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Rouges Terres, 51110, Pomacle, France   

A R T I C L E  I N F O   

Keywords: 
CHO cells 
Model calibration 
Metabolic shift 
Activation-inhibition 
Digital twin 

A B S T R A C T   

This paper reviews the key building blocks needed to develop a mechanistic model for use as an operational 
production tool. The Chinese Hamster Ovary (CHO) cell, one of the most widely used hosts for antibody pro
duction in the pharmaceutical industry, is considered as a case study. CHO cell metabolism is characterized by 
two main phases, exponential growth followed by a stationary phase with strong protein production. This process 
presents an appropriate degree of complexity to outline the modeling strategy. The paper is organized into four 
main steps: (1) CHO systems and data collection; (2) metabolic analysis; (3) formulation of the mathematical 
model; and finally, (4) numerical solution, calibration, and validation. The overall approach can build a pre
dictive model of target variables. According to the literature, one of the main current modeling challenges lies in 
understanding and predicting the spontaneous metabolic shift. Possible candidates for the trigger of the meta
bolic shift include the concentration of lactate and carbon dioxide. In our opinion, ammonium, which is also an 
inhibiting product, should be further investigated. Finally, the expected progress in the emerging field of hybrid 
modeling, which combines the best of mechanistic modeling and machine learning, is presented as a fascinating 
breakthrough. Note that the modeling strategy discussed here is a general framework that can be applied to any 
bioprocess.   

1. Introduction 

The operation of bioreactors in bioproduction still needs to be 
exploited empirically, with a small amount of information collected 
online by sensors. However, the potential of mechanistic models as 
operational production tools is likely to increase efficiency, for example, 
through the early detection and correction of issues. In this review 
paper, bioproduction by Chinese Hamster Ovary (CHO) cells is used as 
an example to detail the key bricks needed to build a mechanistic model 
and how they work together. We chose this because CHO cells are the 
most commonly mammalian host used for therapeutic protein produc
tion in the pharmaceutical industry (Yang et al., 2022). The metabolism 
of CHO cells includes an initial growth phase, with a high level of lactate 
production, and a subsequent stationary phase, where cell growth has 
slowed or stopped, and recombinant protein production is high (Dean 
and Reddy, 2013). This succession of phases is efficient as it separates 
the growth phase, where resources are used to increase the population, 
from the stationary phase, where the cells use resources to produce the 
protein of interest (Sengupta et al., 2011). Nevertheless, the factors and 

mechanisms that trigger this metabolic shift between the exponential 
and stationary phases observed in CHO cultures remain poorly under
stood (Hartley et al., 2018; Yahia et al., 2021). Metabolic flux analysis 
(MFA) and flux balance analysis (FBA) are essential in mechanistic un
derstanding of cell metabolism for optimal production process planning 
and design (Huang et al., 2017; Sha et al., 2018). Despite tremendous 
progress, much remains to be done to understand CHO cell metabolism 
(Marx et al., 2022). 

This production process is complex, and combining productivity, 
product quality, efficiency, and consistency remains challenging (Luo 
et al., 2021). This complexity explains why many industrial strategies 
for protein production by CHO cells remain mainly based on empirical 
results (Calmels et al., 2019). Mechanistic modeling is a powerful tool 
that combines knowledge from different sciences (biology, chemistry, 
physics, maths, etc.) that can be used for assumption testing, experi
mental design, and control/optimization of bioprocesses. However, 
before mechanistic modeling can be used as an operational tool, 
developing such models requires a demanding experimental effort for 
calibration and validation. Over-parameterized models could affect this 
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process, which could turn them into models lacking robustness and 
universality (Tsopanoglou and del Val, 2021). Several models have 
already been developed for simulating the CHO cell metabolism (Xing 
et al., 2010; Nolan and Lee, 2011; López-Meza et al., 2016; Jimenez del 
Val et al., 2016; Kotidis et al., 2019; Yahia et al., 2021). But most models 
are poorly identified, and the description of the metabolic pathways and 
indicators used for the prediction of metabolic shift is still inadequate. 
Sometimes, models are either too complex or straightforward for real
istic industry use. 

To further advance the field, this paper reviews the progress in the 
mathematical modeling of CHO cells. For clarity, the comprehensive 
work to be produced to obtain an efficient mechanistic model in bio
processes is divided into a set of building blocks (Fig. 1). 

The paper is organized as follows. It is first necessary to understand 
the biological system (substrate, culture media, operating parameters, 
metabolic pathways, etc.). This should be done at the bioreactor level, at 
which cultures should be performed over a wide range of growing 
conditions with comprehensive instrumentation (online and offline) to 
build a database (section 2). At the fundamental level, metabolic path
ways need to be described, using metabolic flux analysis and flux bal
ance analysis (section 3). The metabolic pathways are then formulated 
to build a system of ordinary differential equations (ODEs) (section 4). 
With relevant applied mathematical tools, the set of equations can 
finally be solved efficiently for predictive simulation (section 5). At this 
stage, the database of section 2 is crucial to define the model parameters 
by direct determination or inverse analysis. Once validated, the mech
anistic model can be used as an operational control command, design, 
and optimization tool. 

A final section 6 is devoted to the remaining challenges and pros
pects. After some application examples of mechanistic modeling to CHO 
cell systems, the main open questions and remaining challenges will be 
exposed. Then, as part of the answers to these challenges, we explain 
how the combination of mechanistic modeling and machine learning, 
together with database and online information, is about to change the 
vision of the sequential loop depicted in Fig. 1. Finally, recommenda
tions are provided to the reader as a guide for future studies. 

2. CHO cells system 

2.1. CHO culture conditions 

The production of recombinant proteins using CHO cells requires 
optimal culture media that support cell growth and productive yield, 

providing the necessary resources for high viable cell densities, stimu
lating synthesis processes, and extracellular transport of biological 
products (Ritacco et al., 2018). Currently, several media that provide 
good yields for CHO cells (high density of viable cells, cell longevity, and 
increased product titers) in therapeutic protein production are 
commercially available (Pan et al., 2017b). The optimal composition of 
a basal medium for protein production depends mainly on the CHO cells 
strain, specific characteristics of the subclones, and the protein of in
terest (Rodrigues et al., 2012; Reinhart et al., 2015; Pan et al., 2017b). 

Whatever the CHO strain, the culture medium must be rich in carbon 
sources (sugar, mostly glucose), nitrogen sources (mainly glutamate or 
glutamine, and other amino acids, especially those that cannot be syn
thesized de novo by the CHO cells and known as essentials: histidine, 
phenylalanine, leucine, isoleucine, lysine, methionine, threonine, tryp
tophan, arginine, cysteine, proline, and valine (Carrillo-Cocom et al., 
2015; Hefzi et al., 2016; Pan et al., 2017a,b)), and trace elements (vi
tamins and minerals), under aerobic conditions (Huang et al., 2017). 
This system is usually operated in fed-batch mode to maintain optimal 
nutrient concentration values and ensure maximum protein production 
(Fig. 2). In recent years, perfusion reactors have attracted a great deal of 
interest due to the advantages they offer over batch-feed systems: higher 
viable cell densities for extended periods of time, resulting in increased 
volumetric titers and a smaller footprint (MacDonald et al., 2022). CHO 
cell metabolism is highly complex and divided into two fundamental 
phases. The first stage is exponential growth and low protein produc
tion, followed by a stationary phase, characterized by low cell growth 
and strong protein production using the lactate produced during the 
exponential phase as substrate. A final phase, the decline phase with 
lower production and higher mortality, could occur, but the industrial 
process usually stops before this decline phase. Lactate and ammonium 
are the most significant inhibitory by-products of CHO cell metabolism, 
but an excess of specific metabolites, including amino acids (e.g., 
phenylalanine, leucine, threonine, tryptophan, tyrosine, serine, methi
onine, etc.) and by-products (e.g., formate, indolelactate, homocysteine, 
phenylacetate, etc.), can also impact CHO cell metabolism negatively 
(Pereira et al., 2018). 

The stationary phase can be manually induced by a temperature shift 
or triggered spontaneously due to the accumulation of inhibiting sec
ondary metabolites for cell metabolism, primarily lactate and ammo
nium. The temperature strategy is timed to increase longevity and 
improve final antibody yield (Torres et al., 2018; McHugh et al., 2020). 

Due to the great complexity of these systems, many studies are 
currently being carried out to optimize their operation by reducing the 
production of inhibiting secondary metabolites for cellular metabolism 
and increasing the yield in protein production. Note that experiments in 
these systems are costly, time-consuming, and prone to bacterial 
contamination. With recent developments in computing capabilities, 
mathematical modeling has become an undeniable ally in bioprocess 
research, enabling the validation of various hypotheses with consider
able savings in resources and time. 

2.2. Gene amplification systems 

Stable CHO cell lines for recombinant protein production are ob
tained using two main gene amplification systems: dihydrofolate 
reductase (DHFR)-based methotrexate (MTX) selection or glutamine 
synthetase (GS)-based methionine sulfoximine (MSX) selection (Matasci 
et al., 2008; Costa et al., 2010; Fan et al., 2012; Budge et al., 2021; Yang 
et al., 2022). 

2.2.1. DHFR-based MTX selection 
The primary function of the DHFR enzyme is to catalyze the pro

duction of tetrahydrofolate from folic acid (Costa et al., 2010), a process 
involved in the biosynthesis of glycine, purines, and thymidylic acid 
(Cacciatore et al., 2010; Budge et al., 2021; Yang et al., 2022). The DHFR 
gene is transfected into host cells in the same gene expression vector as Fig. 1. Strategy for modeling CHO cell metabolism.  
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the protein of interest, serving as a marker to select cells transfected with 
the protein gene of interest in a medium deficient in glycine, purines, 
and thymidylic acid (Noh et al., 2013). MTX, a DHFR inhibitor, is also 
used to create more pressure in the selection process until only cells with 
an elevated gene copy number prevail (Noh et al., 2013). Although this 
selection system has been the most widespread, as it allows for greater 
efficiency in gene amplification, it requires many rounds of selection 
involving considerable time consumption (Noh et al., 2018). 

In modeling, this amplification method should be considered when 
working with systems with deficient glycine, purines, and thymidylic 
acid. However, these nutrients are usually fulfilled in the production 
process, and their consumption is less extensive than other nutrients like 
glucose, glutamate, and glutamine. 

2.2.2. GS-based MSX selection 
The primary function of the enzyme glutamine synthetase is to 

catalyze the synthesis of glutamine from glutamate and ammonium 
(Cacciatore et al., 2010; Yang et al., 2022). This amplification method is 
adapted to cells that do not survive in glutamine-poor media. Then, the 
GS gene is transfected into host cells in the same expression vector as the 
protein gene of interest, serving as a marker for selecting cells trans
fected with the protein gene of interest in the glutamine-deficient me
dium (Noh et al., 2013). MSX, an enzyme inhibitor, is then used to 
increase the selection pressure until only cells with elevated gene copy 
numbers prevail (Zhang et al., 2022). The GS system can achieve 
adequate expression levels through a single round of selection and 
amplification, thus significantly reducing the time required for cell line 
generation (Kingston et al., 2002; Noh et al., 2013). The shorter 
amplification time needed and its contribution to ammonium reduction 
by converting glutamate and ammonium to glutamine have increased its 
application in the pharmaceutical industry (Fan et al., 2013). 

Unlike the previous amplification method, the GS-based MSX selec
tion method has a significant impact during the production process. This 
method endows the cell with the ability to synthesize glutamine from 
glutamate, ammonium, and ATP, helping to counteract the inhibition of 
ammonium in CHO cell metabolism (Fan et al., 2013). In the case of 
glutamate limitation, the use of glutamine has a more pronounced 
negative effect on the cell than glutamate utilization, as it results in an 
increased release of ammonium (Dang, 2010). Therefore, when 

modeling a system in which this selection method has been applied, it is 
crucial to consider both the synthesis and utilization of glutamine. These 
processes involve extensively consumed substrates (glutamate and 
glutamine) and an inhibiting metabolite (ammonium), significantly 
impacting cell metabolism during protein production. 

2.3. Measured data 

In CHO systems, the experimental determination of variables such as 
total and viable cell number (or viability), offline pH, partial pressures of 
oxygen (pO2) and carbon dioxide (pCO2), osmolality, glucose, lactate, 
amino acids, ammonia, and mAbs concentrations are common (Yahia 
et al., 2021; Huang et al., 2017; Xing et al., 2010; Nolan and Lee, 2011, 
2012). Determining these parameters during the process enables its 
performance to be assessed and the operating conditions to be adjusted 
by manipulating parameters such as the feeding of substrates or media. 
In most cases, the sampling and subsequent analytical techniques used 
to determine the variables require considerable resources and time. This 
is a lock that prevents the operator from reacting in time to ensure op
timum performance. 

Recently, probes have been developed that allow online monitoring 
of most variables, as is the case with probes designed using spectros
copy. Raman spectroscopy is one of the most widely used techniques for 
online monitoring and control of cell cultures. It stands out for its 
spectra’s sharpness and compatibility with aqueous systems (Li et al., 
2018). Several studies have reported the use of Raman spectroscopy for 
online monitoring in CHO systems in the last few years (Li et al., 2018; 
Santos et al., 2018; Feidl et al., 2019; Yilmaz et al., 2020; W Eyster et al., 
2021; Chen et al., 2021; A Gibbons et al., 2022; Domján et al., 2022; 
Schwarz et al., 2022; Romann et al., 2022; Yousefi-Darani et al., 2022; 
Yang et al., 2024). The online monitoring of key process variables fa
cilitates the development of mathematical feedback models where 
operating conditions can be adjusted to obtain the maximum yield in 
protein production. Mechanistic modeling and Raman spectroscopy 
have been combined for monitoring antibody chromatographic purifi
cation by Feidl et al. (2019). This monitoring was achieved by 
combining data from a kinetic model and a Raman analyzer employing 
an extended Kalman filter. This technique proved robust, allowing ac
curate estimation of antibody concentrations with reduced noise. 

Fig. 2. Schematic representation of the bioreactor functioning during CHO cell culture (Glc: Glucose, Glu: Glutamate, and Lac: Lactate).  
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The richness of the database that will be used later for model cali
bration is of crucial importance, namely regarding the robustness and 
prediction potential. To optimize the experimental work needed to build 
this database, it is strongly recommended to use a design of experiment 
(DOE) that considers the variability of the main system variables, within 
and outside the operational ranges used in industry. Both fed-batch and 
batch tests are recommended. Notably, one part of the tests should not 
be used in the learning step but kept for validation. 

3. Metabolic pathway identification 

In bioprocess modeling, identifying metabolic pathways is crucial as 
it represents the core of mechanistic modeling and its formulation. To 
that purpose, metabolic flux analysis (MFA) is the most widely used 
technique. MFA uses in vivo isotopic markers of metabolites (13C) and 
modeling to quantify fluxes through the major metabolic pathways at 
steady state (Sengupta et al., 2011). In recent years, MFA has been 
extended to assess metabolic transients during fermentation, consid
ering cellular dynamics, referred to as dynamic MFA (DMFA) (Anto
niewicz, 2013; Martínez et al., 2015). Conventional and dynamic MFA 
approaches can be complemented by flux balance analysis (FBA), a 
mathematical modeling method frequently employed by metabolic en
gineers to quantitatively simulate steady-state genome-scale metabolic 
reconstructions (Kauffman et al., 2003; Gianchandani et al., 2010; 
Martínez et al., 2013; Ivarsson et al., 2015; Hefzi et al., 2016; Huang 
et al., 2017; Gutierrez et al., 2020; Schinn et al., 2021), in which, as for 
DMFA, dynamic conditions can also be applied (DFBA) (Antoniewicz, 
2013). FBA utilizes linear programming to optimize a flux distribution 
towards a defined objective, considering physicochemical and 

thermodynamic constraints (Orth et al., 2010). While FBA demands 
significantly fewer experimental resources than the extensive re
quirements of 13C-MFA, the latter is the preferred method for identifying 
metabolic pathways within biological systems. It offers higher precision 
and the ability to generate a more comprehensive flux map (Antonie
wicz, 2021). Consequently, this study will emphasize the 13C-MFA 
approach. 

3.1. Metabolic flux analyses 

Several recent MFA approaches have been developed to understand 
CHO cell metabolism. In most cases, two distinct metabolic phases can 
be observed. The first is the exponential phase, characterized by rapid 
growth and the secretion of inhibitory by-products such as lactate and 
ammonium. During this phase, protein production is limited. It is fol
lowed by the stationary or non-growth phase, during which protein 
production increases significantly and cell growth decreases. During the 
exponential phase, a high flux of glycolysis with considerable lactate 
production and a strong association of anaplerotic processes with the 
TCA cycle is observed. In contrast, the stationary or non-growth phase 
exhibits a reduced glycolysis flux, a net lactate consumption, an oxida
tive flux of the pentose phosphate pathway, and a reduced rate of ana
plerosis (Ahn and Antoniewicz, 2011; Templeton et al., 2013). 

Fig. 3 summarizes the metabolic pathways involving carbon- 
containing compounds that play a crucial role in catabolic and 
anabolic processes in CHO cells (known as central metabolism carbon) 
determined by using 13C as reported in the literature. 

Anaplerosis is mainly observed through converting pyruvate to 
oxaloacetate and glutamate to α-ketoglutarate. In both phases, pyruvate 

Fig. 3. Simplified schema of central metabolism carbon in CHO cells based on literature reports (Glc: Glucose, Glu: Glutamate, G6P: Glucose-6-phosphate, Pyr: 
Pyruvate, Lac: Lactate, Gln: Glutamine, oxPPP: Oxidative pentose phosphate pathway, TCA: Tricarboxylic acid cycle, and oxPP: Oxidative phosphorylation). 
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dehydrogenase, and TCA cycle fluxes are similar (Ahn and Antoniewicz, 
2011). During the stationary phase, an elevated glucose flux diverted to 
oxPPP, providing high NADPH production, is observed (Sengupta et al., 
2011). This elevated NADPH production via oxPPP could be associated 
with macromolecule biosynthesis or a defensive process of the cell to 
counteract oxidative stress (Fig. 3). Sengupta et al. (2011) also found 
that, during the stationary phase, most of the pyruvate produced in 
glycolysis was metabolized in the TCA cycle with little or no lactate 
production. This finding aligns with Templeton et al. (2013), who 
developed a more detailed MFA, observing a correlation between the 
peak of antibody production and the highest oxidative activity in the 
Krebs cycle. The authors confirmed the absence of lactate production 
during the stationary phase until the metabolite reached low levels, 
restarting lactate production. Interestingly, during the stationary phase, 
the energy efficiency of the cells using lactate (total ATP produced per 
total C-mol substrate consumed) six times higher than in 
lactate-producing cells was reported by Martínez et al. (2013) by flux 
balance analysis. These results underline the importance of the expo
nential phase, during which rapid growth ensures a large number of cells 
or ”protein micro-factories,” simultaneously providing lactate, an effi
cient energy source for the stationary phase. 

Martínez et al. (2015) conducted an interesting DMFA work for 
studying the dynamics of metabolic shifts caused by temperature 
changes. Their study demonstrated that inducing mild hypothermia in 
the system significantly reduces growth and overall metabolic rates, 
potentially improving the stability of recombinant protein production. 
These results suggest that protein production is antagonistic to the 
growth process. As the cell reduces its metabolic flux for cell growth due 
to temperature decrease, its biological activity is redirected towards 
protein production. This behavior is especially relevant considering 
these cells have been engineered, selected, and adapted to produce re
combinant proteins, behaving like malignant cells to grow indefinitely. 
Cell decay is also an important process that should not be neglected in 
these systems. Being present throughout the process is more significant 
during the decline phase. The specific mortality averaged over the whole 
process rate ranges between 0.013 and 0.107 d− 1 (Templeton et al., 
2013). In brief, most MFA studies report strong cell growth and weak 
protein production during the exponential phase mainly based on 
glucose and glutamate consumption, which is followed by a transition of 
metabolism to the stationary phase, where strong protein production 
and weak cell growth are based mainly on the simultaneous utilization 
of glutamate, lactate, and glucose, with low or no lactate production. In 
general, peak antibody production is associated with increased oxidative 
metabolism activity. Cell decay has been reported during the entire 
process. Fig. 4 shows a compilation of the phenomena occurring during 
CHO cell metabolism identified from the analysis of metabolic fluxes 
reported in the literature. 

The exponential phase is accompanied by the production of by- 
products, such as lactate and ammonia, which inhibit cell metabolism. 
However, the lactate production during the exponential phase ensures 
the redox balance in the cytosol. It becomes an essential carbon and 
energy source during the stationary phase (Fig. 3). 

3.2. Metabolic pathways description 

The metabolic pathways identified from the metabolic flux analysis 
works reported in the previous section are summarized in Figs. 5 and 6, 
respectively, for the exponential and stationary phases. The extent of 
each metabolic pathway identified may depend on the CHO strain. 

The modeling of the stationary phase is more complex than the 
exponential phase, as it involves a more significant number of metabolic 
pathways co-occurring (e.g., protein production based on lactate, cell 
growth based on lactate, protein production based on glucose, and cell 
growth based on glucose). In this phase, lactate is an energy source 
primarily for cell growth. While lactate plays a role in protein produc
tion, its contribution is minimal compared to glucose. Consequently, 
some authors have dismissed the significance of lactate in protein pro
duction (Jimenez del Val et al., 2016; Kotidis et al., 2019). However, its 
minor contribution is crucial when the model distinguishes anabolism 
from catabolism by accounting for the ATP/ADP and NADH/NAD+

electron transport chains (Nolan and Lee, 2011). 
This remark on the role of lactate illustrates how the choice of 

metabolic pathways to be considered is a crucial question for modeling. 
The answer depends on the costs and benefits between their influence on 
the main output variables and the complexity of the parameter deter
mination. Additionally, the number of stoichiometric and dynamic pa
rameters to be defined depends on the model complexity, which could 
be problematic for direct experimental determination. As it will be 
explained below, this question of parameter determination can be partly 
addressed by inverse analysis. Note that a more comprehensive model 
does not necessarily mean greater precision. A complexity that is too 
high and unbalanced with sufficient data can hinder its practical 
application (numerical solution problems, over-parametrized model, 
error propagation, large CPU time, etc.). Therefore, the challenge for 
modelers is to obtain a suitable trade-off. 

Moreover, although both phases have common metabolic pathways, 
they differ considerably in stoichiometry and kinetics. Consequently, 
both phases must be separately formulated using submodels. These two 
submodels can coexist, but the pathways of the stationary phase sub
model (Fig. 6) should be activated once the metabolic pathways of the 
exponential phase submodel (Fig. 5) have been deactivated. 

3.3. Metabolic shift 

The metabolic transition of CHO from the exponential to the sta
tionary phase is usually intentionally induced by a temperature shift 
(temperature drop) (López-Meza et al., 2016; Jimenez del Val et al., 
2016). Nevertheless, factors that trigger a spontaneous metabolic shift 
remain a challenge for modelers, as it is crucial to obtain a predictive 
model that can address unexpected situations or propose innovative 
protocols. The metabolic transition from lactate production to lactate 
consumption in CHO cells is an essential phenomenon strongly linked to 
cell culture longevity and protein production yield (Brunner et al., 
2018). However, this metabolic shift is difficult to control due to the 
unknown mechanisms involved, which are still under investigation 
(Zagari et al., 2013; Hartley et al., 2018; Hong et al., 2018). 

Fig. 4. Metabolic pathways involved in the different stages of CHO cell metabolism.  
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Several studies have been conducted to identify the factors or the 
combination of factors that trigger this phenomenon. The literature has 
highlighted various major triggering factors (Fig. 7): limiting substrates 
such as glucose (Altamirano et al., 2004, 2006; Tsao et al., 2005; Mar
tínez et al., 2013; Zagari et al., 2013; Brunner et al., 2021), glutamate, or 
glutamine (Zagari et al., 2013; Ghorbaniaghdam et al., 2014; Wahrheit 
et al., 2014), the effect of pH (Zalai et al., 2015; Liste-Calleja et al., 2015; 
Ivarsson et al., 2015), and inhibitory by-products such as lactate 
(Mulukutla et al., 2012; Kyriakopoulos and Kontoravdi, 2014; Pereira 

et al., 2018), and carbon dioxide (Brunner et al., 2018; Xu et al., 2018). 
Substrate limitation (glucose, glutamate, or glutamine) can activate 

alternative metabolic pathways in which the carbon source is alternated 
from glucose to lactate. Many studies have reported that spontaneous 
metabolic shift is associated with pH (Zalai et al., 2015; Liste-Calleja 
et al., 2015; Ivarsson et al., 2015), which contradicts other studies in 
which metabolic shift has occurred spontaneously at constant pH 
(Altamirano et al., 2006; Mulukutla et al., 2012; Martínez et al., 2013; 
Ghorbaniaghdam et al., 2014). Martínez-Monge et al. (2019) tested 

Fig. 5. Simplified schema of metabolic pathways taking place during the exponential phase (Glc: Glucose, Glu: Glutamate, Gln: Glutamine, and Lac: Lactate, with 
pink and blue colors denoting substrates and products, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 6. Simplified schema of metabolic pathways occurring during the stationary phase (Glc: Glucose, Glu: Glutamate, Gln: Glutamine, and Lac: Lactate, with pink 
and blue colors denoting substrates and products, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 7. Variables proposed in the literature as possible triggers for metabolic shift in the CHO cell system.  
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pH-controlled and uncontrolled CHO cell metabolism. When pH was 
controlled in the bioreactor, only lactate consumption was observed 
once glucose was completely depleted. However, since these experi
ments were performed in batch mode, it can be assumed that the 
metabolic shift was triggered by substrate limitation, in this case, 
glucose limitation. It would be interesting to perform this experiment 
with sufficient glucose (batch feeding). In contrast, when pH was not 
controlled, it decreased due to the accumulation of secreted lactic acid, 
triggering its consumption when pH was below 6.80. According to these 
authors, the metabolic shift could be induced by adding lactate to the 
initial medium and setting the pH below 6.80. 

Finally, the antagonism between cell growth and protein production 
reported in section 3.1 could explain the spontaneous metabolic shift. 
For example, inhibiting cell growth due to the accumulation of by- 
products could lead the cell to redirect their production capacity to
wards protein synthesis (Mulukutla et al., 2012; Kyriakopoulos and 
Kontoravdi, 2014; Pereira et al., 2018). This redirection could be a way 
to maintain maximum biological activity of the cell, consistent with its 
malignant behavior, while conveniently consuming an essential cell 
growth inhibitor by-product such as lactate. 

In conclusion, according to the literature analysis, a combination of 
temperature and limiting substrates triggers the metabolic shift. On the 
other hand, the spontaneous metabolic shift occurs even with controlled 
and uncontrolled pH, implying that pH could be an indirect macroscopic 
indicator of the metabolic shift. This parameter is directly related to 
inhibiting by-products already identified as triggering factors, like 
lactate and carbon dioxide. Another factor to consider is ammonium, 
which is an inhibitory by-product of cell metabolism that, at the same 
time, contributes to lowering the pH of the system. To our knowledge, 
ammonium has not yet been reported in the literature as a triggering 
factor. For this reason, it would be interesting to intentionally try to 
induce metabolic shifts by adding these inhibiting by-products to 
discern their contribution to metabolic shifts. 

3.4. Main acid contributors to pH 

To quantify the pH variation in the CHO system, it is necessary to 
consider the main metabolites, the substrate feed, and the acid-base 
solutions added during metabolism to regulate pH, where the main 
acid-base contributors must be identified. The reduction of pH during 
the degradation process is a direct consequence of CHO cell metabolism. 
All metabolic pathways are accompanied by carbon dioxide production 
and other inhibiting by-products such as lactate and ammonium that 
shift equilibrium towards hydronium formation, thus reducing the pH 
value. The chemical equilibria corresponding to the substrates and 
metabolites involved in CHO cell metabolism are shown in Table 1. 

Considering the equilibrium constant values at 25 ◦C and the same 
species concentration, the order of contribution to the system acidity is 
HLac > NH+

4 > CO2 (see Table 2). However, the actual acid contribution 
depends on the extent to which each species it is available in the system. 
One must remember that lactate is produced during the exponential 
phase and consumed during the stationary phase. Meanwhile, ammo
nium and CO2 are produced throughout the process. Nevertheless, as pH 
is generally regulated, the influence of pH is discarded in most metabolic 
models. In contrast, it is important to note hyperosmolality, a non- 
physiological increase in osmolality that affects cell physiology, 

morphology, and proteome, resulting from the addition of concentrated 
feed and base solutions for pH regulation. While it enhances the specific 
antibody production rate, it inhibits cell growth, thereby affecting the 
final antibody titers (Kim et al., 2002; Min Lee and Koo, 2009; Zhang 
et al., 2010; Romanova et al., 2022). Incorporating hyperosmolality into 
mechanistic metabolic models could improve the accuracy of the impact 
of feeding on CHO cell metabolism. 

4. Mathematical formulation 

The formulation is a key building block to derive a mechanistic 
model. Even though they are not mandatory, the following assumptions 
are considered in most published works:  

1. Perfectly stirred bioreactor,  
2. Constant stoichiometric and kinetics parameter values,  
3. Metabolic shift can be induced by temperature change and the 

combination of ammonium and lactate inhibiting effect,  
4. Different stoichiometry and kinetics for exponential and stationary 

phases, even when they can change over the metabolic process, as 
can be corroborated in Templeton et al. (2013),  

5. Constant chemical composition of CHO cells, regardless of the 
metabolic process and the nature of the substrate. It is to be expected 
that the chemical composition of CHO cells will be different when 
glucose or lactate is used as the primary carbon source,  

6. No oxygen limitation is considered, as aeration is regulated to ensure 
adequate oxygen levels during the process to avoid the reactive ox
ygen species formation that affects the cell’s metabolism, reducing 
the proteins’ productivity (Handlogten et al., 2018) considerably,  

7. pH regulation. 

Assumption 1 allows the 0D model to be derived. They are based on 
ODEs (Ordinary Differential Equations), which allow the efforts to be 
concentrated on the metabolism. Constant stoichiometric and kinetics 
parameter values are quasi-mandatory for tackling complexity. Yet, due 
to the existence of two phases and co-current pathways, the global 
stoichiometry over an entire process depends on culture conditions. 
Assumption 3 is essential as it connects the submodel describing the 
exponential phase with the submodel describing the stationary phase. 
Consequently, successful identification and mathematical description of 
the combination of effects of the factors that trigger this metabolic shift 
represents a significant challenge for modelers. Although not manda
tory, the two last assumptions are usually fulfilled in production and 
allow the model to be simplified without restriction. Finally, it is 
essential to note that all the above assumptions are based on the con
dition that the CHO cell system is fully acclimatized to the culture me
dium and ready for production. 

4.1. Kinetics of biological processes 

Models based on physical, chemical, and biological principles offer a 
robust option in process engineering. However, the rates at which these 
principles occur is mandatory to obtain a predictive model. This must 
include the dynamics of all metabolic pathways, but also side phe
nomena such as the viable/non-viable cell densities and balances in the 

Table 1 
Main acid contributors to pH variation.  

No. pH contributor Chemical equilibrium Ka at 25 ◦C 

1 Ammonium NH+
4 + H2O⇌NH3 + H3O+ 5.60 × 10− 10 

2 Lactate HLac + H2O ⇌ Lac− + H3O+ 1.38 × 10− 4 

3 Carbon dioxide H2CO3 = CO2 + H2O  
H2CO3 + H2O⇌HCO−

3 + H3O+ 4.20 × 10− 7 

HCO−
3 + H2O⇌CO2−

3 + H3O+ 4.80 × 10− 11  

Table 2 
Kinetics expressions corresponding to main pH contributors.  

No. pH contributor Kinetics expression 

1 Ammonium d[H3O+]

dt
= kH3O+ (Ka,NH+

4
[NH+

4 ] − [NH3][H3O+])

2 Lactate d[H3O+]

dt
= kH3O+ (Ka,HLac[HLac] − [Lac− ][H3O+])

3 Carbon dioxide d[H3O+]

dt
= kH3O+ (Ka,H2CO3 [CO2] − [HCO−

3 ][H3O+])

d[H3O+]

dt
= kH3O+ (Ka,HCO−

3
[HCO−

3 ] − [CO2−
3 ][H3O+])
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compartments considered by the formulation: at least the cells and the 
bioreactor (nutrient/metabolite concentrations) (Tsopanoglou and del 
Val, 2021) and, depending on the model, the concentration obtained 
from balances in subcompartments of the cells, such as mitochondria. 
For a bioprocess operated in fed-batch mode, the following matter bal
ances reads as: 

V
dS(j)

dt
= Qin(Sin(j) − S(j)) + V

∑i=n

i=1
rS(i) , (1)  

V
dX
dt

= − QinX + V
∑i=n

i=1
rX(i) , (2)  

V
dP(j)

dt
= − QinP(j) + V

∑i=n

i=1
rP(i) , (3)  

dV
dt

= Qin, (4) 

where Qin is the volumetric flow rate of feed (l/h), S(j) is the limiting 
substrate − j (g/l), Sin(j) is the S(j) concentration in the feed (g/l), P(j) is the 
product concentration − j (g/l), V is the bioreactor volume (l), X is the 
biomass concentration (cells/l), rX(i) is the volumetric growth rate for 
process − i (cells/l/h), rP(i) is the volumetric metabolites production rate 
for process − i (cells/l/h), and rS(i) is the volumetric substrates con
sumption rate for process − i (cells/l/h). 

In general, the most widely accepted mathematical expressions for 
considering the limiting effect and the inhibitory effect on the specific 
growth rates are Monod’s law and its variant, respectively, which are 
represented as a single expression as the product of all limiting and 
inhibitory substrates (Bree et al., 1988; Xing et al., 2010; Jimenez del 
Val et al., 2016; López-Meza et al., 2016; Kotidis et al., 2019; Yahia 
et al., 2021; Tsopanoglou and del Val, 2021). The Monod variant 
mathematical expression is also commonly used as a turnover rate 
function for changing metabolic pathways. The first term of Eq. (6) 
represents the substrate’s limiting effect, whereas the by-products’ 
inhibitory effect is represented in the second term of Eq. (6): 

rX(i) = μ(i)X, (5)  

μ(i) = μmax(i)

∏j=m

j=1

S(j)

KS(j) + S(j)

∏j=k

j=1

Kinh
S(j)

Kinh
S(j) + Sinh

(j)
, (6) 

where μ(i) is the specific growth rate for process − i (h− 1), μmax(i) is the 
maximum growth rate for process − i (h− 1), S(j) is the limiting substrate 
− j (g/l), KS(j) is the half-saturation coefficient for the limiting substrate 
S(j) (g/l), Sinh

(j) is the inhibiting by-product − j (g/l) and Kinh
S(j) is the half- 

saturation coefficient for the inhibiting by-product Sinh
(j) (g/l). 

The expression rates of the remaining model variables are expressed 
as a function of cell growth rate considering the stoichiometric re
lationships between the different chemical species and the cells formed 
during the biological process in a manner analogous to chemical re
actions. Negative and positive sign values are added to the expression 
rate for substrate consumption (Eq. (7)) and metabolite production (Eq. 
(8)), respectively: 

rS(i) = −
1

YX/S(j)

rX(i) , (7)  

rP(i) =
1

YX/P(j)

rX(i) , (8)  

where YX/S(j) is the X yield from S(j) (cells/g) and YX/P(j) is the X yield from 
P(j)(cells/g). 

However, even when in CHO cell metabolism modeling, Monod’s 
law and its inhibition variant are the most used, it will be advisable to 

consider another kinetics expression already used in bioprocess 
modeling to find an adequate description of most of the variables’ effect 
of the phenomena described. Fig. 8 shows examples of kinetics expres
sions used in bioprocess modeling. The Moser Equation adds the 
parameter λ to Monod’s law that describes the growth rate to the 
limiting substrate concentration. The Contois Equation states the pro
portionality between the effective saturation constant and the biomass 
concentration X. At high X, μ is inversely proportional to X. This is 
sometimes used to represent a diffusion limitation in flocculating or 
immobilized biomass (Snape et al., 2008). Expressions that combine the 
limiting and inhibitory effect for the same substrate, as is the case of the 
Haldane, Edwards, Webb, and Luong models, could be very useful in 
describing metabolic processes from substrates that have an inhibiting 
effect on the cell but can be utilized as a carbon source, as is the case for 
lactate in CHO systems. According to Edwards (1970), some mathe
matical expressions proposed to describe product inhibition can be 
borrowed to correlate substrate inhibition. For example, the Luong 
(1987) model was obtained from the Levenspiel (1980) model, while the 
Edwards (1970) model was derived from the Aiba et al. (1968) model. 
The Levenspiel (1980) and Aiba et al. (1968) models describe the 
inhibitory effect of the individual products. The logistic equation was 
initially proposed by the UK sociologist Thomas Malthus to describe ”the 
law of population growth” at the end of the 18th century (Malthus, 
1986), which was later used by the Belgian mathematician Pierre 
François Verhulst (1838) to describe the biological population kinetics, 
in particular the self-limiting growth (Xu, 2020). According to this 
expression, the specific growth rate decreases linearly with an 
increasing cell population (X) and reaches zero at the maximum popu
lation. Indeed, this behavior is observed in most CHO systems. The use of 
this mathematical expression for modeling CHO cell metabolism has 
already been evaluated by Shirsat et al. (2015), obtaining better results 
than when Monod’s law is used. In addition, the logistic equation has 
also been used to describe product inhibition (Contois, 1959; Fujimoto, 
1963) (Fig. 8). 

However, even when this mathematical expression describes a 
similar behavior to that reported for CHO cell metabolism, it does not 
consider the metabolic shift. It is more related to the by-product inhi
bition accumulation. Nevertheless, the use of this mathematical 
expression is attractive because of the aspects mentioned above. The 
stepwise function proposed by La et al. (2020) is defined by two pa
rameters: the shift value Sc defines the concentration value at which 
transition occurs, and the α parameter defines the sharpness of this 
transition. This powerful function can be used for describing switching 
between metabolic pathways, limiting substrate, and inhibiting 
by-product effects by manipulating the Sc and α values. It allows the 
value at which switching occurs and the rate at which it occurs around 
that value to be set independently. In this article, we have selected a set 
of functions that can tackle most situations. To go further, we recom
mend the review proposed by Mulchandani and Luong (1989), where 
the applicability and limitations of several functions are analyzed. 

4.2. Kinetics of glutamine metabolism 

The utilization and synthesis of glutamine can be represented as a 
chemical equilibrium, where the glutamine substrate is in equilibrium 
with ammonia and glutamate (Eq. (9)): 

Glutamate + NH+
4 + ATP⇋

GS
Glutamine + ADP (9) 

The equilibrium constant is then expressed as: 

KGln =
[Gln][ADP]

[NH+
4 ][ATP][Glu]

(10) 

As can be corroborated with Eq. (9) the glutamine formation from 
glutamate and ammonia requires energy in the form of ATP. Thus, the 
glutamine production rate can be expressed as follows: 
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Fig. 8. Example of kinetics expressions used for modeling substrate limitation and by-products inhibition in bioprocesses (Verhulst, 1838; Teissier et al., 1936; 
Contois, 1959; Fujimoto, 1963; Webb, 1963; Yano and Koga, 1969; Edwards, 1970; Ghose and Tyagi, 1979; Malthus, 1986; Luong, 1987; Moser, 1988; Selişteanu 
et al., 2007; La et al., 2020). 
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dGln
dt

= kGln(KGln[NH+
4 ][ATP][Glu] − [Gln][ADP]), (11)  

where kGln is the specific equilibrium displacement rate (s− 1). Batstone 
et al. (2002) suggested setting the specific equilibrium displacement rate 
one order of magnitude higher than the highest biological rate constant 
to reduce model stiffness. The reaction equilibrium markedly favors 
synthesis; the equilibrium constant at pH 7.0 and 37 ◦C was 1200 
(Levintow and Meister, 1954). 

4.3. Kinetics of physical and chemical processes 

For considering pH prediction in the model, the hydronium con
centration must be estimated: 

pH = − log[H3O+] (12) 

To estimate hydronium concentration, the main acid-base com
pounds involved in the CHO cell metabolism should be considered: 
ammonium, lactic acid, and carbon dioxide. The chemical equilibrium 
system shown in Table 1 allows us to set the following ordinary differ
ential equation system: 

Where kH3O+ is the specific equilibrium displacement rate (s− 1). 

d[H3O+]

dt
=

(
d[H3O+]

dt

)

NH+
4

+

(
d[H3O+]

dt

)

HLac
+

(
d[H3O+]

dt

)

CO2

(13) 

In biological systems, ammonia stripping takes place when ammonia 
is produced in the presence of continuous aeration. For a better under
standing, the ammonia equilibrium should be first analyzed. According 
to the chemical equilibrium of Eq. (14), the production of ammonium 
via metabolic activity shifts the equilibrium, favoring free ammonia 
production. 

NH+
4 + H2O⇋NH3 + H3O+ (14) 

The free ammonia is liberated from the bioreactor liquid medium 
phase by aeration. Due to the low partial pressure of ammonia in the 
atmospheric air, the ammonia air flow saturation occurs instantaneously 
when it enters the biological reactor throughout the diffusion system. 
The free ammonia production rate can be expressed as follows: 

d[NH3]

dt
= kNH3

(
Ka,NH+

4

[
NH+

4

]
− [NH3][H3O+]

)
, (15)  

where kNH3 is the specific equilibrium displacement rate (s− 1)(with the 
same rule proposed by Batstone et al. (2002) to reduce the system 
stiffness). 

In diffused air systems, saturation with ammonia occurs within the 
first few millimeters of the ascent of the air bubbles through the liquid. 
Because this saturation process is almost instantaneous, the measured 
duration of ammonia desorption in the diffused air system is, in effect, a 
measure of the volume of air needed to achieve the observed removal of 
ammonia (Srinath and Loehr, 1974). Therefore, the ammonia removal 
process can be expressed using the following mathematical expression: 

d[NH3]

dt
= kNH3 ,st[NH3] (16) 

According to Srinath and Loehr (1974), the specific ammonia 
removal rate by aeration can be calculated using the following equation: 

kNH3 ,st = 0.021e

[
1.93x10− 4 qAir

V +0.062(T − 5)

]

, (17)  

where kNH3 ,st is the specific ammonia removal rate (h− 1), qAir is the air 
flow injected to the bioreactor (cm3/min), V is the bioreactor volume (l) 
and T is the temperature inside the bioreactor (◦C). Eq. (17) considers 
the airflow intensity and the temperature influence on the ammonia 
removal process. 

4.4. Critical analysis of the published CHO mechanistic models 

In the literature, two main model approaches can be found to 
describe CHO cell metabolism:  

1. Considering the overall biological reactions (Xing et al., 2010; 
Jimenez del Val et al., 2016; López-Meza et al., 2016; Yahia et al., 
2021),  

2. Separating anabolism and catabolism reactions, considering ATP/ 
ADP and NADH/NAD+ electron transporters (Nolan and Lee, 2011). 

Table 3 
Pros and cons of mechanistic CHO models.  

Model description Pros Cons 

Xing et al. (2010): Model 
based on Monod’s law 
and its variant for 
inhibition.  

• Protein production 
independent of cell 
growth,  

• μ is used as an 
emerging factor of 
metabolic shift,  

• Adequate prediction 
of the main model 
variables.  

• No Lac utilization for 
cell growth during the 
stationary phase. 

Nolan and Lee (2011): 
Model based on empirical 
kinetic rates describing 
intracellular catabolic 
and anabolic reactions.  

• Protein production 
modeled 
independently of cell 
growth,  

• Lac utilization for cell 
growth during the 
stationary phase,  

• Adequate prediction 
of the main model 
variables.  

• No decay process 
inclusion,  

• No NH4
+ inhibitory 

effect inclusion,  
• Complex and over- 

parameterized model. 

Jimenez del Val et al. 
(2016): Model linking 
mAbs glycosylation with 
cell secretory capacity 
based on Monod’s law 
and its variant for 
inhibition.  

• Integration of protein 
glycosylation with 
cellular secretory 
capacity,  

• Protein production 
modeled 
independently of cell 
growth,  

• Adequate prediction 
of the main model 
variables.  

• No Lac inhibitory 
effect inclusion,  

• No Glu limiting effect 
inclusion,  

• No NH4
+ production 

inclusion, hence its 
inhibiting effect. 

López-Meza et al. (2016): 
Model based on Monod’s 
law for cell growth and 
Luedeking-Piret model 
for mAbs production.  

• Satisfactory 
prediction of μ, Xv, 
and protein 
concentration over 
time.  

• No consideration of 
Lac and NH4

+

production and their 
inhibiting effect,  

• No Lac utilization for 
cell growth,  

• Protein production 
associated with the 
cell growth process. 

Kotidis et al. (2019): Model 
describing the influence 
of glycosylation 
precursor feeding on CHO 
cell metabolism based on 
Monod’s laws, its variant 
for inhibition, and 
empirical rates.  

• Lac production used 
as a trigger of 
metabolic shift,  

• Inclusion of Lac and 
NH4

+ inhibiting effects 
and glycosylation,  

• Lac utilization for cell 
growth during the 
stationary phase,  

• Adequate prediction 
of the main model 
variables.  

• Protein production 
associated with the 
cell growth process. 

Yahia et al. (2021): Model 
based on mixed Monod’s 
law and its variant for 
inhibition.  

• Adequate prediction 
of protein production 
over time.  

• No consideration of 
Lac and NH4

+

production and their 
inhibiting effect,  

• No Glc and Lac 
utilization for cell 
growth and protein 
production,  

• Protein production 
associated with the 
cell growth process.  

Y. González-Hernández and P. Perré                                                                                                                                                                                                       



Metabolic Engineering Communications 18 (2024) e00232

11

Both approaches can describe the glycosylation process (Jimenez del 
Val et al., 2016; Kotidis et al., 2019). The protein quality depends on 
glycosylation, which occurs within the endoplasmatic reticulum and 
Golgi apparatus. This process takes place along the protein secretory 
pathway. It involves attaching an oligosaccharide chain to an amino acid 
residue, primarily asparagine (N-linked) or serine/threonine (O-linked 
glycosylation) (Galleguillos et al., 2017). The pros and cons of these 
models are thoroughly analyzed in Table 3. In most of these models, 
Monod’s law and its variant for inhibition are used to describe the 
metabolic process rates, where glucose and glutamine or glutamate are 
the main limiting substrates (Xing et al., 2010; Jimenez del Val et al., 
2016; López-Meza et al., 2016). In contrast, lactate and ammonia are the 
main inhibitory substrates (Xing et al., 2010; Kotidis et al., 2019). 
Lactate, an inhibitory product of CHO cell metabolism, becomes a 
limiting substrate during the stationary phase (Nolan and Lee, 2011; 
Kotidis et al., 2019). 

On the other hand, some empirical expression rates are also used to 
describe metabolic reactions involving intermediate metabolites, as in 
modeling central carbon metabolism (Nolan and Lee, 2011). Different 
stoichiometry and kinetics are assumed when the temperature is 
changed to trigger the metabolic shift (Jimenez del Val et al., 2016; 
López-Meza et al., 2016). In contrast, they are assumed to be constant 
when the metabolic shift occurs spontaneously (Xing et al., 2010; Kotidis 
et al., 2019). The metabolic shift is crucial in CHO cell metabolism 
modeling as it connects the exponential growth and stationary phases. 
Therefore, accurately predicting the metabolic shift is a genuine ne
cessity for modeling. Yet this prediction remains an open challenge as 
this phenomenon is poorly understood. The most common indicators 
used in modeling for connecting both metabolic phases are temperature 
(Jimenez del Val et al., 2016), lactate concentration (Kotidis et al., 
2019), and specific growth rate (μ) as an emerging indicator (Xing et al., 
2010). Indeed, μ depends on limiting substrates, inhibiting by-products, 
and the temperature, which includes the main factors associated with 
this phenomenon as reported in the literature (Fig. 7). Several models 
describe the process of protein production associated with cell growth, 
where protein is considered a metabolite of cell growth, especially 
during the exponential phase (López-Meza et al., 2016; Kotidis et al., 
2019; Yahia et al., 2021). The MFA (Ahn and Antoniewicz, 2011; Sen
gupta et al., 2011; Templeton et al., 2013) and modeling studies (Xing 
et al., 2010; Kotidis et al., 2019) suggest that there is always a significant 
increase in protein production following a substantial decrease in spe
cific growth rates (either by an increase in the concentration of inhibi
tory metabolites or by a reduction in temperature). This finding 
demonstrates the antagonism between the two metabolic processes. It 
should also be noted that protein production is directly proportional to 
the concentration of viable cells. Consequently, to accurately predict 
protein production, it is crucial to consider cell growth and death pro
cesses. Cell death, influenced mainly by the toxic impact of ammonia, 
plays a key role during the stationary phase (Xing et al., 2010). 

The exponential phase is characterized by rapid cell growth and low 
protein production. For this reason, some authors omit this metabolic 
pathway in the exponential phase submodel. However, the yield of 
protein production from glucose is relatively low, requiring a significant 
amount of substrate for its synthesis, which can considerably influence 
the prediction of glucose consumption over time, even at very low 
protein production rates. Therefore, despite the low protein production, 
including it in the model is crucial. 

Another important challenge of CHO cell metabolism models is the 
large number of kinetics and stoichiometric parameters involved, many 
of which are impossible to determine experimentally. In the case of 
models based on central carbon metabolism, although stoichiometry is 
known a priori, the kinetics involved are complex due to the number of 
intermediate processes, which in most cases include parameters and 
variables that are difficult to quantify. To summarize this literature re
view, the following aspects can be highlighted:  

⋅ The models offer poor investigation and description of metabolic 
pathways,  

⋅ In most cases, lactate use for cell growth is not considered,  
⋅ Criteria used for metabolic shift prediction are still not adequate,  
⋅ Two main pitfalls are observed: complex over-parameterized models 

and considerably simple models, both of which have little applica
tion in industry,  

⋅ The direct experimental determination of stoichiometric parameters 
is very difficult due to the simultaneous processes such as cell growth 
and protein production. 

5. Numerical solution and calibration 

5.1. Computational solutions of ODEs 

The models under consideration in this work assumes the bioreactor 
to be perfectly stirred. The set of coupled equations is then a set of ODEs 
(Ordinary Differential Equations) of the generic form: 
{

u’(t) = F(u(t))
u(t0) = u0

(18) 

Where u(t) is the vector of unknowns and F(u) is a vector of functions, 
the same size as u, giving the time-derivative of vector u. 

Even though the equations are coupled and nonlinear, their 
computational solution is generally quite simple, using classical iterative 
methods to solve ODEs. The solution is obtained at discrete times tn(un =

u(tn)). The linear k-step methods, an important family of solutions, can 
be defined as a general expression: 

∑k

j=0
αjun+j = h

∑k

i=0
βjFn+j with αk = 1 (19)  

Where h is the time step and Fn+j = F(un+j). 
Expression (19) is a recurrent expression that allows the value t(tn) =

u(tn + h) to be computed from all previous values up to time tn. bk = 0 for 
explicit methods and bk ∕= 0 for implicit methods. For example, the 
simple forward (explicit) Euler method is obtained with k = 1, α0 = − 1, 
β1 = 0, and β0 = 1. Using β1 = 1 and β0 = 0 instead gives the backward 
(implicit) Euler method. Expression (19) also includes the multistep 
explicit Adams–Bashforth and implicit Adams–Mouton methods 
(Butcher, 2000). Multistep methods aim to increase the order of the 
method (rate of convergence when h decreases). The Runge–Kutta 
methods are one-step methods that use another strategy to increase the 
convergence order: in a single step, the function F is evaluated several 
times to obtain a Taylor expansion of the desired order. 

The reader should, however, be aware that the solution order is not 
the single criterion for choosing a method. Formulations resulting from 
biological assumptions might be challenging to solve. This is the case, 
for example, with formulations involving several compartments 
(bioreactor, cells, organelles) and with very stiff functions, such as the 
switching varying over very narrow concentration levels (for example, 
the La et al. (2020) function shown in Fig. 8). In such cases, the system 
has components that vary on very different time scales, which poses 
challenges in selecting a suitable time step for numerical integration 
methods, resulting in stiff ODEs. The concept of convergence of stiff 
ODEs was introduced by Dahlquist (1963). He introduced the concept of 
A-convergence and proved that:  

⋅ A-convergence is possible only with implicit methods,  
⋅ A-convergence is not possible for methods above order 2. 

It is important to keep this in mind when using the algorithms 
implemented in generic tools, such as the package ode in R, the class 
scipy.integrate.ode in Python or the existing Matlab solvers, to solve 
equation (18). The reader could refer to published works (Butcher, 
2000; Cash, 2003) to pick up the suitable options for these solvers. All 
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these solvers perform quite well for standard problems. As ODEs are 
much less demanding than PDEs (Partial Differential Equations), the 
CPU time usually remains very low (in the order of some seconds or even 
less). One point of attention, though, is that the system of equations may 
have components with very different orders of magnitude. Due to var
iations on very small quantities, the evolution of some variables may not 
be correctly taken into account in the convergence criterion, leading to a 
bad control of the time step and erroneous results. 

For very severe configurations, more sophisticated algorithms, if 
possible coded in low-level languages (Fortran or C) for their efficiency 
once compiled, should therefore not be excluded a priori. Once 
compiled, these tools could be embedded in high-level tools such as the 
ones cited above. Even with classical problems, the efficiency of such 
solvers in terms of CPU is also likely to open new routes for the usage of 
mechanistic modeling: i) using these tools in an optimization loop 
requiring many solutions to be computed, ii) online parameter identi
fication or iii) hybrid modeling for example. 

Several methods were proposed to efficiently solve stiff ODEs 
(Butcher, 2000; Abdulle and Medovikov, 2001; Cash, 2003; Fatunla, 
2014; Lebedev, 2017). The family of exponential integrators (expo
nential Rosenbrock-type integrators) are certainly among the most 
efficient ones (Cox and Matthews, 2002; Tokman, 2006; Caliari and 
Ostermann, 2009; Hochbruck et al., 2009; Carr et al., 2013). To derive 
these exponential methods, the Jacobian of F at point un, noted Jn, is first 
introduced in equation (18): 

u′(t) = Fn + Jn(u(t) − un) + R(u(t)) (20) 

Where R is the remainder. 
Using the integration factor e− Fnt, equation (20) becomes 

u(tn + h) = un + (eJnh − I)J− 1
n Fn +

∫ tn+h

tn
eJn(tn+h− t)R(u(t))dt (21) 

All exponential methods rely on suitable methods to evaluate:  

⋅ the second term of the left-hand side, which needs to compute φ(z) =
exp(z)− 1

z where z is a matrix, 
⋅ the third terms of the left-hand side, where R can simply be neglec

ted, evaluated assuming J to vary linearly over the time step, or by 
several evaluations, such as with a Runge–Kutta method. 

5.2. Calibration and validation 

The calibration process of a mathematical model is essential for its 
validation and future application (Rajamanickam et al., 2021). It con
sists of deterministic calculation of model parameter values consistent 
with data (Dawkins et al., 2001). The most appropriate strategy for 
model calibration is to experimentally determine as many model pa
rameters as possible (direct determination)(González-Hernández et al., 
2022). The remaining parameters can be taken from the literature if 
their value does not change significantly from one system to another 
(usually parameters with little influence on the model) or can be esti
mated by inverse analysis through an optimization process that searches 
for the unique combination of model parameters that allows a minimum 
deviation between the model output and the experimental data (indirect 
determination)(González-Hernández et al., 2022). Sometimes, when the 
model is simple, depending on the experience of modelers, this process 
can be carried out manually (Sin et al., 2008). The quality of the cali
bration process will depend on the quantity and quality of the data 
(Boudreau and McMillan, 2007; Abt et al., 2018) (economic resources 
availability, user competency, software access …). Therefore, the data 
collection process must be carefully carried out with an optimal and 
well-defined experimental design considering the variation of as many 

parameters as possible to obtain representative data of the phenomena 
described in the model (Rajamanickam et al., 2021). If historical data is 
used, much attention should be paid to the data curation process and 
selecting representative data. Finally, it is essential to remark that the 
model, once calibrated, must be tested against a validation database 
under different operating conditions. 

5.2.1. Parameter estimation by inverse analysis method 
The inverse analysis can be performed through an optimization 

procedure, looking for a minimum value using objective or multi- 
objective functions: 

Min : {f1(x), f2(x), f3(x),…, fn(x)}
subject ​ to: ​ x ∈ S, (22)  

where x is the solution corresponding to the minimization process of n 
objective functions in the subspace S of the calibration parameter 
ranges. 

Multi-objective optimization is essential when faced with real-world 
optimization problems since, in most cases, they are conditioned by 
multiple conflicting objectives with different levels of importance (Deb, 
2014). In CHO models, two main metabolic phases are described 
mathematically, which present significant stoichiometric and kinetic 
differences (Jimenez del Val et al., 2016). When CHO cells are used as a 
host for protein production in the pharmaceutical industry, more 
importance is given to the stationary growth phase, characterized by a 
strong production of antibodies. In this case, multi-objective functions 
are helpful, as they allow for reinforcing the significance of specific 
phenomena variables during the calibration process, if necessary. This 
reinforcement can be achieved when the factor or variable’s importance 
is given as a weighting average of all subfunctions: 

F(x) =
∑n

i=1
wifi(x) with: ​

∑n

i=1
wi = 1, (23)  

where wi is the weighting factor, whose value is chosen by the decision 
maker according to his constraints (Florez et al., 2023). 

For example, the mean relative error (MRE) between the experi
mental data (viable cells, glucose, glutamate, glutamine, lactate, 
ammonium, etc.) and the model prediction. This objective function can 
be adapted to weigh the importance of the experiments, variables, and 
data points considered during the calibration process: 

F(x) =
1

lmn
∑ℓ

i=1
wi

∑m

j=1
wj

∑n

k=1
wk

⃒
⃒
⃒
⃒
⃒

y(i)e(k,j) − y(i)m(k,j)

y(i)e(k,j)

⃒
⃒
⃒
⃒
⃒

=

{
MRE, if ​ wi,wj,wk = 1,
∕= MRE, if ​ wi,wj,wk ∕= 1, (24) 

where y(i)
e(j,k) is the experimental data value − k of variable − j in 

experiment − i, y(i)
m(j,k) is the model output data value − k of variable − j in 

experiment − i, wk is the weight assigned to data value − k, wj is the 
weight assigned to variable − j and wi is the weight assigned to experi
ment − i. 

An alternative approach involves using self-guided fitness functions 
that speed up the optimization process while reducing the risk of getting 
stuck in a local minimum. As an example, we can propose a fitness 
function that effectively amalgamates accuracy, utilizing the mean 
relative error (MRE), with variable trends (via Pearson’s correlation 
coefficient (r)): 

fitness =
1
3
( MRE⏟̅⏞⏞̅⏟

Accuracy

+(1 − r)
⏟̅̅̅ ⏞⏞̅̅̅ ⏟

Trend

+ |MRE − (1 − r)|
⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟

Equilibrium

) (25)  
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where: 

r =
1

lm

∑i=l

i=1

∑j=m

j=1

n
(∑k=n

k=1yeym

)
−
(∑k=n

k=1ye

)(∑k=n
k=1ym

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

n
∑k=n

k=1y2
e −

(∑k=n
k=1ye

)2
][

n
∑k=n

k=1y2
m −

(∑k=n
k=1ym

)2
]√

(26) 

In equation (25), the equilibrium term ensures an equitable contri
bution between accuracy and trends. This type of function significantly 
accelerates the convergence of the optimization process while 
decreasing the probability of becoming trapped in a local minimum. 

5.2.2. Calibration challenges 
During calibration, the model simulations are compared to experi

ments (Villaverde et al., 2022). A typical experimental data set consists 
of a number of batch or fed-batch trials, for which the information 
collected consists of growing conditions and time series of certain var
iables (in-line and/or offline measurements). This can represent a huge 
data set but with few contrasted conditions. The system is then likely to 
be over-determined, which is necessary to gain accuracy and counter
balance experimental noise/variability. This allows the system to be 
projected onto a smaller space, where the solution is optimized. How
ever, these conditions are not sufficient: the series of experiments must 
also be able to test each parameter, obtaining significant variations in 
the measured variables when these parameters are modified. Indeed, 
one major challenge in bioprocess modeling is addressing 
over-parameterization (Mowbray et al., 2023), often resulting from an 
excessive number of parameters and/or highly correlated, that cannot 
be directly determined by experiments (Barz et al., 2015; Abt et al., 
2018). Modelers often use inverse analysis but encounter difficulties due 
to the impossibility of generating experimental data that adequately 
captures the effect of all model parameters. Parametric Sensitivity 
Analysis is a widely adopted technique for this purpose (Kyriakopoulos 
et al., 2018). It effectively reduces the parameter calibration subspace by 
excluding less influential parameters and, in some cases, omitting less 
significant phenomena, to obtain a determinate system. 

Another method to address over-parameterization consists of 
developing simplified models (Sha et al., 2018), called lumped models. 
This method models the set of metabolic pathways within a cellular 
compartment, such as glycolysis, the Krebs cycle, or oxidative phos
phorylation, as a single global metabolic pathway (La et al., 2020). 
Alternatively, it could also be considered the integration of these closely 
related compartments as a unified entity through global biochemical 
reactions involving extracellular metabolites, a commonly employed 
practice in bioprocess modeling (Xing et al., 2010; Jimenez del Val et al., 
2016; Kotidis et al., 2019). 

Modelers also face challenges when introducing new parameters 
without prior references in the literature. These parameters often pose 
significant difficulties for direct experimental determination, making it 
necessary to employ inverse analysis. Consequently, a new challenge 
arises: establishing calibration bounds for these parameters. In such 
situations, using numerical derivatives can offer valuable insights, 
allowing the understanding of how these parameters affect the fitness 
function. This process may require a tedious iterative procedure: the 
user analyzes the results at each stage and decides which parameter to 
select for evaluation at the next iteration stage, until the desired results 
are achieved. 

5.3. Optimization methods for minimizing the objective function 

First, note that the objective of this study is not to compare optimi
zation methods but to mention the most used methods and explain their 
advantages and disadvantages for the calibration of mechanistic models. 
Model calibration by inverse analysis requires simple and robust 
mathematical optimization methods. Swarm intelligence and 

evolutionary computation (SIEC) are now some of the most popular 
optimization methods employed in scientific research (Bansal et al., 
2019; Kumar et al., 2019). These methods use a stochastic approach, 
allowing one to solve many complex problems without demanding many 
mathematical properties (e.g., convexity, continuity, or the explicit 
definition of the objective function) (Bansal et al., 2019). Particle swarm 
optimization (PSO) is among the most popular and successful swarm 
intelligence algorithms (Bansal et al., 2019). A great advantage of these 
algorithms is their parallelization capacity, considering that they are 
based on populations (fitness function evaluation) that considerably 
reduce time consumption but require a powerful computational capacity 
depending on the complexity of the fitness function. Evolutionary 
Computation (EC), mainly used to solve optimization problems, com
prises a series of problem-solving techniques based on the principles of 
biological evolution (e.g., natural selection and genetic inheritance) that 
allow for finding optimal global solutions (Bansal et al., 2019). 

Mechanistic models present a great complexity considering the 
considerable number of stoichiometric and kinetic parameters that may 
be involved. Generally, the calibration process is carried out under non- 
stationary operating conditions, and multiple local minima may be 
encountered. For these reasons, heuristic optimization methods such as 
bio-inspired algorithms are mainly used for this task. 

Several population-based, fitness-oriented, and variation-driven 
evolutionary algorithms have been proposed in the last century (Yu 
and Gen, 2010). These algorithms evolve using different strategies by 
employing common genetic operators such as selection, mutation, and 
reproduction, which depend on individual structures defined by an 
environment (Khaparde et al., 2022). In particular, in the area of 
evolutionary algorithms, the genetic algorithm (GA) and differential 
evolution (DE) algorithms are the most popular in the scientific com
munity (Chaudhary et al., 2019). Currently, bio-inspired methods such 
as particle swarm optimization (PSO) have seen a remarkable applica
tion in solving several engineering problems. 

Genetic Algorithm 
The genetic algorithm, inspired by natural selection, is one of the 

most popular and widely used algorithms in various research areas due 
to its ease of implementation and convincing concepts (Omidinasab and 
Goodarzimehr, 2020; Goodarzimehr et al., 2023). Genetic algorithms 
are stochastic mathematical optimization methods based on the pro
cesses of natural selection and Darwinian survival of the fittest (Wang, 
2003). New populations are produced by iteratively using genetic op
erators (e.g., chromosomal representation, selection, crossover, and 
mutation) on the individuals of a population. GAs are highly parallel, 
based on individual populations of optimal candidate solutions that can 
be evaluated simultaneously. However, one of the main limitations of 
this method is its premature convergence, as they are sometimes trapped 
in local minima. Some researchers have suggested increasing diversity 
through selection pressure to avoid this problem (Katoch et al., 2021). 

Differential Evolution 
The differential evolution algorithm is a combinatorial algorithm 

based on populations of individuals. Like the GA, it allows the resolution 
of complex real-world optimization problems, which, in most cases, are 
reduced to the search for the global minimum of non-differentiable, 
discontinuous, and nonlinear objective functions (Lilla et al., 2013). 
Similar to other evolutionary algorithms, DE is a method that performs a 
stochastic search using a population of candidate solutions, applying 
mutation, crossover, and selection operators that drive the population 
toward better solutions in the optimization space (Georgioudakis and 
Plevris, 2020). DE differs from traditional evolutionary algorithms in 
generating new candidate solutions, employing a greedy generation 
scheme (Vesterstrom and Thomsen, 2004). The DE algorithm is simple 
but robust, governed by few control parameters, and its structure fa
cilitates parallel computation with high convergence speed. Even when 
DE has few control parameters, their adjustment remains difficult, and 
their inappropriate manipulation can lead to premature convergence or 
stagnation, being key strategies chosen for the mutation operator. 
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Therefore, to improve the performance of this algorithm a self-adaptive 
parameter setting technique is required (Khaparde et al., 2022). In this 
sense, new advanced DE variants with adaptive and self-adaptive con
trol parameters have been developed (Eiben et al., 1999; Georgioudakis 
and Plevris, 2020). 

Particle Swarm Optimization 
The particle swarm optimization method was introduced in the mid- 

1990s by Kennedy and Eberhart (1995). This method is among the most 
widely used bio-inspired algorithms for solving optimization problems 
that are loosely inspired by foraging flocks of birds (Couceiro and 
Ghamisi, 2016). According to this analogy, each bird (considered a 
particle in the algorithm) uses its memory and the knowledge acquired 
by the swarm while searching for the best available food source (Venter 
and Sobieszczanski-Sobieski, 2003). This algorithm is governed by three 
fundamental operators: memory, inertia, and socialization. Subse
quently, PSO has been extensively used to solve real-world problems in 
various biological and medical applications, computer graphics, and 
music composition (Sedighizadeh and Masehian, 2009). However, the 
main weakness of this optimization method is its propensity to converge 
to local optima prematurely (Banks et al., 2007; Houssein et al., 2021). 
One way to mitigate these problems is to work with optimization 
parameter ranges that are as narrow as possible. 

Hybrid Optimization Methods 
Hybrid optimization methods have become increasingly popular in 

recent years, especially in artificial intelligence, as they combine desir
able properties of two or more optimization methods to increase their 
performance by mitigating their individual weaknesses (Thangaraj 
et al., 2011). It is important to remark that most of these algorithms have 
been modified by several authors to reduce the time consuming and 
facilitate the convergence process (Trivedi et al., 2015; Abidin, 2018; 
Aguitoni et al., 2018; Chaudhary et al., 2019). These algorithms have 
been integrated, taking advantage of the best of each one. Such con
nections may be implemented in many ways: (1) The use of a less ac
curate algorithm to initialize a more accurate algorithm (2) The parallel 
operation of two or more independent algorithms, with timely 
communication between them, to exchange the best individual solu
tions, (3) The sequential execution of several algorithms in a single al
gorithm, (4) The combination of genetic operators from different 
optimization methods in each iteration, and others (Dziwiński and 
Bartczuk, 2019). 

To achieve better performance (convergence speed, accuracy, and 
global optimization ability) compared to individual methods, several 
hybrid approaches appear in the literature, including DE and PSO 
(Hendtlass, 2001; Zhang and Xie, 2003; Talbi and Batouche, 2004; Hao 
et al., 2007; Das et al., 2008; Vaisakh et al., 2009; Garcia-Guarin et al., 

2019; Dash et al., 2020; Li et al., 2021), PSO and GA (Mousa et al., 2012; 
Esmin and Matwin, 2013; Samuel and Rajan, 2015; Ali and Tawhid, 
2017; Dziwiński and Bartczuk, 2019; Pu et al., 2019; Omidinasab and 
Goodarzimehr, 2020; Fu et al., 2021; Goodarzimehr et al., 2023), and 
GA and DE (Trivedi et al., 2015, 2016; Abidin, 2018; Aguitoni et al., 
2018; Chaudhary et al., 2019; Fathy et al., 2020) (Fig. 9). 

Fortunately, most of these algorithms are already included in opti
mized and verified packages in popular programming tools used by the 
scientific community, such as MATLAB, Python, R, and others, which 
considerably facilitates the work of modelers. However, the selection of 
the optimization method depends on the modelers’ experience, the 
fitness function’s complexity, and computational capacity. We strongly 
recommend that readers use the bio-inspired optimization method they 
know best, which is easy to handle with few control parameters, 
allowing them to obtain fast, efficient, and accurate results. 

6. Challenges and prospects of mechanistic modeling of CHO 
cells 

6.1. Needs, concerns and improvement gaps 

Mechanistic modeling in the industry is rapidly expanding, finding 
applications in experimental design, scale-up, data analysis, product 
development, quality control, optimization, and decision-making, 
among other key areas (Hallow et al., 2010; Kuepfer et al., 2012; 
Helmlinger et al., 2017; Xing et al., 2023). In the pharmaceutical in
dustry, mechanistic modeling holds its prestige for its ability to convert 
process data into enhanced information to understand the process bet
ter, guide decision-making, and facilitate the development of digital and 
automated technologies (Kuepfer et al., 2012; Sha et al., 2018; Nar
ayanan et al., 2020). Examples of mechanistic modeling applications in 
CHO cell systems can be mentioned: e.g., Paul et al. (2019) improved the 
volumetric productivity of the CHO cell system operated in fed-batch 
mode by optimizing temperature and pH shifts by applying a mecha
nistic model, achieving an increase of 20% in the final product con
centration; Kotidis et al. (2019) developed a mechanistic model 
(discussed earlier in section 4.4) that was successfully utilized to design 
and optimize the feeding strategy, achieving antibody concentrations 
exceeding 90% when compared to the control, without compromising 
the integral of viable cell density or the final antibody titer; Craven et al. 
(2014) used a nonlinear predictive model demonstrating its ability to 
achieve fixed-setpoint closed-loop glucose concentration control in a 
CHO cell system. As mentioned in this review article, the modeling of 
CHO cell metabolism has evolved considerably in recent decades, 
leading to a better understanding of the phenomena and a mathematical 
description. This paper focused on operational models as candidates for 
optimization and improved control/command of the production pro
cess. Simple and complex models can be found in the literature. In most 
cases, these models are over-parameterized, which makes their practical 
application difficult, as the stoichiometry and kinetics change with the 
CHO strain, requiring recalibration of the model parameters. These 
over-parameterized models require much more information about the 
system for their application, which is hindered by the widespread use of 
optimized commercial basal mediums for CHO culture, of which, in most 
cases, the exact composition is still unknown. Moreover, in CHO sys
tems, the direct experimental determination of certain stoichiometric 
parameters is very complex due to the simultaneous activation of several 
metabolic pathways involving the same substrate, such as cell growth 
and protein production from glucose or lactate (Figs. 4–6). The inverse 
analysis is a powerful tool for estimating these parameters during cali
bration. On the other hand, simple models are insufficient to predict 
CHO cell metabolism due to the omission of essential processes or var
iables in the model. 

Metabolic reconstructions at the genomic scale are complex and 
often challenging to study in great detail. Recently, an interesting 
approach proposed by Martínez et al. (2022) simplifies the model by Fig. 9. Optimization methods hybridization.  
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choosing subsystems based on the topology of the metabolic model, thus 
preserving the essential biochemical reactions. 

Finding the right balance between the complexity and operationality 
of CHO modeling is part of the research gap that must be bridged. This 
determination requires that the metabolic pathways included in the 
model should be fed by relevant parameters. For example, this strategy 
allowed the metabolic shifts to be predicted in the case of yeast 
(González-Hernández et al., 2022). In our opinion, one of the main 
challenges for future improvements of the CHO model is the relevant 
prediction of spontaneous metabolic shifts from the exponential to the 
stationary phase. 

Including organelles in the cell metabolism, leading to a compart
mented model, and including balances of energy (ATP/ADP) and elec
tron carriers (NADH/NAD+) are two promising possibilities to get a 
model able to spontaneously predict the metabolic shifts as a function of 
time or growth conditions (La et al., 2020). Although several studies 
suggest the importance of these redox metabolites in controlling vari
ables, their inclusion in the models is complex by the fact that these 
metabolites are found at such low levels (on the order of μM), which 
makes it difficult to quantify them, and thus to determine the stoichi
ometry and associated kinetics (Nolan and Lee, 2011). 

Glycosylation is another process of great interest to the pharma
ceutical industry as it is crucial in biological activity and stability, in
creases the half-life, and reduces the immunogenicity of protein 
therapeutics (Kuriakose et al., 2016). Although this phenomenon has 
already been successfully coupled with a mechanistic model (Jimenez 
del Val et al., 2016; Kotidis et al., 2019), it involves many enzymatic 
reactions, which could lead to the over-parametrization of the model. 
Machine learning and molecular modeling could be an appropriate 
combination to obtain a better description of the structure, quality, and 
function of the protein obtained by glycosylation. 

Over longer time horizons, one can imagine that a comprehensive 
description of the metabolic pathways could be included in operational 
tools. This description would bridge the significant gap that remains 
between the knowledge gained by metabolic flux analyses and opera
tional simulation. Eventually, genome-scale models, together with the 
incorporation of enzyme constraint and enzyme kinetics, could produce 
predictive models from the genomes of specific strains (Price et al., 

2004; Davidi and Milo, 2017). This development would be a major step 
forward in bridging the gap between metabolic engineering and the 
control and command of high-performance microbial strains. The 
GECKO project, for example, proves that this will certainly be possible in 
a not-to-far future (Sánchez et al., 2017; Domenzain et al., 2021). 

6.2. The digital twin at the crossroads of mechanistic modeling and data 
science 

Control command represents one of the most sought-after modeling 
applications, to improve the final product’s concentration and quality. 
In our opinion, it is essential to maintain the mechanistic model as the 
core of the control system due to its prediction potential. To this end, 
there is a notable trend towards using hybrid models for control com
mands, particularly with new online sensors that immediately collect 
sufficient and relevant data to machine learning tools. Our research 
team is currently immersed in an ambitious project called CALIPSO, 
with the primary goal of halving development time and doubling 
productivity. 

At short time horizons, the fast-growing field of data science is about 
to change how to build and tune mechanistic models and will address 
many of the abovementioned limitations. In particular, the various 
building blocks presented in detail will be designed and improved 
concomitantly rather than sequentially. Over the past decade, machine 
learning has spread across many areas of engineering science. Autono
mous cars face recognition, and weather forecasting without solving the 
equations of physics are probably the most popular examples of the 
success of machine learning. Machine learning has also spread to the 
field of bio-modeling (Pozzobon et al., 2021). However, in most of the 
studies in these review papers, machine learning is seen as an alternative 
to mechanistic modeling (Baker et al., 2018). In this sense, machine 
learning can cope with complex situations, provided the training data
base is large enough. The predictive capability is restricted to the 
domain paved by the database. 

Rather than using machine learning instead of mechanistic 
modeling, we believe both areas are now mature enough to benefit from 
the best of both worlds: a predictive model capable of adapting to 
different products. Such a digital twin approach would work offline or 

Fig. 10. The concept of hybrid modeling: using the synergies between experiment, mechanistic modeling, data science, and machine learning to fill the gap between 
modeling and process optimization (control command and innovation) by the concept of digital twin. 
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online (Zhang et al., 2020; Yang and Chen, 2021). In this hybrid 
approach, the mechanistic model would remain at the heart of the in
teractions (Fig. 10). Hybrid models not only deliver more precise pre
dictive outcomes but also exhibit superior resilience and extrapolation 
abilities (Narayanan et al., 2019, 2021). 

The offline work (black arrows in Fig. 10) starts with constructing the 
mechanistic model, assembling all building blocks detailed in this paper. 
The metabolic description to be included in the model comes from 
fundamental studies (arrow 1). This is the cornerstone of mechanistic 
modeling. Besides, an experimental database must be generated from 
fermentation tests performed at the bioreactor level for various condi
tions using refined instrumentation (in-line and offline measurements). 
This database is primarily used for identifying the model parameters by 
inverse analysis, as explained in section 5. However, machine learning 
can also be used to test model assumptions, either to reduce the 
formulation in case of overestimation or to recommend improvements 
(additional metabolic pathways, additional activating/inhibiting factors 
…) in particular, to represent non-standard data (this is why arrow 2 
passes through the machine learning box). Once calibrated, the mech
anistic model can be used offline to extend the database (arrow 4) or to 
imagine innovations (arrow 5: new production protocols, new strategies 
to overcome problems …). 

The online use of the model (orange arrows of Fig. 10) includes at 
first the classical approach: using real-time information gathered by 
sensors together with the mechanistic model for an efficient control/ 
command of the bio-process (arrows 5). As the model is predictive, it is 
capable of forward regulation, which is a significant advantage in 
reducing the culture time and making an early decision, for instance, to 
stop a batch when its trajectory can no longer be recovered. To achieve 
better performance in process control, machine learning can be used in 
two ways:  

⋅ By using the complete set of information collected up to the present 
time, machine learning can be used to tune online the model pa
rameters. This is a crucial advantage for bioprocesses (arrow 6),  

⋅ by continuous queries to the database during cultivation to confirm 
whether the current batch is atypical or inconsistent with the infor
mation provided to the model. Identification of an atypical batch can 
reveal, for example, contamination (arrow 7). 

In this last step of complexity, the mechanistic model and the data
base work in synergy as a hybrid approach in which information pro
vided by the mechanistic model can benefit from the database, with 
queries triggered and analyzed by machine learning to complement the 
model. This process would allow, for example, the use of simulations 
that are impossible to carry out in real-time, or for comparing previous 
situations to detect specific issues (technical problems, sensor failure, 
product anomaly, etc.). 

7. Conclusions 

This review article details the various building blocks that must be 
assembled to produce a mechanistic model of CHO cells for protein 
production. We have intentionally focused on operational models that 
can be used at a production scale. The starting point is the set of 
metabolic pathways that must be provided to the model. Once this input 
is completed, the activation and inhibition parameters and the reaction 
rates must be defined to provide a self-contained model capable of 
reproducing the dynamics of a bioreactor. One main concerns is finding 
the right balance between complexity and predictive capability. This 
balance includes the choice of the metabolic description, the database 
quality able to fit the parameters, and the prediction capabilities of the 
model in forward regulation. 

The main facts, recommendations, and prospects in the papers 
include: 

⋅ To obtain a robust tool, over-parameterized models must be abso
lutely avoided,  

⋅ We recommend using lactate for cell growth during the stationary 
phase as it is not considered enough in the published works,  

⋅ Inverse analysis stands out as a powerful tool for model calibration 
and validation to overcome the complex direct experimental deter
mination of stoichiometric parameters due to concurrent processes, 
such as cell growth and protein production,  

⋅ Indicators used for metabolic shift prediction still need to be 
improved, which motivates further investigations,  

⋅ Compartmental models, able to account for balances in organelles 
and the balance of energy and electron carriers, are two promising 
ways to predict the metabolic shift better,  

⋅ The intense use of machine learning and hybrid models, both offline 
and online, will shape the future of mechanistic modeling, 

⋅ In the long term, the considerable gap that remains between meta
bolic engineering and command and control should be bridged. 
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predictive models: the added value of hybrid models for manufacturing processes of 
therapeutic proteins. Biotechnol. Bioeng. 116, 2540–2549. 

Narayanan, H., Luna, M.F., von Stosch, M., Cruz Bournazou, M.N., Polotti, G., 
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