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a b s t r a c t 

This research reports on the physical and mechanical effects 

of various filler materials used in direct ink write (DIW) 3-D 

printing resins. The data reported herein supports interpre- 

tation and discussion provided in the research article “Im- 

pact of Filler Composition on Mechanical and Dynamic Re- 

sponse of 3-D Printed Silicone-based Nanocomposite Elas- 

tomers” [1]. The datasheet describes the model structures 

and the interaction energies between the fillers and the other 

components by using Molecular Dynamics (MD) simulations. 

This report includes mechanical responses of single-cubic 

(SC) and face-centered tetragonal (FCT) structures printed us- 

ing new DIW resin formulations (polydimethylsiloxane-based 

silicones filled with aluminum oxide, graphite, or titanium 

dioxide). Using MD simulations and mechanical data, the 

overall flexibility and interactions between resin components 

are fully characterized. 
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pecifications Table 

Subject Materials Science 

Specific subject area Preparation and characterization of 3-D printed silicone-based nanocomposite 

elastomers 

Type of data Image, Table, and Figure 

How data were 

acquired 

Molecular dynamics simulations, Engineering stress-strain compression data, Storage 

and loss moduli and tan δ at low compressive strains as a function of oscillatory 

frequency 

Data format Raw and analyzed 

Parameters for data 

collection 

We described “Parameters for data collection” in Experimental Design, Materials, and 

Methods section. 

Description of data 

collection 

We described “Parameters for data collection” in Experimental Design, Materials, and 

Methods section. 

Data source location Los Alamos, New Mexico, United States of America 

Data accessibility All data is accessible within this article 

Related research article Samantha J. Talley, Brittany Branch, Cynthia F. Welch, Chi Hoon Park, John Watt, 

Lindsey Kuettner, Brian Patterson, Dana M. Dattelbaum, and Kwan-Soo Lee, Impact of 

Filler Composition on Mechanical and Dynamic Response of 3-D Printed Silicone-based 

Nanocomposite Elastomers, Composites Science and Technology, submitted [1] 

alue of the Data 

• The data shows the mechanical responses of simple cubic (SC) and face-centered tetrago-

nal (FCT) pads which are composed of polydimethylsiloxane-based polymers filled with alu-

minum oxide, graphite, or titanium dioxide. 

• This data can benefit researchers of materials in the field of formulation chemistry, polymer

process engineering, additive manufacturing, and molecular dynamics simulation. 

• Guidelines for the mechanical characterization of hybrid composite materials are provided. 

. Data Description 

This work provides the model structures acquired in molecular dynamics (MD) simulations

o calculate the molecular interactions between the components in the composite resins, so that

he two-layered models were built and equilibrated ( Fig. 1 and Table 1 ), as well as the mechan-

cal responses of the simple cubic (SC) and face-centered tetragonal (FCT) having three differ-

nt formulations. ( Figs. 4 –8 .) [1] . Six different model systems are explored by MD simulations:

) Al 2 O 3 -Si OH (fumed silica; non-treated silica), graphite-Si OH , TiO 2 -Si OH , Al 2 O 3 -PDMS (PDMS;

olydimethylsiloxane), graphite-PDMS, and TiO 2 -PDMS ( Fig. 1 and Table 1 ). 

. Experimental Design, Materials, and Methods 

.1. Composite resins preparation 

Three resins were specifically formulated for direct ink writing (DIW) printing [2] . These

esins were composed of 65 wt% of polydimethylsiloxane (PDMS), 10 wt% of fumed silica, and

5 wt% of graphite (Alfa Aesar), TiO 2 (Evonik Industries), or Al 2 O 3 (Evonik Industries). 

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. Model structures for Molecular Dynamics (MD) simulations. 

Table 1 

The interaction energies between the fillers and the other components calculated by molecular dynamics (MD) simu- 

lations. To calculate the interaction energy per gram, the densities (Al 2 O 3 /Graphite/TiO 2 = 3.2/2.2/4.23 g/cc) and the 

primary particle sizes were used. 

Model 

Interaction Energy 

(kcal/mol) 

Interaction Energy 

per area 

(kcal/mol Å 2 ) 

Interaction Energy 

per a particle 

(kcal/mol • ea) 

Interaction Energy 

per gram 

(kcal/mol • g) 

Al 2 O 3 -Si OH −474.7 −0.8771 −4.515 ∗ 10 4 −1.285 ∗ 10 25 

Al 2 O 3 -PDMS −453.0 −0.8371 −4.309 ∗ 10 4 −1.226 ∗ 10 25 

Graphite-Si OH −194.1 −0.2536 −3.187 ∗ 10 4 −3.458 ∗ 10 24 

Graphite-PDMS −132.8 −0.2808 −3.528 ∗ 10 4 −3.829 ∗ 10 24 

TiO 2 -Si OH −326.8 −0.3425 −6.512 ∗ 10 4 −1.975 ∗ 10 24 

TiO 2 -PDMS −202.0 −0.3733 −7.096 ∗ 10 4 −2.152 ∗ 10 24 

 

 

 

 

 

 

 

 

 

2.2. Molecular dynamics (MD) simulations 

Amorphous Cell module was used as a model builder. The models were geometrically op-

timized until their energies were stable, and were equilibrated by MD simulation with NVT

(constant number of atoms, volume, and temperature) ensemble, in which the temperature was

slowly increased from 0 K to 298 K in stepwise to avoid the calculation failure. The final pro-

duction run for the interaction energy calculation was performed with NVT ensemble at 298 K

and for 100 ps. In this simulation, we used Materials studio program package (BIOVIA Software

Inc., CA, USA) and COMPASS II (Condensed-phase Optimized Molecular Potentials for Atomistic

Simulation Studies II) force field were used as a force-field and force-field types and charges of

all atoms were set to the default values [3–5] . Ewald and atom based summation method were

used for electrostatic and van der Waals interactions, respectively. 
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Fig. 2. Engineering stress as a function of the engineering strain for SC (solid lines) and FCT (dashed lines) DIW pads 

obtained at room temperature. Pads are filled with 25 wt.% aluminum oxide (red), 25 wt.% graphite (blue), and 25 wt.% 

titanium dioxide (black). All four loading cycles are represented. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Thickness in mm of 7-layer DIW printed pads where simple cubic (SC) are shown in blue, and face-centered 

tetragonal (FCT) are shown in red. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 4. (a) Storage and loss moduli and (b) tan δ at low compressive strains as a function of oscillatory frequency for 

Al/PDMS SC pads. The data for Al/PDMS FCT pads is described in reference [1] . 

Fig. 5. (a) Storage and loss moduli and (b) tan δ at low compressive strains as a function of oscillatory frequency for 

G/PDMS FCT pads. 

Fig. 6. (a) Storage and loss moduli and (b) tan δ at low compressive strains as a function of oscillatory frequency for 

G/PDMS SC pads. 
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Fig. 7. (a) Storage and loss moduli and (b) tan δ at low compressive strains as a function of oscillatory frequency for 

Ti/PDMS FCT pads. 

Fig. 8. (a) Storage and loss moduli and (b) tan δ at low compressive strains as a function of oscillatory frequency for 

Ti/PDMS SC pads. 
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.3. Uniaxial compression and dynamic mechanical analysis 

The compression test was performed using an ADMET eXpert 7601 testing system. Samples

ith dimensions of 2 × 2 cm were compressed for 4 cycles to a maximum stress of 1.0 MPa at a

train rate of 0.5%/sec. Dynamic mechanical analysis was performed in compression mode with a

A Instruments Q800 Dynamic Mechanical Analyzer (DMA), using 15-mm compression plates at

mbient temperature ( ∼23 °C). Oscillatory strain sweeps were conducted at a frequency of 1 Hz

o determine the linear viscoelastic regime for each sample. Subsequently, oscillatory frequency

weeps from 1 to 200 Hz were performed at strains within this regime; three cycles of each

requency sweep confirmed reproducibility. 
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