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Meta-analysis of expression and
methylation signatures indicates a
stress-related epigenetic mechanism in
multiple neuropsychiatric disorders
Kaiyi Zhu 1,2, Tai-Hsien Ou Yang1,2,5, Vincent Dorie3, Tian Zheng3,4 and Dimitris Anastassiou1,2,3

Abstract
Similar environmental risk factors have been implicated in different neuropsychiatric disorders (including major
psychiatric and neurodegenerative diseases), indicating the existence of common epigenetic mechanisms underlying
the pathogenesis shared by different illnesses. To investigate such commonality, we applied an unsupervised
computational approach identifying several consensus co-expression and co-methylation signatures from a data
cohort of postmortem prefrontal cortex (PFC) samples from individuals with six different neuropsychiatric disorders—
schizophrenia, bipolar disorder, major depression, alcoholism, Alzheimer’s and Parkinson’s—as well as healthy controls.
Among our results, we identified a pair of strongly interrelated co-expression and co-methylation (E–M) signatures
showing consistent and significant disease association in multiple types of disorders. This E–M signature was enriched
for interneuron markers, and we further demonstrated that it is unlikely for this enrichment to be due to varying
subpopulation abundance of normal interneurons across samples. Moreover, gene set enrichment analysis revealed
overrepresentation of stress-related biological processes in this E–M signature. Our integrative analysis of expression
and methylation profiles, therefore, suggests a stress-related epigenetic mechanism in the brain, which could be
associated with the pathogenesis of multiple neuropsychiatric diseases.

Introduction
Major psychiatric disorders, such as schizophrenia and

bipolar disorder, and neurodegenerative diseases, such as
Alzheimer’s and Parkinson’s, are all pathologically related
to abnormalities in the brain1–4 with different manifes-
tations in each case, but the underlying etiologies remain
largely elusive. Extensive research has implicated envir-
onmental factors in the pathogenesis of such neu-
ropsychiatric disorders5–9, operating through epigenetic
mechanisms to change gene expression and thereby

disrupting particular biological functions in brains. For
example, in the case of several types of dementia,
including Alzheimer’s disease, environmental influences
have been associated with the risk of disorder, which can
lead to epigenetic transformations, such as altering DNA
methylation and histone modification, over time10. Fur-
thermore, striking experimental evidence connecting
environmental stress and pathogenic outcome has been
provided by research on both animals11–13 (rodents and
primates) and humans14,15 (monozygotic twins with dis-
cordant disease states). The LEARn (latent early-life
associated regulation) model was proposed16 as an epi-
genetic explanation for neurobiological disorders. On the
other hand, it has been shown that transcriptomes and
DNA methylation patterns of different brain regions differ
substantially17,18 across brain regions. In this study, we
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focused on one specific brain region, the prefrontal cortex
(PFC), which has been implicated in the etiology of dif-
ferent neuropsychiatric diseases19,20.
We reasoned that the co-expression and co-methylation

modules can be used as signatures to represent some
particular biomolecular events, and that the modules
shared by different diseases indicate common mechan-
isms. Moreover, analyzing the interrelationships between
signatures can help in further understanding such
mechanisms. For example, a significant association
observed between some co-expression and co-methylation
signatures can indicate a particular epigenetic regulation.
For that purpose, we first assembled multiple publicly

available gene expression and DNA methylation data sets
obtained from postmortem adult PFC samples across six
different neuropsychiatric disorders along with healthy
controls. We then identified a number of “consensus” PFC
co-expression and co-methylation signatures, present in
similar forms across multiple data sets, using an unsu-
pervised methodology21. Integrative analysis of these sig-
natures along with supervised analysis of available
phenotypic associations suggested that a particular epi-
genetic abnormality could be involved in the pathogenesis
of different neuropsychiatric illnesses.

Materials and methods
Data sets and preprocessing
Our discovery data cohorts consist of publicly available

expression data and DNA methylation data of post-
mortem PFC samples from 426 subjects (242 cases, 184
controls) and 823 subjects (406 cases, 417 controls),
respectively. The details of sample information can be
found in Table 1. Most of the publicly available human
postmortem PFC samples were obtained using the Affy-
metrix Human Genome U133 array and the Illumina
HumanMethylation 450k beadchip for expression and
DNA methylation, respectively. Because our multi-data-
set algorithmic implementation works best with uniform
data properties, we restricted the data sets to those types
of profiling platform. We eliminated from consideration
data sets representing repeated runs of the samples from
the same subjects, thus avoiding replicates in the data
cohorts that we collected for consensus signature identi-
fication, which could have otherwise biased the results.
We also required that the number of either cases or
controls should be at least 10 for expression data and 15
for methylation data (because of the larger number of
probes for the methylation platform).
We downloaded the raw data sets and preprocessed

them as follows. Data sets with gene-expression values
were profiled using either of two Affymetrix platforms,
but we only used HG-U133A probes for analysis in this
study so that every individual expression data set contains
the same probe set. The raw CEL files were log-

transformed and RMA normalized for each individual
data set with default settings as implemented in the R
Bioconductor affy package22. For DNA methylation ana-
lysis, we obtained β values from the methylated and
unmethylated signal intensities for each individual data
set by using the dasen function in the R Bioconductor
wateRmelon package23.
The validation data sets used in this study include

additional microarray and RNA-seq data sets. The
microarray data sets include GSE36980 for Alzheimer’s
disease24 and GSE49376 for Alcoholism25, which were not
included in the consensus analysis because they were
profiled on different platforms. We normalized them in
the same way as we did for the Affymetrix microarray
data. The RNA-seq data sets, covering four out of the six
neuropsychiatric diseases, include PFC samples from
GSE68719 for Parkinson’s26, GSE101521 for major
depression27, bipolar disorder and schizophrenia samples
as part of the BrainGVEX study (available on Synapse
with accession number syn4590909) within the Psy-
chENCODE Consortium28. For RNA-seq data sets
deposited on Gene Expression Omnibus (GEO), we nor-
malized the raw counts individually using DESeq229,
removed genes whose expression values were zero
in more than half of the samples, and then performed
log2-transformation. For the BrainGVEX data, we
downloaded the normalized version from https://github.
com/mgandal/Shared-molecular-neuropathology-across-
major-psychiatric-disorders-parallels-polygenic-overlap/
tree/master/working_data/RNAseq.

Attractor-finding algorithm
General version for individual data sets
The attractor-finding algorithm is an unsupervised

method for identifying signatures of mutually associated
features from a matrix containing values of features
(rows) in different samples (columns). Therefore, using
expression or methylation matrices, it identifies co-
expression and co-methylation signatures, respectively.
The details of the general attractor-finding algorithm

can be found in our previous work21,30. Briefly, the algo-
rithm uses an iterative procedure to collect mutually
associated features, converging to the core (“heart”) of the
underlying co-expression or co-methylation mechanism.
The association measure we used is based on the mutual
information (MI)31, which generally captures even non-
linear relationships between variables. To outline the
process in the case of gene expression data, it starts from a
“seed” (e.g., the expression of one particular gene). In the
first iteration, all genes are ranked in terms of their MI
with the seed gene, and a “metagene” is created as a
hypothetical gene whose expression values, for each
sample, are equal to the weighted average of the expres-
sion values of all genes, where each weight is defined as a
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function of the MI of that gene with the seed gene. Each
subsequent iteration updates the metagene, so that the
weight of each gene in the new metagene is defined as a
function of the MI of that gene with the previous meta-
gene. The process is repeated until convergence to an
“attractor metagene”. From the attractor metagene, we
can extract the top-ranked genes (those with the highest
weights), together with a “score” (ranging from 0 to 1) for
each of these genes, which measures the “strength” of the
membership of that gene in the signature. If the strength
of, say, the 10th ranked gene is >0.5, this suggests that
there is a strong co-expression involving at least ten
genes, and that the genes with the highest scores in the
attractor metagene point to the core of the biological
mechanism underlying that co-expression. The same
attractor algorithm can be applied for other types of
mutually correlated features, rather than genes. Therefore,
more generally, the term “metagene” is an example of a
“metafeature”, and it has also been implemented in
MATLAB’s metafeatures function in the Bioinformatics
Toolbox.
Using every available gene as seed identifies a limited

number of strong co-expression signatures, each resulting
in identical form from numerous seed genes. For

methylation data, due to the excessively high number of
methylation probes, we used a heuristic procedure for the
exhaustive search to reduce computational complexity.
The procedure, together with additional selection and
filtering criteria for the validity of converged signatures to
represent significant biological events (such as having a
sufficient number of genes with high scores in each of
them) are detailed in www.synapse.org/#!Synapse:
syn5909000.

Probe-selection version for data sets with multiple probes for
same gene
Different platforms have different probe designs and

sometimes each gene may have multiple measurements at
different probes, which are often highly correlated with
each other, rather than representing independent gene
isoforms. This can create a bias of favoring genes with
multiple probes. To avoid this kind of bias, we analyzed
the gene expression and methylation data sets by using a
“probe-selection” version of the attractor-finding algo-
rithm. As in the general algorithm, the probe-selection
algorithm computes the association between the meta-
feature and all the available probes. It has an additional
step, however, in which for each feature it only selects one

Table 1 Description of data sets assembled for consensus analysis. (a) Gene expression cohorts. (b) DNA methylation
cohorts

(a)

Data set Disease Platform Brain region Sample size (control:case)

Ryan et al.55 [GSE5388] Bipolar disorder HG-U133A BA9 31:30

Maycox et al.56 [GSE17612] Schizophrenia HG-U133-P2 BA10 23:28

Zhang et al.57; Zheng et al.58 [GSE20168] Parkinson’s HG-U133A BA9 15:14

Narayan et al.59 [GSE21138] Schizophrenia HG-U133-P2 BA46 29:30

SMRI AltarC Multiplea HG-U133A BA46/10 11:33

SMRI Bahn Multipleb HG-U133A BA46 33:65

Chang et al.60 [GSE54567/54568/54570] Major depression HG-U133A BA9 42:42

(b)

Data set Disease Platform Brain region Sample size (control:case)

Xu et al.25 [GSE49393] Alcoholism HM450 BA9 23:23

Lunnon et al.61 [GSE59685] Alzheimer’s HM450 PFC 24:56

Wockner et al.62 [GSE61107] Schizophrenia HM450 PFC 24:24

Pidsley et al.63 [GSE61380/61431] Schizophrenia HM450 BA9 38:38

Jaffe et al.64 [GSE74193] Schizophrenia HM450 BA46/9 240:191

Smith et al.65 [GSE80970] Alzheimer’s HM450 PFC 68:74

BA Brodmann area, HM450 Illumina Infinium Human Methylation 450 Beadchip, PFC prefrontal cortex (for which Brodmann areas not specified), HG-U133A Affymetrix
Human Genome U133A Array, HG-U133-P2 Affymetrix Human Genome U133 Plus 2.0 Array, SMRI Stanley Medical Research Institute
a. Cases consist of 11 bipolar disorder, 11 major depressive disorder, and 11 schizophrenia patients
b. Cases consist of 31 bipolar disorder and 34 schizophrenia patients
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probe having the highest weight. Only those probes are
used for updating the metafeature for the next iteration.
Due to the nature of the probe-selection algorithm,
probes not associated with unique genes are ignored.

Consensus version for multiple data sets
To identify common signatures shared across multiple

diseases, we used a “consensus” version of the attractor-
finding algorithm, which simultaneously takes into
account all individual data sets. In each iteration for
generating a new metafeature, the association measure of
each feature with the immediately preceding metafeature
is evaluated as the weighted median of the corresponding
association measures taken from the individual data sets.
The weights are proportional to the number of samples
included in each individual data set. In one particular
case, because the sample size of one methylation data set
(GSE74193) is one magnitude higher than those of the
other methylation data sets, we divided it into smaller
subsets based on samples’ processing plates, resulting in
eleven individual methylation data sets used in final
consensus analysis.
Both the above probe-selection and consensus methods

of the attractor-finding algorithm are also detailed in
www.synapse.org/#!Synapse:syn5909000.

Filtering consensus signatures by analyzing their presence in
individual data sets
After identifying the consensus signatures, for each data

set, we used the average value (expression or methylation)
of the top ten probes of all the consensus signatures as
seeds to run the probe-selection attractor-finding algo-
rithm, thus deriving the particular individual versions of
each signature. Then, we evaluated the pairwise overlap
between each individual signature and each consensus
signature in terms of gene symbols using the hypergeo-
metric test (one-tailed version of Fisher’s exact test). We
accepted the presence of a consensus signature in the
individual data set if its overlap with the individual sig-
nature that it derived was the most significant (i.e., with
the smallest P value) compared with its overlaps with
other individual signatures of this data set and had P value
less than 0.05. After obtaining the results for all the
individual data sets, we removed from the final list any
consensus signatures that were not present in the majority
(i.e., more than half) of the individual data sets.

Statistical analysis
As described above, each attractor signature defines a

ranked set of genes along with selected probes depending
on their scores. The average values of the top ten probes
were used to represent the levels of corresponding sig-
natures. For DNA methylation profiles, we transformed

the methylation to M values as recommended32 and then
took the average.

Cell type specificity analysis
The significance of cell type enrichment was assessed

with the hypergeometric test by comparing the cell type
markers and the genes for which the mapped probes have
scores higher than 0.5 in the signature. To correct for
multiple testing, we adjusted the resulting P values with
the false discovery rate (FDR) method using the p.adjust R
function with parameter method= “fdr”. A signature is
considered to be enriched for one specific cell type if it has
significant overlap (P < 0.05) with each reference list of
markers.

Functional enrichment analysis
We used the Molecular Signatures Database (MSigDB)

with the gene set enrichment analysis (GSEA) software33

(v6.2) to explore the biological functions or processes
overrepresented in specific gene sets, such as the identi-
fied co-expression and co-methylation signatures. The
MSigDB database contains eight major annotated gene set
collections, including Gene Ontology (GO) gene sets,
hallmark gene sets, etc. It outputs the hypergeometric
P value and the FDR q value according to the
Benjamini–Hochberg procedure as an estimate of statis-
tical significance for the overlap with these gene sets. To
provide evidence of translational impact, we used the
STRING34 database (v10.5) to investigate the
protein–protein interactions (PPIs) and protein functional
analysis within each signature. For each signature, we
used genes with scores higher than 0.5 as inputs, and
limited their size to 500. FDR q values < 0.05 were con-
sidered significant.

Association identification
To investigate the association of the signatures with

disease diagnosis, we used the linear mixed-effects (LME)
model to evaluate the significance of disease association
for each type of disorder. Since there are multiple data
cohorts of the same disorder included, we used a random
effect of study to consider the inter-study variability. To
account for potential confounding effects, we evaluated
results derived from two LME models, as follows:

Model 0 : Signature � Diagnosisþ 1jStudyð Þ;
Model 1 : Signature � Diagnosisþ Ageþ Gender þ PMI þ 1jStudyð Þ:

In Model 0, we obtained a “pure” significance of disease
association without including other covariates, and in
Model 1, we obtained a “confounder-adjusted” disease
significance by treating age, gender, and postmortem
interval (PMI), the covariates which are available in most
of the data sets, as fixed effects. We used the lmer function
implemented in the lme4 R package35 to fit the model
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using restricted maximum likelihood (REML, the default
in lme4), and derived P values by the Satterthwaite’s
degrees of freedom method with the lmerTest R package,
as suggested for producing acceptable Type I error even
for smaller sample sizes36. We further took into account
the potential confounding effects of other covariates
(antipsychotics dose, method of death, substance abuse,
and smoking) which are only available in some data sets.
We assessed their association with corresponding sig-
natures separately in individual data set by performing
one-way analysis of variance. We also performed the
Mann–Whitney U test, a nonparametric approach, to
evaluate the disease association for each disease in the
individual data sets to confirm the results. In all cases
above, the threshold of statistical significance for P values
was set to 0.05.
The correlation between same-type signatures (i.e.,

expression to expression, methylation to methylation) was
examined using the Pearson’s correlation test. The
“expression–methylation” (“E–M”) correlation between
one co-expression signature and one co-methylation sig-
nature cannot be directly evaluated by using the same
method, because there are no expression and methylation
data coming from identical samples. As an alternative, we
evaluated the E–M interrelationship through gene

membership comparison by taking a significant overlap as
indication that indeed methylation of the intersection
genes affects the expression of those genes. We used the
hypergeometric test to evaluate the significance of the
overlap between the mapped gene symbols of the two
signatures, for which the total gene pool was the inter-
section of the genes included in both expression and
methylation platforms. The resulting P values were
adjusted by the FDR method. Similarly, all P values for
measuring the significance of overlaps in the context were
evaluated using hypergeometric test.

Results
The consensus attractor finding (Materials and meth-

ods) of the combined data cohorts identified three con-
sensus co-expression signatures and five consensus co-
methylation signatures, to which we refer as E1 through
E3 and M1 through M5, respectively. The top-ranked
probes and the mapped gene symbols of each signature
are listed in Table 2. A more complete description of all
the signatures can be found in Data Table S1.
Taking into consideration the gender-related differ-

ences in gene expression and methylation, including the
fact that there are such differences in neuropsychiatric
disorders37, we first investigated if any signature is related

Table 2 Top probes in each PFC consensus signature. There are three columns shown for each signature, which denote
the probe ID, gene symbols, and scores for the top 15 probes. (a) Consensus co-expression signatures, E1–E3. (b)
Consensus co-methylation signatures, M1–M5

(a)

E1 E2 E3

Probes Genes Scores Probes Genes Scores Probes Genes Scores

209300_s_at NECAP1 0.8463 202800_at SLC1A3 0.8772 209769_s_at SEPT5-GP1BB 0.8030

212990_at SYNJ1 0.8265 207761_s_at METTL7A 0.8247 217696_at FUT7 0.7826

202854_at HPRT1 0.8228 203908_at SLC4A4 0.8194 214122_at PDLIM7 0.7676

208841_s_at G3BP2 0.8092 202936_s_at SOX9 0.8180 216940_x_at YBX1 0.7666

213745_at ATRNL1 0.8031 201667_at GJA1 0.8092 214105_at SOCS3 0.7537

204552_at INPP4A 0.8022 212230_at PPAP2B 0.7954 209979_at ADARB1 0.7524

201889_at FAM3C 0.8009 201876_at PON2 0.7926 209730_at SEMA3F 0.7439

205352_at SERPINI1 0.8005 212377_s_at NOTCH2 0.7898 216680_s_at EPHB4 0.7425

205280_at GLRB 0.7963 203296_s_at ATP1A2 0.7888 207306_at TCF15 0.7417

209274_s_at ISCA1 0.7942 206465_at ACSBG1 0.7684 216345_at ZSWIM8 0.7385

211763_s_at UBE2B 0.7915 209210_s_at FERMT2 0.7624 206824_at CES1P1 0.7325

202670_at MAP2K1 0.7909 221796_at NTRK2 0.7613 216821_at KRT8P11 0.7305

218042_at COPS4 0.7866 212850_s_at LRP4 0.7505 202828_s_at MMP14 0.7244

221207_s_at NBEA 0.7864 205328_at CLDN10 0.7432 216076_at L3MBTL1 0.7219

213423_x_at TUSC3 0.7861 203120_at TP53BP2 0.7412 205212_s_at ACAP1 0.7214
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to gender. Among the co-methylation signatures, we
found that M1 and M2 are purely gender-related (due to
the presence of both genders in the data) (Fig. 1), con-
sistent with the fact that their top-ranked genes are almost

exclusively located in sex chromosomes. For example,
XIST, one of the top genes of signature M2 (Table 2b),
plays a critical role in the process of X-chromosome
inactivation in mammalian females, an early

(b)

M1 M2 M3

Probes Genes Scores Probes Genes Scores Probes Genes Scores

cg10717149 SLC25A14 0.9911 cg22655232 PPP1R2P9 0.9784 cg26765599 NMRAL1 0.9040

cg04317640 SLC16A2 0.9910 cg11049634 BCOR 0.9778 cg06081917 BFAR 0.9013

cg16221895 EDA 0.9908 cg05130312 LOC286467 0.9740 cg17032990 MAP4K4 0.8983

cg14191108 MAOA 0.9907 cg14372935 PIR 0.9722 cg02473439 CCAR1 0.8979

cg10981178 ZBTB33 0.9899 cg06780606 EDA 0.9716 cg02193425 FAM50B 0.8972

cg26505478 CUL4B 0.9893 cg09791535 GPC4 0.9714 cg02313013 TMCC3 0.8942

cg23696472 TSPYL2 0.9892 cg09192294 LAS1L 0.9701 cg00489902 POLE 0.8926

cg05806018 AFF2 0.9890 cg07801607 ZMAT1 0.9696 cg10521450 SH3PXD2A 0.8922

cg11594566 LINC00086 0.9884 cg04690567 PHF8 0.9683 cg02041593 SEMA5B 0.8917

cg10201390 DYNLT3 0.9882 cg00098732 HS6ST2 0.9662 cg00245075 GALNT6 0.8911

cg20749341 LONRF3 0.9881 cg12653510 XIST 0.9662 cg19885979 TRIM26 0.8902

cg22164912 GNL3L 0.9877 cg27551771 KIAA1210 0.9639 cg00452755 RCC1 0.8900

cg20766178 NHSL2 0.9875 cg01037726 PNCK 0.9627 cg02450267 MOG 0.8876

cg18989810 DUSP9 0.9874 cg04704683 POF1B 0.9617 cg23384027 NFE2 0.8875

cg22604777 MAGEH1 0.9874 cg08209935 ARMCX5 0.9602 cg02713352 B4GALNT1 0.8874

M4 M5

Probes Genes Scores Probes Genes Scores

cg12268888 FAM198A 0.8628 cg12547839 UBE2O 0.8539

cg09063372 HDGF 0.8506 cg22330763 SLC29A1 0.8421

cg11150308 SRP68 0.8505 cg04101806 AFF3 0.8203

cg16129988 UQCRC1 0.8468 cg23400122 MSRA 0.8179

cg11371394 TGFBRAP1 0.8406 cg26218110 BAHCC1 0.8153

cg04233747 PRELID2 0.8403 cg25119743 CELF2 0.8023

cg03330867 TELO2 0.8398 cg06372223 SLC7A5 0.8023

cg04426297 B3GAT3 0.8394 cg24897320 CYB561D1 0.8008

cg24695828 ZNF566 0.8324 cg14706739 DMTN 0.7987

cg01923255 ATG14 0.8321 cg08202720 PER2 0.7983

cg26897054 DEDD2 0.8317 cg17518776 PACSIN1 0.7970

cg11111696 ZNF438 0.8312 cg20318252 MSI2 0.7966

cg25426560 DHX16 0.8309 cg24107728 LRP8 0.7962

cg05623562 RBFA 0.8300 cg08506743 NTM 0.7943

cg24715473 CNEP1R1 0.8290 cg20685981 MEGF8 0.7929
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developmental mechanism through which one of the X
chromosomes is silenced by the combination of DNA
methylation and histone modifications to provide dosage
compensation38. Since they are otherwise unrelated with
disease phenotypes, we do not include them in the fol-
lowing analyses.
Co-expression and co-methylation signatures include

contributions from several distinct cell subpopulations in
the heterogeneous brain tissues, from cell types such as
neurons, astrocytes, oligodendrocytes, and immune cells,
which can be further decomposed into cell subtypes.
Because their corresponding probes have the property
that their expression or methylation values tend to have
higher or lower values in concordance, it is likely that
some of these signatures reflect the relative abundance of
such a subpopulation, which varies from sample to sam-
ple. Alternatively, co-expression or co-methylation may
be due to the varying activation of a particular mechanism
within the same subpopulation, as may result, e.g., when
the expression levels of multiple genes are affected by
their simultaneous methylation.
Therefore, we investigated which among the consensus

signatures we found are predominantly due to the varying
abundances of particular cell types across the samples. To
identify the enrichment of the consensus signatures in
cell-type-specific genes, we made use of two published
gene lists of such gene markers derived from single cell
analyses for reference39,40 (Materials and methods). The
first reference list is taken from a study providing a
classification of human brain cells into six major types39.
The second reference list comes from a study providing a
full list of marker genes of nine cell types found in the
mouse cortex40. Although not resulting from human tis-
sues, these extensive and detailed listings from mice are
useful for additional scrutiny and validation. The results
of enrichment analysis of cell type markers using the two

lists were highly consistent (Data Table S2). All of the
signatures were found enriched for some specific cell
types except for E3 and M4.
For the co-expression signatures, this analysis revealed

that signature E1 is enriched for neuronal markers (P=
0.0033 using the human markers). As the mouse cortex
gene set contains particular neuronal subtypes, we further
found that E1 has the highest overrepresentation of
markers for the interneuron subtype (P= 0.0018). On the
other hand, we found that signature E2 is highly enriched
for astrocyte-specific markers (such as SOX9, GJA1
ranked at the top) in both gene lists (P= 2.2 × 10−13 using
the human markers and P= 1.4 × 10−16 using the mouse
markers).
For the co-methylation signatures, we found that sig-

natures M3 and M5 are enriched for markers of glia and
neurons, respectively (Data Table S2), and they were
strongly and negatively correlated with each other (Pear-
son’s r <−0.75, P < 1.2 × 10−8; Data Table S3). We vali-
dated this finding by checking the methylation levels of
M3 and M5 in an independent human PFC methylation
data set of isolated neurons and nonneurons as well as
manually mixed and bulk samples41 (GSE41826) (Fig. 2).
Moreover, M3 was found associated with the co-
expression signature E2 (P= 0.010; Materials and meth-
ods), which is consistent with the aforementioned facts
that E2 is overrepresented in astrocyte markers and M3 is
enriched for different subtypes of glial cell including
astrocytes. Taken together, these findings indicate that
M3 and M5 reflect the relative abundances of neurons vs.
glial cells in samples, which are negatively associated, by
including particular hyper- and hypo-methylated loci in
these two subpopulations.
We evaluated the signatures’ associations with disease

diagnosis considering potential confounding effects
(Materials and methods; Supplementary Notes). As a

Fig. 1 Gender-related PFC consensus co-methylation signatures (M1 and M2) in different disorders. The x-axis and y-axis show the
methylation levels of M1 and M2 signatures, respectively, which were calculated as the average β values of the top ten CpG sites in each signature.
Female and male samples are represented in red and black colors, respectively. The plots are labeled with the associated neuropsychiatric disorders. a
Alcohol use disorder, of data set GSE49393. b Schizophrenia, of data set GSE74193 in processing plate “Lieber_289”. c Alzheimer’s disease, of data set
GSE80970
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result, we observed that the co-expression signatures E1
and E2 showed concordantly significant associations in
more than one type of neuropsychiatric disorders (Data
Table S4), and these associations are unlikely to be
spurious due to confounding factors. Moreover, both
signatures were enriched for PPI networks (P < 1.0 ×

10−16 for E1, P= 8.4 × 10−14 for E2). Specifically, E1 was
found broadly downregulated in several types of diseases,
a topic discussed in detail in the next section.
The other signature, E2 was found upregulated in

schizophrenia (P= 1.8 × 10−3) and bipolar disorder (P=
2.1 × 10−3). One of the GSEA top hits suggested that E2 is
also enriched for genes which were found upregulated in
brains with Alzheimer’s disease42 (FDR q value= 1.8 ×
10−19). Finally, we observed a substantial overlap between
E2 and an astrocyte-related co-expression module (named
“CD4”) that was recently found positively associated with
multiple psychiatric disorders43 (P= 1.1 × 10−114). Func-
tional annotation analysis indicated the enrichment for
biological pathways related to nervous system develop-
ment and glial cell differentiation.

The E1–M4 pair indicates a disease-related stress-
induced epigenetic mechanism
The most significant E–M association was observed

between signatures E1 and M4 (P= 1.9 × 10−4; Data
Table S3), which share a large proportion of genes in
common.
We first discuss the co-expression signature E1, which

we found to be the one most significantly associated with
disease diagnosis among all the identified consensus sig-
natures. We observed significant downregulation of E1 in
the presence of disease in several types of neuropsychia-
tric disorders except for depression and alcohol use

Table 3 Disease association of co-expression signature E1. Shown are the P values of association with diagnosis in
different disorders resulting from the LME models (Materials and methods) for signature E1. Columns annotated by
“Model 0” and “Model 1”, represent the “pure” and “confounder-adjusted” cases, respectively. Full results for other
signatures can be found in Data Table S4

(a) Discovery data

Diseases E1 (Model 0) E1 (Model 1)

Schizophrenia 1.7 × 10−3 1.1 × 10−3

Bipolar disorder 3.8 × 10−5 3.3 × 10−5

Parkinson’s 0.013 0.040

Major depression 0.19 0.13

(b) Validation data

Diseases E1 (Model 0) E1 (Model 1)

Schizophrenia 0.011 0.011

Bipolar disorder 0.014 0.014

Parkinson’s 7.1 × 10−4 0.016

Alzheimer’s 0.018 0.026

Alcohol use disorder 0.99 0.99

Major depression 0.92 0.89

Fig. 2 Negative correlation between cell-type-specific PFC
consensus co-methylation signatures (M3 and M5) in different
cell populations. The x-axis and y-axis show the methylation levels of
the M3 and M5 signatures, respectively, which were calculated as the
average β values of the top ten CpG sites in each signature. The
samples come from the data set GSE41826, which includes
methylation data of separated neurons (red), separated glia (green), as
well as mixed (black for manually mixed and blue for bulk samples)
from healthy human PFC tissues. The proportion of neurons to
nonneurons in the empirically mixed samples range from 10 to 90% in
10% increments
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disorder, and we confirmed this striking association using
validation data sets (Table 3). We took into account the
potential confounding effects of all available traits
(including age, gender, manner of death, substance abuse,
antipsychotic treatment usage, etc.), and our results sug-
gest that the significant disease association we identified
in signature E1 may not be confounded by these factors
(Materials and methods; Supplementary Notes).
The disease-associated downregulation of signature E1

is supported by its large overlap (using the genes for
which the scores in E1 are higher than 0.5) with previously
identified differentially expressed gene sets in different
illnesses. For instance, E1 genes are overrepresented in a
set of genes that were identified downregulated in the PFC
of patients with schizophrenia44 (P= 9.1 × 10−7). Fur-
thermore, the top GSEA result for E1 revealed significant
enrichment for genes downregulated in the brain from
patients with Alzheimer’s disease42 (FDR q value= 3.0 ×
10−317). Finally, many common genes were found inclu-
ded in both E1 and a neuronal module (named “CD13”)
that had been found downregulated in multiple psychia-
tric illnesses43 (P= 2.3 × 10−40). These findings strongly
suggest that the downregulation of the consensus co-
expression signature E1 represents an important biologi-
cal event occurring in the brain affecting different neu-
ropsychiatric disorders.
As previous studies indicated42,44, and in concordance

with the GSEA results of signature E1, some of the
downregulated genes are involved in biological processes
related to neuronal functions including neurotransmitter
transport, signaling pathways and various energy meta-
bolism processes. On the other hand, as mentioned pre-
viously, E1 was found enriched in neuronal markers,
particularly of the interneuron subtype, which allows for a
possibility that the disease correlation of E1 is caused by
the variances of this particular cell population, as was the
case for signature E2. To elucidate in what ways E1 is
related to interneurons and associated with disease, we
designed an experiment as described below.
In the experiment, we made use of the set of inter-

neuron density markers whose expression levels were
identified to be significantly and positively correlated with
the density of CALB1-positive GABAergic interneurons45,
which also appeared as the second top GSEA hit for sig-
nature E1 (FDR q value= 5.9 × 10−250). The null
hypothesis was that the downregulation of E1 observed in
patients with disease is caused by the decreasing popu-
lation of interneurons, in which case we should expect to
see that the disease association becomes reduced when we
remove from the E1 gene list the markers for interneuron
density. Therefore, we compared the disease association
of the subset of E1 genes without those interneuron
markers, referred to as “Set E1/Interneuron” with that of
the E1 signature. As a result, the disease association for

the Set E1/Interneuron became stronger in most cases,
rejecting the null hypothesis (Table 4, see columns named
“E1” and “E1/Interneuron”). This suggests that the strong
disease association of signature E1 in various neu-
ropsychiatric disorders is not caused by the allocation of
interneuron subpopulation in samples.
We then looked at the significant overlap of genes found

between the co-expression signature E1 and the co-
methylation signature M4, which implies an underlying
epigenetic regulation mechanism. We selected the over-
lapping genes between the E1 and M4 signatures (using
genes with scores > 0.5), referred to as “Set E1∩M4”, and
ranked them by the minimum of their scores in E1 and
M4 gene lists so that the top gene has the highest mini-
mum score (the ranked list of the top 15 genes of Set
E1∩M4 is shown in Table 5, while the full list can be
found in Data Table S5). We evaluated the disease asso-
ciation of Set E1∩M4 using the average expression values
of the top-ranked ten genes in the set and compared with
the case of E1 itself. As a result, we observed overall
enhancement of the association with diagnosis in the
cases of the Set E1∩M4 (Table 4, columns labeled “E1”
and “E1∩M4”). This result suggests that the co-
methylation signature M4 contributes to refining the co-
expression signature E1 with respect to the association
with disease diagnosis through an epigenetic mechanism.
Furthermore, regarding the co-methylation signature

M4 itself, we found that it has a unique attribute among
all the nongender-related consensus co-methylation sig-
natures, in that it contains a remarkably high proportion
of methylation probes located at promoter-associated
regions (P= 8.0 × 10−149) and CpG islands (P= 0) when
compared with the overall sites for the methylation array
(Data Table S6), implicating its function of epigenetic
regulation.
To understand the biological functions represented by

the E1–M4 signature, we applied functional annotation

Table 4 Strengthened disease association compared with
E1 alone. Shown are the confounder-adjusted P values of
association with diagnosis in different disorders for three
E1-related gene sets in the discovery data. Columns “E1”,
“E1/Interneuron”, and “E1 ∩M4” represent the cases for
E1 signature alone, the subset of E1 genes without
GABAergic interneuron markers, and the intersection of
genes included in both E1 and M4

Diseases E1 E1/interneuron E1∩M4

Schizophrenia 1.1 × 10−3 4.6 × 10−4 2.5 × 10−4

Bipolar disorder 3.3 × 10−5 1.1 × 10−5 2.7 × 10−6

Parkinson’s 0.040 0.086 0.032

Major depression 0.13 0.12 0.050
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analysis on the intersection genes. First, significant
enrichment of PPIs (P= 2.2 × 10−16) indicates the
meaningful biological connections and regulatory func-
tions among the proteins encoded by these genes. The
small GTPase superfamily was the top hit by assessing the
overlap with InterPro protein domains and features
database46. Among the results of GSEA analysis, the set of
genes downregulated in brains with Alzheimer’s disease42

remains at the top (FDR q value= 9.7 × 10−115). Over-
representation was also found in sets of genes having at
least one occurrence of highly conserved motifs matching
binding sites for transcription factors SP1 (FDR q value=
3.1 × 10−25) and LEF1 (FDR q value= 5.6 × 10−14), which
may provide hints about the nature of the underlying
epigenetic mechanism. Moreover, we found that stress-
related biological processes (GO) were enriched in the
genes of E1–M4 signature (FDR q value < 10−6). We
further confirmed that these stress-related gene sets were
also overrepresented in the respective E1 and
M4 signatures, but not in any of the other consensus
signatures (Data Table S7).
Along with the significant E–M interrelationship and

strong disease association, these findings collectively
suggest that the E1–M4 signature pair represents some
stress-induced epigenetic mechanism, which could be

associated with the underlying etiology of several neu-
ropsychiatric disorders.

Discussion
To investigate the underlying pathological mechanism

(s) common to various neuropsychiatric diseases, we did
meta-analyses on the expression and methylation data of
postmortem PFC samples collected from patients with six
different neuropsychiatric disorders along with healthy
controls (Table 1). By using our unsupervised approach,
we identified several consensus co-expression and co-
methylation signatures present in similar forms across
different data sets and diseases (Table 2). By scrutinizing
these signatures’ disease associations and interrelation-
ships, our study revealed some biological abnormalities
strongly associated with disease diagnosis.
For example, we identified an astrocyte-related co-

expression signature, E2, which was observed upregulated
in patients with schizophrenia and bipolar disorder, and
functional enrichment analysis also indicated its overlap
with genes found to be upregulated in Alzheimer’s dis-
ease. Previous studies have suggested that the changes in
expression of astrocyte markers could be linked to neu-
roinflammation in these diseases47,48. We did not observe
such positive association in other disorders. Taking the
major depressive disorder as an example, our results
showed that, on the contrary, E2 is negatively, though not
very significantly, associated with disease diagnosis (Data
Table S4). Indeed, studies have reported persistent
decreases in astrocyte-specific markers in patients with
major depression49, indicating disease association with
decreased density or hypofunction of astrocytes, and there
is also experimental evidence provided for understanding
the underlying pathogenic mechanism using animal
models50.
Our work resulted in the derivation of several co-

expression and co-methylation signatures using an algo-
rithm designed to point to the core of the underlying
mechanisms, which suggests that the top genes of such
signatures are more biologically accurate compared with
traditional clustering methods. However, the main feature
of our study is the examination of the interrelationships
between such expression and methylation signatures in
search of epigenetic mechanisms. Understanding disease-
associated epigenetic mechanisms may provide opportu-
nities of developing novel therapeutic options.
Using this approach, our main finding was the novel

discovery of a significant interrelationship between the
co-expression signature E1 and co-methylation signature
M4, which indicates an epigenetic relationship. On the
one hand, the signature E1 is enriched for interneuron
markers and we provided evidence that the derivation of
the signature is due to a variation of the expression levels
of such interneurons, rather than a varying abundance of

Table 5 Top-ranked genes in the Set E1∩M4. This table
shows the top 15 overlapping genes between signatures
E1 and M4, ranked by the minimum of their scores in the
two signature gene lists. The four columns represent the
gene symbols, corresponding probe IDs in E1 and
M4 signatures, and the minimum scores, respectively

Gene symbols Probes in E1 Probes in M4 Min scores

CAND1 208838_at cg17524854 0.7499

DYNC1LI1 217976_s_at cg25390230 0.7253

ATP5A1 213738_s_at cg10619144 0.6912

EFR3A 212150_at cg09396107 0.6786

MEAF6 218165_at cg03112782 0.6774

PNMA1 218224_at cg23681213 0.6772

SEC23A 212887_at cg02056847 0.676

ZNHIT3 212544_at cg09922935 0.6697

PPP2R5C 201877_s_at cg08393828 0.6676

NDUFAB1 202077_at cg21989500 0.6675

EIF1B 201738_at cg25839330 0.6672

PPP3CA 202429_s_at cg00302793 0.6667

SLC30A9 202614_at cg09414773 0.6599

UQCRC2 212600_s_at cg03031583 0.6595

RGS7 206290_s_at cg24472496 0.6592
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their subpopulation. On the other hand, E1 is found
strongly down regulated in multiple types of neu-
ropsychiatric diseases (Table 3). The disease association
becomes further strengthened when we consider the
shared genes between E1 and M4 (Table 4), suggesting
that this sharper disease-associated signature is related to
an epigenetic mechanism involving the E1–M4 genes
(Table 5). The overrepresentation of promoter-associated
regions and CpG islands in the corresponding genes of
M4 also complements its role of epigenetic regulation.
Future experimental research on those genes has the
potential of uncovering the details of the biological
mechanism underlying the epigenetic signature and
leading to therapeutic applications.
We did not, however, observe a significant disease

association of the signature in major depressive disorder
and in alcohol use disorder, suggesting that their diag-
nosis is often independent of the underlying biological
mechanism. This is consistent with the fact that there is
comorbidity between depression and alcohol use dis-
order51. Such differences reflect the heterogeneity of
neuropsychiatric disorders. For example, major depressive
disorder is known to have small heritability compared
with other disorders52.
In addition, functional annotation analysis of the

E1–M4 genes revealed the enrichment of stress-related
biological processes. While the genes highlighted under
the identified GO terms may reflect internal cellular
processes, most gene activities are attributed to pathways
involving exogenous stressors. Notably, stress response
and related epigenetic regulation mechanisms in the brain
have been investigated and implicated in neuropsychiatric
diseases8,9,53,54, bringing up the possibility that these
effects are driven by psychiatry-relevant psychosocial
stressors or other relevant biological processes and should
be investigated in future studies.
Our findings should be interpreted in light of some

caveats. Although we have taken care of controlling for all
known confounders, unmeasured variables specific to
disease states may influence the results to some degree in
epigenomic and transcriptomic studies. The identified
mechanisms in this study may well be causal and
important underlying features to disease etiology, but
there is also a chance that this is not true.
In summary, our integrative data mining and analysis of

some of the identified consensus co-expression and co-
methylation signatures suggest the presence of a stress-
related epigenetic mechanism associated with different
neuropsychiatric diseases.
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