made publicly available at https://github.com/THUzyt21/Diagnosis-of-lumbar-spondylolisthesis-with-LGBM. 
Details regarding feature processing and the diagnostic model can be referenced there.

3. Results

3.1. Performance of models

Regarding improvements to Mask R-CNN in various strategies, for our dataset, the most effective is the Prime Sample Attention 
strategy. It is an importance-based sample reweighting method that can increase the model’s attention to important samples, thereby 
improving the mAP of the instance segmentation model. In tests on 190 images in the test set, the bbox and segm mAP of the models are 
shown in Table 2 and the instance segmentation results on the test set are shown in Fig. 5.

After extracting the image features using the feature extraction method mentioned earlier, we trained deep learning models and 
post-processing tree models using 65 % of the data as the training set, and performed model predictions on the remaining 35 % of the 
data. The best performing model was Light Gradient Boosting Machine, with an accuracy of 96.60 %, an AUC of 0.9843, a F1-score of 
0.9020. We compared these machine learning models, and the relevant results are shown in Table 3. In our model configuration, key 
parameters include a gradient boosting decision tree (boosting_type = ’gbdt’) with a learning rate of 0.1, 100 estimators, a maximum of 
31 leaves per tree, and a subsample ratio of 1.0 for both data and features, ensuring comprehensive utilization of the dataset during 
training with controlled complexity for balanced predictive performance.

Fig. 6 illustrates the performance of the automated diagnostic system, employing the optimal instance segmentation and classi
fication models, where an accuracy of 96.60 % and a precision of 90.20 % were attained, showcasing its efficacy.

To benchmark our machine learning models against prevailing methodologies in diagnosing lumbar spondylolisthesis via X-rays, 
we adopted and implemented the process outlined by Trinh et al. [21], involving manual extraction of lumbar geometric features and 
subsequent diagnostic inference through rule-based systems, adhering to their defined diagnostic parameters for the lumbar spine. The 
comparison of our method’s results with theirs is presented in Table 4.

Fig. 4. Schematic diagram of the features, including AB, BC, DE, DF, and the Slip Ratio equals LDG/LDE. a. Schematic diagram of L5/S1. b. Schematic 
diagram of other segments.

Table 2 
Comparison of metrics for Mask R-CNN and its various improved models in different directions.

model Bbox mAP Bbox mAP50 Bbox mAP75 Segm mAP Segm mAP50 Segm mAP75

mask R-CNN 0.7468 0.9831 0.8856 0.7242 0.9725 0.8708
cascade mask R-CNN 0.7758 0.9832 0.9231 0.7354 0.9724 0.8769
mask R-CNN + GRoIE 0.7461 0.9836 0.9044 0.7376 0.9724 0.8804
mask scoring R-CNN 0.7561 0.9827 0.9071 0.7405 0.9540 0.8732
mask R-CNN + prime sample attention 0.7704 0.9852 0.9179 0.7452 0.9741 0.8957

Bbox mAP: bounding box mean average precision, Segm mAP: Segmentation mean average precision.
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An interpretive examination of the trained LGBM model reveals that the paramount features, as depicted in Fig. 7, are the vertebral 
sequence number and slippage ratio, echoing these factors’ significance from diverse viewpoints - an alignment with established 
medical understanding.

Fig. 5. Schematic diagram of lumbar spine X-ray angiography results after instance segmentation model.

Table 3 
Comparison of the effectiveness of various machine learning models in diagnosing lumbar vertebral slip.

Model Accuracy AUC Recall Precision F1-score

LGBM 0.9660 0.9843 0.9020 0.9020 0.9020
GBC 0.9558 0.9739 0.9020 0.8519 0.8762
RF 0.9558 0.9839 0.9216 0.8393 0.8785
ADA 0.9490 0.9726 0.9020 0.8214 0.8598
ET 0.9592 0.9836 0.9020 0.8679 0.8846
XGBoost 0.9354 0.9697 0.9020 0.7667 0.7933
DT 0.9116 0.9275 0.8627 0.6984 0.9116
KNN 0.8878 0.8910 0.8235 0.6364 0.7179
SVM 0.7789 0.8353 0.9216 0.4352 0.5912

LGBM: Light Gradient Boosting Machine, GBC: Gradient Boosting Classifier, RF: Random Forest Classifier, ADA: Ada Boost Classifier, ET: Extra Trees 
Classifier, XGBoost: Extreme Gradient Boosting, DT: Decision Tree Classifier, KNN: K Neighbors Classifier, SVM: Support Vector Machine.

Fig. 6. Confusion Matrices of automatic diagnosis by LGBM Classifier.
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4. Discussion

In this study, we harnessed the power of Mask R-CNN and used prime sample attention to precisely delineate the position of the 
vertebral body. Based on the outputs of instance segmentation, we meticulously pinpointed four key coordinates which served as the 
foundation for extracting pertinent features related to vertebral body positioning. These extracted features provide valuable insights 
into the spatial relationships of the lumbar vertebrae. Feature data were subsequently employed to train a diverse array of machine 
learning models. Following a rigorous comparative analysis, LGBM proved to be the most adept model for classifying spondylolisthesis.

Different from previous studies that just used a single model and had a single function of diagnosis whether a patient had lumbar 
spondylolisthesis or not, the diagnostic system constructed in our study extends this capability. The system not only shows the region of 
target segment but also output the serial number of the spondylolisthesis, which means it has the function of drawing a complete 
diagnostic conclusion of the disease. The function is based on a series of two machine learning models, namely, an instance seg
mentation model for identifying the position of vertebral bodies and a tree-based model for diagnosis. After performing the instance 
segmentation to obtain the coordinates of landmarks of different vertebral bodies, we modified the Taillard’s method [33], and 
introduced a one-dimensional coordinate axis with direction when measure the displacement. By using a single feature of the seg
mentation model, the results may be affected by artifacts and the diagnostic performance would not be robust. Therefore, we extracted 
more features in all 3 positions images from the instance segmentation model. After feature normalization, crossing and combining, 
these features were acquired to train new classification models, and the model with the best performance was selected after 
comparison.

In the trained LGBM model, feature importance analysis revealed that the most critical feature is the slip ratio measured on 
different lateral X-ray views, with the slip ratio in three positions contributing 38.4 % to the feature importance (Fig. 7). The 
importance of the slip ratio aligns with clinical cognition. By definition, slip ratio effectively reflects the occurrence of vertebral 
slippage. Meyerding [7] used it to assess the severity of spondylolisthesis in patients, and similarly, Trinh et al. [21] utilized it as a 
feature for the automated diagnosis of lumbar spondylolisthesis. The lumbar segment number is also an important feature in our 
model, which correlates with the varying incidence rates of spondylolisthesis across different lumbar segments. Previous studies have 
demonstrated significant differences in the probability of spondylolisthesis occurrence among different segments [40,41]. In clinical 
practice, surgeons pay particular attention to segments with higher incidence rates to reduce missed diagnoses of spondylolisthesis. 

Table 4 
Comparison of diagnostic performance between our machine learning approach and Trinh’s rule-based method.

Metrics P-grade(k1 = 10) PSD(K2 = 37) P-Grade + PSD DS(K3 = 0.14) Ours

acc 0.8880 0.8749 0.8856 0.7104 0.9660
precision 0.7692 0.8842 0.7384 0.2400 0.9020
recall 0.6742 0.4719 0.7135 0.1685 0.9020
F1-score 0.7186 0.6154 0.7257 0.1980 0.9020

Fig. 7. Schematic diagram of feature selection results.
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Therefore, this model aligns well with clinical cognition. Among other important features of the LGBM model, the first-order and 
second-order features related to the Slip Ratio also account for the vast majority. Therefore, the classification model can well explain 
the definition, degree, segmental difference and posture difference of spondylolisthesis, which is consistent with clinical facts and has 
strong practical value.

To the best of our knowledge, there are scarce studies that have concatenated instance segmentation models with classification 
models for the automatic diagnosis of lumbar spondylolisthesis, explicitly outlining the affected vertebral segment numbers. Several 
researches on automatic diagnosis of lumbar spondylolisthesis by analyzing imaging data have published. Hu et al. [42] proposed a 
new neural network structure named Swin-PGNet, which was trained using annotated X-ray images, so that it can automatically locate 
the landmarks of the lumbar vertebral body, and measure the L4 lumbar sliding distance through the predicted landmarks. The 
diagnostic accuracy of the model for spondylolisthesis was 71.3 %. The model can automatically obtain the coordinates of the cor
responding landmarks by learning the annotated images, and then use these coordinates to calculate the distance of displacement 
directly, which is similar to the measure method of the first model used in our study. Although the accuracy rate of using a single model 
is higher than physician in the same study (71.3 % VS 70.7 %), but compared with other machine learning models, the performance is 
not so good. Another limitation is the model in this study only analyzed a single segment of L4, which may not so accurate when 
applied to diagnosis of spondylolisthesis in other segments. Lehnen et al. [43] applied deep neural network to automatic diagnosis of 
lumbar degenerative diseases including spondylolisthesis. In this study, U-Net-based CNN was used in their study to segment MRI 
images. Segmentation results was applied to identify different diseases according to their geometric relationship. For spondylolisthesis 
diagnosing, they employed Meyerding’s classification, which is primarily intended for grading the severity of spondylolisthesis after 
diagnosis. In fact, Meyerding’s classification does not include the definition that a slip ratio greater than 0 can diagnose spondylo
listhesis. This misuse might be a major reason for the substantial disagreement between the model and experts in diagnosing spon
dylolisthesis, resulting in a positive predictive value of only 13.11 %. Zhao et al. [44] also trained a model for grading lumbar 
spondylolisthesis using MRI images. However, this model similarly cannot perform the diagnostic task for lumbar spondylolisthesis. 
Additionally, MRI-based models, due to their high cost and time-consuming nature, are not the primary imaging choice for diagnosing 
lumbar spondylolisthesis in clinical practice. Consequently, they may not be widely used in outpatient care or in large-scale population 
disease screening.

In contrast to these approaches, Trinh et al. [21] employed image segmentation to extract key points of the lumbar vertebrae and 
manually constructed features for diagnosing spondylolisthesis, thereby enabling the automatic identification of the specific affected 
segment. Nonetheless, their limitation resides in the insufficient automation of manually computed features, with certain pivotal 
diagnostic parameters (akin to K1, K2, K3 in this study) requiring manual specification. Moreover, automated feature learning excels at 
uncovering latent patterns and intricate relationships within data that might elude straightforward human recognition or construction. 
Furthermore, features automatically extracted by machine learning models tend to generalize better across different datasets, whereas 
manually crafted features can be overly tailored to specific tasks or datasets, potentially compromising generalization performance 
when applied to novel contexts. Indeed, their method displayed minor discrepancies in performance when applied to our dataset 
compared to their own. Lastly, while manually defined features hold an advantage in terms of interpretability, being grounded in 
explicit medical expertise, our machine learning model leverages SHAP values for feature explanation, thereby mitigating, to a certain 
extent, the traditional disadvantage of poor explainability associated with machine learning methodologies.

Compared with these methods, this study has engineered an integrated diagnostic system that combines an instance segmentation 
model, medical feature extraction methodologies, and a classifier, thereby harnessing the strengths of each component to significantly 
enhance diagnostic accuracy in comparison to the diagnostic pipeline employed by Trinh et al. [21] When combined with the effi
ciency advantage of artificial intelligence, it significantly enhances the accuracy and efficiency of clinical assessment and scientific 
research pertaining to lumbar spondylolisthesis.

5. Limitations

This study has certain limitations that warrant improvement. Firstly, the system was trained and validated using a single-center, 
retrospective dataset, which could introduce selection bias. Secondly, the standardization and reprocessing of X-ray images can be 
time-consuming, necessitating more streamlined approaches in the future. Additionally, our system is currently unable to diagnose the 
retrolisthesis due to limited data availability for model training and testing within our dataset.

6. Conclusion

In conclusion, this study presents a robust system for the diagnosis of lumbar spondylolisthesis, capable of not only accurately 
detecting the presence of spondylolisthesis but also precisely identifying the segmental sequence number of the slippage. Moreover, 
our approach introduces a novel method for automated quantitation of spondylolisthesis. The pipeline developed in this study may also 
hold promise for identifying other spinal diseases based on contour detection, potentially leading to the development of more versatile 
diagnostic models.
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