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Abstract

A survey of the ecological variability within 52 populations of Schoenoplectus californicus

(C.A. Mey.) Soják across its distributional range revealed that it is commonly found in nitro-

gen (N) limited areas, but rarely in phosphorus limited soils. We explored the hypothesis

that S. californicus supplements its nitrogen demand by bacterial N2-fixation processes

associated with its roots and rhizomes. We estimated N2-fixation of diazotrophs associated

with plant rhizomes and roots from several locations throughout the species’ range and con-

ducted an experiment growing plants in zero, low, and high N additions. Nitrogenase activity

in rhizomes and roots was measured using the acetylene reduction assay. The presence

of diazotrophs was verified by the detection of the nifH gene. Nitrogenase activity was

restricted to rhizomes and roots and it was two orders of magnitude higher in the latter plant

organs (81 and 2032 nmol C2H4 g DW-1 d-1, respectively). Correspondingly, 40x more nifH

gene copies were found on roots compared to rhizomes. The proportion of the nifH gene

copies in total bacterial DNA was positively correlated with the nitrogenase activity. In the

experiment, the contribution of fixed N to the plant N content ranged from 13.8% to 32.5%

among clones from different locations. These are relatively high values for a non-cultivated

plant and justify future research on the link between N-fixing bacteria and S. californicus

production.

Introduction

Growth of terrestrial as well as wetland plants in non-agricultural settings is often limited by

the availability of nutrients, specifically nitrogen (N) and phosphorus (P) [1, 2]. Plants have

evolved two broad strategies to deal with nutrient-limiting environments: (1) conservation of

use; and (2) enhanced acquisition [3, 4, 5]. Resorption of nutrients from senescing to newly

growing or storage organs is a typical example of a conservation of use strategy. The enhanced

acquisition involves production and secretion of hydrolytical enzymes such as phosphatases

in case of P limitation, or the utilization of rhizosphere bacteria that can increase the
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bioavailability of N through N2-fixation [6]. Bacteria capable of performing N2-fixation can

colonize both root surfaces (and are referred to as “epiphytes” here) as well as the internal tis-

sues (“endophytes”) (for review see [7]. The reduction of N2 to ammonia during its biological

fixation is an energetically expensive process and the input of easily available C from roots into

the plant rhizosphere can sustain high activity of root associated diazotrophs [8, 9, 10, 11].

Epiphytic diazotrophs establishing loosely organized associative relationships in the rhizo-

sphere have been documented frequently for tropical grasses [8, 12, 13] and among wetland

plants for littoral macrophytes [14, 15, 16]. Endophytic relationships of diazotrophs have been

reported in a variety of plant roots and rhizomes including sugar cane, Sorghum, Miscanthus,
and others [17, 18, 19, 20, 21, 22]. Here we will focus on the potential role of both epiphytic

and endophytic nitrogen fixation in the nutrient economy of a giant bulrush, Schoenoplectus
californicus.

Schoenoplectus californicus (Cyperaceae) is a large, perennial, rhizomatous wetland sedge

reaching up to 6 meters in height and often forming monospecific stands [23]. Two varieties

with similar ecology, var. californicus (C. A. Meyer) Soják and var. tereticulmis (Steud.) Vegetti,

are present in the southern part of its distributional range. As a dominant producer of biomass,

S. californicus can impact biogeochemical cycles by providing a source of organic material and

by oxygenating the rhizosphere [24]. In many regions, it plays an important role in the human

economy providing raw materials for the construction of boats, all-purpose mats and handi-

crafts [25, 26]. In the survey of the ecological variability within 52 populations of S. californicus
throughout the Western Hemisphere (Fig 1) we noticed that availability of phosphorus (P)

appears to be important and this species is rarely found in P limited soils [23]. While common

in the P-rich soils of Chile and the Central American highlands, the species is absent from the

predominantly P limited ecosystems of the Yucatan peninsula and Cuba. Contrastingly, it is

commonly found in areas known to be N limited, such as the Orinoco delta of Venezuela, the

delta of the Paraná River in Argentina, and the Central Valley of California. In the entire data

set from Carpenter [23], the average total soil P was 0.74 mg g-1, which is well over 0.5 mg g-1

regarded as a sufficient amount of P for wetland sediments [27]. In contrast, N availability was

found to be variable but generally on the low side (average total soil N of 5.5 mg g-1), with

about half of the locations containing < 4 mg g-1. No differences were found in biomass pro-

duction among the populations from sites with N-limited sediments, nor did there seem to be

less N in plant tissue (Table 1), therefore positive association with N-fixing diazotrophs was

suspected.

Biological nitrogen fixation, BNF, belongs to the most essential biological processes and its

knowledge is critical to our understanding of biogeochemical ecosystem functioning [28, 29,

30]. It occurs via two primary pathways: symbiotic and nonsymbiotic, and is performed by

prokaryotic organisms called diazotrophs that can be either autrotrophic (cyanobacteria), or

heterotrophic (numerous genera of bacteria such as Azospirillum, Herbaspirillum and others

[31]). Symbiotic N2-fixation is defined as the biological reduction of N2 occurring through

mutualistic relationships between microorganisms (e.g., rhizobia) and plant roots (e.g.,

legumes). Nonsymbiotic nitrogen fixation includes fixation by the true free-living diazotrophs

(e.g.,heterotrophic N2-fixation in leaf litter and soil or water) [31, 32], as well as by autotrophic

and heterotrophic organisms of intercellular and epiphytic growth associated with certain spe-

cies of bryophytes [33]. In the past, the majority of studies dealt with the symbiotic N2-fixation

in legumes, however more recently, the important role of free-living and epiphytic N2-fixation

is being acknowledged and current evidence suggests that free-living N2-fixation represents a

critical N input to many terrestrial and aquatic ecosystems, particularly those lacking large

numbers of symbiotic N2-fixing plants [11, 21]. Most of the studies on endophytic N2-fixation

have been focused on crop plants such as sugar cane and rice, while only a few studies on
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natural plant populations are available and none, to our best knowledge, reports endophytic

diazotrophs from any Cyperaceae family. Field experiments have demonstrated that 60% or

more of plant N may be provided by plant-associated biological N2-fixation in sugarcane [34,

35].

Fig 1. Geographic origins of the clones used in the cultivation experiment. The distribution of Schoenoplectus
californicus in the Americas is shown in grey, the dots indicate the sampling locations [23]. The clones included in this

study are indicated by letters: Variety tereticulmis EN: Ensenada, Chile; GU: Guillermo, Argentina; PT: Puente, Chile.

Variety californicus CC: Copacabana, Bolivia; PU: Puno, Perú; HU: Huanchaco, Perú; SJ: San Juan, Guatemala; RW:

Rockefeller, Louisiana.

https://doi.org/10.1371/journal.pone.0195570.g001

Table 1. Soil and plant total nitrogen, TN, and phosphorus, TP, mg g-1, and aboveground biomass, W, from 52 populations of Schoenoplectus californicus [23].

SOIL PLANT TISSUE PLANT BIOMASS

n TN TP N/P TN TP N/P W, g m-1

Average all 52 5.5 0.75 7.2 16.9 1.37 13 1325

Low N group 22 1.75 0.50 4.1 16.6 1.50 11.7 1364

High N group 30 8.40 0.91 9.5 17.1 1.30 14.0 1286

P value (Mann-Whitney U-test) 0.001 0.01 0.001 NS 0.05 0.05 NS

Data presented as means for the whole data set and means for low vs. high nitrogen. Note: Soil TN < 4 mg g-1 and TP < 0.5 mg g-1 in wetland sediments indicate

potential N or P limitation [28]; the average tissue N in other Cyperaceae species from the N-limited region was 13.1 mg g-1 (n = 10; SD = 0.24). Biomass sampled in

2007 in the middle of the growing period (Dec-Feb Southern hemisphere, June-August Northern hemisphere).

https://doi.org/10.1371/journal.pone.0195570.t001
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With the rapid development of molecular methods, many laboratories are now reporting

on the actual bacterial composition of both epiphytic and endophytic diazotrophs, or at least

the detection of nifH gene encoding the Fe protein polypeptide of the nitrogenase enzyme.

The detection of the nifH gene in the genomic DNA sample labels that particular isolate as a

potential diazotroph [36]. Expression of genes associated with N2 fixation (nifH) has been

demonstrated multiple times [37, 38].

Here we report the N2-fixation activities associated with roots and rhizomes of a common

macrophyte, Schoenplectus californicus. Our goal was to answer the following questions related

to both the basic understanding of S. californicus associated N2-fixation processes as well as

applied aspects aimed at potential economical utilization of this plant:

a. Are there any differences between nitrogenase activity of roots (epiphytic) and rhizomes

(endophytic) associated diazotrophs and what proportion of plant N budget has been

derived from N2-fixation? We predicted that root associated N2-fixation will be higher due

to the higher population densities of rhizobacteria as compared to endophytic bacteria.

b. Does N2-fixation differ in S. californicus populations from nutrient enriched (polluted) vs.
oligotrophic (unpolluted) locations? We predicted that N2-fixation will be higher in the

unpolluted areas.

c. Are there any differences in N2-fixation between the two varieties, S. californicus var. tereti-
culmis and var. californicus?

d. Are the presence of the nifH gene and/or the δ15N signature of shoots good predictors of

N2-fixation?

Material and methods

The study has three components:

1. Preliminary survey of epi- and endophytic N2-fixation associated with S. californicus popu-

lations from different parts of its wide range of distribution.

2. Regional study of epi- and endophytic N2-fixation associated with S. californicus popula-

tions from the littoral zones of Lake Atitlán, Guatemala, assessing the variability of the two

processes at nutrient poor and nutrient rich sites.

3. Controlled growth experiment with two varieties of S. californicus, originating from eight

different locations throughout its distribution range, at three different N levels with a

labeled 15N source to determine the contribution of N2-fixation by epi- and endophytic dia-

zotrophs to the plant’s growth.

The field permit to do research at Lake Atitlán was issued by the Autoridad para el Manejo

Sustenable de la Cuenca del Lago Atitlán y su Entorno (AMSCLAE); no other field permits

were required.

Nitrogenase activity, delta 15N signature of shoots and/or rhizomes, and the presence of the

nifH gene (see below) were used as indicators of a fixing capability of diazotrophs associated

with the respective S. californicus populations.

Descriptions of study sites

Table 2 summarizes information on all the locations where the study plants originated from. It

includes locations from Carpenter’s [23] survey of the ecological variability within populations

of S. californicus throughout the Western Hemisphere (United States, México, Guatemala,
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Perú, Bolivia, Argentina, Chile, and Easter Island) done in 2006 and 2007. Rhizomes of clones

from the genetically distinct populations were collected and planted at UC Davis where they

have been propagated and maintained in outdoor cultivations. Table 2 also includes descrip-

tion of study sites around Lake Atitlán in Guatemala and few additional sites from Central Cal-

ifornia and Belize.

Component 1: Preliminary surveys. Tests of N2-fixation capability of epiphytic and

endophytic diazotrophs were conducted on Schoenoplectus californicus originating in four

Central and South American locations and cultivated in the common garden in Davis. To

check if the endophytic diazotrophs were also present in rhizomes and shoots of other species

of a similar ecological niche, samples of Schoenoplectus acutus and a common wetland macro-

phyte, Typha domingensis, from few locations in the Central Valley of California (N-limited)

Table 2. Characteristics of sampling locations for Schoenoplectus californicus; tere = variety tereticulmis; cali = variety californicus.

Soil nutrients

(mg g-1 dry soil)

Location Abbr. Species Variety Latitude D.

d

Longitude D.

d.

Altitude m Temperature oC Total N Total P Soil N/

P

Plant

N/P

δ15N

‰

PRELIMINARY SURVEY

Pucon, Chile � S. californicus tere -39.277 -71.981 214 16.1/7.4 0.6 0.5 1.2 11.7 na

Saramiento, Argentina � S. californicus tere -45.700 -69.162 260 18.9/6.6 1.6 0.5 3.2 11.9 na

Rio Vista, Calif., US � S. californicus cali 38.133 -121.68 1 22.2/7.5 0.4 0.3 1.3 14.5 na

Lindsey Slough, Calif.,

US �
S. californicus cali 38.262 -121.79 2 23.9/7.3 1.5 0.7 2.1 9.6 na

Cosumnes, Calif., US S. acutus 38.262 -121.438 50 24.0/10.6 1.5 0.6 2.5 7.0 5.4

Cosumnes, Calif., US T.

domingensis
38.266 -121.439 50 24.0/10.7 1.6 0.6 2.7 9.2 4.7

Deep marsh, Belize T.

domingensis
18.004 -88.448 5 31.5/20.4 6.2 0.2 31.0 27.5 -0.6

CASE STUDY AT

ATITLÁN

Isla de Silencio, Guate. ISLA S. californicus cali 14.666 -91.214 1575 23.1/14.7 0.3 0.3 1.0 11.3 0.9

San Marcos, Guatemala SM S. californicus cali 14.722 -91.251 1575 23.1/14.7 1.7 0.7 2.4 12.5 2.0

San Pedro, Guatemala SP S. californicus cali 14.677 -91.138 1575 23.1/14.7 1.9 0.8 2.4 14.2 -8.2

San Lucas, Guatemala SL S. californicus cali 14.634 -91.138 1575 23.1/14.7 4.3 0.8 5.4 10.6 -3.0

Santiago, Guatemala SAN S. californicus cali 14.635 -91.234 1575 23.1/14.7 4.1 0.9 4.6 13.1 -5.1

Panajab, Guatemala PAN S. californicus cali 14.657 -91.223 1575 23.1/14.7 4.0 0.9 4.4 12.9 0.7

EXPERIMENT

Guillermo, Argentina � GU S. californicus tere -41.36 -71.515 856 14.2/2.4 3.4 0.5 6.8 6.7 0.3

Puente, Chile � PT S. californicus tere -41.23 -72.623 9 14.6/6.8 1.3 0.3 4.3 11.9 -0.1

Copacabana, Bolivia � CC S. californicus cali -16.147 -69.075 3810 12.1/6.9 4.1 0.8 5.2 10.9 1.3

Rockefeller, Louisiana � RW S. californicus cali 29.709 -92.826 10 27.8/10.2 3.9 0.6 8.8 7.1 -4.0

San Juan, Guatemala � SJ S. californicus cali 14.698 -91.284 1575 23.1/14.7 1.9 0.7 2.5 10.3 -0.6

Huanchaco, Peru � HU S. californicus cali -8.068 -79.123 3 13.9/10.0 8.5 1.2 7.1 14.7 22.6

Ensenada, Chile � EN S. californicus tere -41.653 -73.562 62 14.6/6.8 7.4 0.9 8.5 15.2 7.8

Puno, Peru � PU S. californicus cali -14.148 -69.689 3810 12.1/6.9 7.0 1.1 6.4 28.5 5.7

The sites of Carpenter’s survey from 2007 [23] are marked with �. Clones from all these locations have been since in the common garden cultivation at UC Davis. The

first three locations from Atitlán region are from the unpolluted, the remaining three from polluted locations. The first five locations of the clones used in the

experiment are from low nitrogen, the remaining from high nitrogen sampling sites. D.d. = decimal degrees; temperature average high/average low; δ15N is from the

shoots in the time of collection at original locations.

https://doi.org/10.1371/journal.pone.0195570.t002
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and Belize (P-limited) were surveyed [27] (Table 2). ARA assays were run in hours following

sample collection.

Component 2: Case study of Schoenoplectus californicus populations at Lake Atitlán.

To assess the spatial and temporal variability of S. californicus associated N2-fixation and the

potential impact of nutrient enrichment, we collected samples from spatially separated popula-

tions in the littoral zone of an oligo-to mesotrophic Lake Atitlán, Guatemala in August 2010

and February 2011 (Table 2)—one of the N-limited regions included in the initial Carpenter’s

study [23]. Three of the locations were in the unpolluted parts of the lake, while the remaining

three were at the proximity to the runoff from human settlements or other nutrient rich

sources. The polluted locations were characterized by about five- and two-fold higher concen-

trations of total N and total P in water, respectively, compared to the unpolluted locations (pol-

luted: TN 525 μg L-1, TP 93 μg L-1; unpolluted: TN 116 μg L-1, TP 50 μg L -1). The polluted

locations had also higher TN and TP content in sediments (Table 2).

Component 3: Cultivation experiment. From the S. californicus clone collection, we

selected five clones originating in the locations with low N and three in locations with high N

(Table 2; Note: Soil TN< 4 mg g-1 and TP< 0.5 mg g-1 in wetland sediments indicate poten-

tial N or P limitation [27]). The selection encompassed the genetic (variety tereticulmis and

californicus) and geographic ranges of the species (Fig 1, Table 2). From now on the two varie-

ties, tereticulmis and californicus, will be abbreviated as “tere” and “cali”. The plants were prop-

agated and transplanted for 5 weeks into sterilized sand and tap water (NO3-N = 3 ppm; PO4-

P = 0.2 ppm). At the beginning of the experiment, individual plants comprised of a 7-12cm

long shoot with a short piece of rhizome were planted in 3 replicates for each treatment in 3L

pots filled with sterilized sand. Since the plants have been in the common garden cultivation

for several years, there were no differences among the plants from low vs high group in either

δ15N or % N content (δ15N 4.4 ‰ +/- 0.99 SD and 4.8 ‰ +/-1.04 SD; N content 1.4% +/-0.30

SD and 1.5% +/-0.27 SD for low and high respectively). All pots received 0.25% Hoagland

nutrient solution minus N. Hoagland solution was changed three times during the duration of

the experiment. The zero, low, and high N treatment received biweekly 0, 20, and 200 mg/pot

of N, resulting in the total addition of 0, 120, and 1200 mg N/pot (corresponding to 0, 4, and

40 g N m-2). Nitrogen was applied as KNO3 with a value δ15N of 67.74‰. All pots were placed

under ambient environmental conditions in Davis, CA, in a large tub filled with water to pre-

vent overheating. The experiment lasted 87 days (June 3-August 29; during this time, there is

typically no rainfall in the Central Valley of California, thus there were no concerns regarding

potential uncontrolled N addition by rain). At the end of the experiment, the cumulative

length of shoots was recorded, shoots, rhizomes, and roots were separated, washed in DI, and

the aliquots were used for measurement of nitrogenase activity. The remaining samples were

freeze-dried, weighed, and ground for subsequent determination of δ15N, total N, and molecu-

lar analyses for nifH gene presence and abundance among samples.

Collection of samples for nitrogenase activity measurements

Four plants at each location (components 1 and 2) and one plant per pot (component 3) were

extracted carefully from sediments to prevent extensive root damage and roots and rhizomes

were rinsed in surface water to remove adhered larger particles and sealed in a plastic bag. The

samples were transported to the laboratory, where the live roots were identified by color and

structure, rinsed in distilled water, and an equivalent of ~ 20–40 mg DW was transferred to 40

ml glass test tubes with three replicates per plant. A preliminary test was conducted to verify

that this sample manipulation did not impact nitrogenase activity. In the test we compared

ARA in root samples treated as described above with those that were collected, quickly rinsed

Heterotrophic N2-fixation and nitrogen economy of Schoenoplectus californicus
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in deoxygenated water and immediately placed to the fixation vials where the oxygen was low-

ered by exchange of part of the headspace for N2 gas. There were no significant differences in

the nitrogenase activity measured by ARA for the two treatments over 2, 5, 10, 18 and 25

hours of incubation (t-test, P = 0.7). Rhizome and stem tissues were surface sterilized sequen-

tially in sterile distilled water, 95% ethanol, and 1.6% hypochlorite for 30s each; between each

step the tissues were rinsed three times with sterile water [39]. The outer, coarse surface layer

of rhizomes was removed after surface sterilization, leaving only tissue that did not come in

contact with the soil. Because of the complexity of the root structure, it is difficult to reliably

surface sterilize these organs; we decided to consider the root-associated nitrogenase activity

as a result of joint activity of both the endo- and epiphytic microorganisms. The tissue was

transferred to 40 ml glass test tubes (each in three replicates) with 200 μL (for rhizomes) and

20 mL (for roots) of distilled water and fitted with Teflon septum lids.

Nitrogenase activity

The acetylene reduction technique, ARA [40], was employed to estimate N2-fixation by the

reduction of acetylene to ethylene by nitrogenase. Ten percent of the headspace were replaced

with acetylene gas, freshly generated from calcium carbide, and the bottles were incubated for

24 hours at 28 degrees C. At the end of the exposure, 7–8 mL of headspace was withdrawn

with an airtight syringe (Alltech) and analyzed by gas chromatograph (Shimadzu 14 GC) with

a flame ionization detector and a Porapak-T column at 80˚C. The results are reported as the

nitrogenase activity in nmol C2H4 g-1 d-1 of dry weight. Controls run as samples without acety-

lene addition as well as blanks (tubes without plant tissue incubated with acetylene) showed no

endogenous ethylene production. Samples were kept for dry weight determination after termi-

nating the exposure (see [11] for more detailed description).

Calibration of ARA through 15N2 reduction assay

On a subset of 13 root and 7 rhizome samples from the experiment, the nitrogenase activity,

measured using the ARA, was calibrated by 15N2 reduction assay. The measurements were

conducted at the same time as ARA but 2 mL of 15N2 (99atom%, Cambridge Isotope) was

added instead of C2H2. At the end of the incubation, the content of the containers was frozen,

freeze dried and then ground in a Wiley mill. The initial 15N natural abundance of the sample

was determined from the ARA samples. The delta15N (in relation to atmospheric N2 as the ref-

erence standard material) was measured by an isotope ratio mass spectrometer (see below).

Biomass specific N2 fixation rate, normalized to organic N, was calculated as isotopic balance

[41, 42]:

V t� 1ð Þ ¼
ðAPPN final � APPN initialÞ

ðAPN2 � APPN initialÞ

� �

�
1

Dt

Where PN is N concentration in the sample, AP is 15N enrichment (atom% 15N) of the sam-

ple or substrate (N2) pool at the beginning (initial) and end (final) of incubation; Δt is the

length of incubation. N2 fixation rate expressed in terms of fixation of molecular N2 to organic

material was then calculated:

N2 fixation rate mol N2 g
� 1 h� 1ð Þ ¼ V t� 1ð Þ �

PNfinal

2
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Isotope and tissue nutrient analyses

Tissue N and P concentration of shoot and rhizome samples were assessed. Stable isotopes of

N were measured by continuous flow isotope ratio mass spectrometry using a PDZ Europa

ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20–20 isotope ratio mass spec-

trometer (Sercon Ltd., Cheshire, UK). Dried samples containing approximately 20–150 μg N

(2-3mg of sample) were packaged in tin capsules (Elemental microanalysis, Manchester, MA)

and combusted at 1000˚C in the elemental analyzer. The ratio of 15N/14N (R15) was measured

for the sample and for an injection of standardized N2 gas introduced into the mass spectrom-

eter in each sample cycle. The δ15N was calculated from:

d
15N ¼

R15sample
R15standard

� �

� 1

� �

� 1000

and expressed on “per mil” basis.

Total P was measured spectrophotometrically using ascorbic acid reduction of phosphomo-

lybdate complex after combustion and consequent acid digestion [43].

Proportion of N derived from N2-fixation

Percent of N derived from N2-fixation was calculated for the experiment using the two-end-

member linear mixing model [44] formulated from the mass balance equations:

dM ¼ fAdA þ fBdB

1 ¼ fA þ fB

For source A : fA ¼
ðdM � dBÞ

ðdA � dBÞ

where δM, δA and δB represent the mean isotopic signatures of the mixture M and sources A

and B respectively, in our case mixture M was the isotopic signature of plants at the end of the

experiment, source A had the isotopic signature of 67.74‰ (δ15N of the nitrate-N); source B

was 0‰ (δ15N of the N from the air). For the calculation of the means and confidence intervals

we used the ISOERROR 1.04 Excel spreadsheet by Phillips and Greg [44].

Quantifying the presence of diazotrophs in rhizomes and roots by qPCR

The presence of diazotrophs was assessed in Atitlán rhizome samples from 2011 and in

selected root and rhizome samples from the cultivation experiment. Total DNA was extracted

from Schoenoplectus rhizomes or roots using the Power Soil DNA Isolation Kit (Mo Bio Labo-

ratories), according to manufacturer’s instructions. DNA quality and quantity was determined

by electrophoresis and total DNA concentration in the samples was measured fluorometri-

cally. Total bacteria (16S rDNA gene) were quantified using universal primers 341f (CCT ACG
GGAGGCAGCAG) and 515r (ATTCCGCGGCTGGCA) as described by [45]. The qPCR reactions

were set up using the FastStart Universal SYBR Green Master Mix (Roche). First denaturation

at 95˚C for 10 min was followed by 30 cycles of denaturation (95˚C, 45s), annealing (60˚C,

30s), and extension (72˚C, 30s). For the quantification of diazotrophs (nifH) the IGK3 (GCIW
THTAYGGIAARGGIGGIATHGGIAA) and DVV (ATIGCRAAICCICCRCAIACIACRTC)

primers were used [46]. First denaturation at 95˚C for 10 min was followed by 40 cycles of

denaturation (95˚C, 15s), annealing (58˚C, 30s), and extension (72˚C, 60s). Standard curves

were obtained with serial 10 fold dilutions of a known amount of amplicon of the 16S rDNA
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and nifH genes, respectively. Amplicons were prepared from genomic DNA of E.coli for 16S

RDNA gene and from Methylocystis heyeri for nifH gene. Each extraction, no-template control,

and standard curve dilution was replicated three times. Average copy number per μl of reac-

tion qPCR mixture was converted into copies of the gene per ng of total extracted DNA. Stan-

dard deviation was determined by the StepOne Software v2.3 (Thermo Fisher Scientific).

According to threshold cycles (CT) of standards and the NTC values, a detection limit of

approximately 10 to 100 gene copies per assay was achieved for nifH and 16S rDNA quantifica-

tion, which corresponds to 102 to 103 gene copies per gram of dry rhizome or root dry weight.

Data analyses

Because most of the data sets exhibited variance heterogeneity (Fmax-test; [47]), we used non-

parametric Kruskal-Wallis Test (Statview 5 software package), to evaluate the effect of different

treatments and the effects of clones (separate for each treatment) and Schoenoplectus variety (sepa-

rate for each treatment) on response variables. For the same reason, non-parametric Mann-Whit-

ney U-test was used instead of Student’s t-test to test the difference between means of two samples.

Results

Preliminary survey

Tests of N2-fixation capability of epiphytic and endophytic diazotrophs, providing preliminary

data for future research revealed that four randomly selected Schoenoplectus californicus clones

from our clone collection, as well as the same species from two locations in the Central Valley

of California did display nitrogenase activity. The nitrogenase activity for rhizomes ranged

from 13.0 to 40.9 nmol C2H4 gDW-1d-1, while root-associated activity varied from 523 to over

2000 nmol C2H4 gDW-1d-1 (Table 3). No nitrogenase activity was found in any of the shoots

(data not shown). Schoenoplectus acutus and Typha domingensis both showed nitrogenase

activity related to roots, but contrary to S. californicus, we did not find any nitrogenase activity

in rhizome tissue of these two species.

Case study of BNF associated with Schoenoplectus californicus populations

at Lake Atitlán

Nitrogenase activity of both rhizome and root associated diazotrophs was found in all tested

samples (Table 4). Due to the large variability, only the endophytic rhizome fixation was

Table 3. Means ± standard deviation of nitrogenase activity measured as ethylene production of of epiphytic (roots) and endophytic (rhizomes) diazotrophs from

Schoenoplectus californicus, S. acutus and Typha domingensis.

Species Location Rhizome Root

(nmol C2H4 gDW-1 d-1)

S. californicus Pucon, Chile 35.1 ± 7.8 1085.4 ± 536.5

S. californicus Puente, Chile 15.1 ± 4.2 523.4 ± 318.5

S. californicus San Juan, Guatemala 40.9 ± 17.0 2012.3 ± 973.1

S. californicus Saramiento, Argentina 11.7 ± 2.1 na

S. californicus Rio Vista, California 13.0 ± 4.5 515.7 ± 214.8

S. californicus Lindsey Slough, California 14.9 ± 9.4 884.6 ± 390.7

S. acutus Cosumnes, Central Valley, California 1.5 ± 0.3 112.2 ± 884.6

Typha domingensis Cosumnes, Central Valley, California 0.0 3465.8 ± 1712.4

Typha domingensis Deep marsh, Belize 0.0 968.0 ± 368.5

The first four samples are from plants originating in Central and South American locations and cultivated in the common garden in Davis, CA.

https://doi.org/10.1371/journal.pone.0195570.t003
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significantly different between polluted vs. unpolluted sites, with mean values of 14 and 32

nmol C2H4 gDW-1d-1, respectively (Table 4). The nitrogenase activity associated with roots

was on average more than three times higher in the unpolluted zones, although this difference

was not statistically significant. There did not seem to be any trend related to time (August

2010 –rainy season vs February 2011 –dry season). No correlation was found between rhizome

and root N2-fixation.

Delta 15N of shoots ranged from 2.0 ‰ to -8.2 ‰ averaging -2.1 ‰; the rhizome δ15N ran-

ged from 1.6 ‰ to -5.8 ‰ averaging -1.3 ‰ (Table 4). There was correlation between rhizome

nitrogenase activity and rhizome δ15N (R2 = 0.69; P = 0.04; Fig 2A), but not the shoot δ15N;

this despite the fact that shoot δ15N and rhizome δ15N were well correlated (R2 = 0.9;

P = 0.004; Fig 2B).

Diazotrophs (based on the nifH gene presence) were detected in all analyzed samples

(Table 5). The proportion of nifH gene copies among the total bacterial DNA was low, but well

above the method detection limit. It varied from 0.01 to 0.04% (Table 5). While there was a

trend of increasing nitrogenase activity with increasing nifH proportion, the correlation was

not significant, however, it became significant when all availbale data were included (see the

text in the Cultivation experiment subchapter).

Cultivation experiment

Growth response to nitrogen treatments. Biomass of shoots, rhizomes, and roots as well

as cumulative shoot length was recorded at the end of the experiment (87 days). In each treat-

ment, all these response variables were closely correlated (R2 >0.9), thus we present total dry

mass only (Table 6). As expected, the effect of the N treatment was highly significant; the plants

in zero N treatment grew very slow with the average biomass per pot of 8.8 g, however, they

did form new healthy shoots. The low N and high N treatments resulted in correspondingly

higher biomass with 14.1 and 54.4 g per pot, respectively. The tere variety produced

Table 4. Means ± standard deviations of nitrogenase activity of epiphytic (roots) and endophytic (rhizomes) diazotrophs measured as ethylene production (nmol

C2H4 gDW-1 d-1), shoot and rhizomes δ15N, and tissue N and P of Schoenoplectus californicus from unpolluted and polluted locations in the littoral of Lake Atitlán,

Guatemala.

Location Date Rhizome Root Shoot δ15N Rhizome δ15N Shoot N Stem P

(nmol C2H4 gDW-1 d-1) ‰ ‰ % %

Unpolluted

Isla 2010 47 ± 13 209 ± 34 -4.2 na 1.8 0.13

Isla 2011 22 ± 10 9562 ± 6395 0.9 -0.2 1.8 0.16

San Marcos 2010 43 ± 27 3012 ± 2806 0.3 na 1.5 0.1

San Marcos 2011 12 ± 3 348 ± 264 2 1.6 2 0.16

San Pedro 2011 36 ± 18 157 ± 36 -8.2 -5.8 1.7 0.12

Mean 32 2658 -1.8 -1.5 1.8 0.13

Polluted

San Lucas 2010 16 ± 14 1374 ± 973 na na 1.8 0.13

San Lucas 2011 14 ± 10 151 ± 35 -3 -0.3 1.8 0.17

Santiago 2011 18 ± 12 11 ± 3 -5.1 -4.2 2.1 0.16

Panajab 2011 9 ± 2 1311 ± 230 0.7 0.9 1.8 0.14

Mean 14 712 -2.5 -1.2 1.9 0.15

P value 0.03 NS NS NS NS NS

2010 rainy season, 2011 dry season. P-values (Mann-Whitney U-test) indicate the significance of differences between the means for polluted versus non-polluted

locations. na = not available; NS = not significant.

https://doi.org/10.1371/journal.pone.0195570.t004

Heterotrophic N2-fixation and nitrogen economy of Schoenoplectus californicus

PLOS ONE | https://doi.org/10.1371/journal.pone.0195570 April 23, 2018 10 / 22

https://doi.org/10.1371/journal.pone.0195570.t004
https://doi.org/10.1371/journal.pone.0195570


significantly less biomass than cali variety in each of the N treatments. Plants in zero N treat-

ment invested more growth effort into roots as documented by a low shoot/root ratio of 0.69

as compared to 1.63 and 2.68 for low N and high N treatments respectively. (Note, that “root”

in S/R ratio stands for both roots and rhizomes). The tissue N content was low in zero N and

low N treatment, 0.60 and 0.85% respectively, and significantly higher, 1.71%, for high N treat-

ment. In low and high N treatment, the tere variety contained more N in shoot tissue than cali.
Nearly all the N added to the low N treatment pots was recovered in the biomass of plants in

the low N treatments.

Response of nitrogenase activity to nitrogen treatments. We found evidence of endo-

phytic (rhizome) N2-fixation in all treatments and all clones. The activity fluctuated consider-

ably, ranging from 22.7 nmol C2H4 g DW-1d-1 to 460 nmol C2H4 g DW-1d-1 (Table 6, Fig 3).

There were no differences between zero and low N treatments because of the large variability,

Fig 2. Relationship between rhizome nitrogenase activity and rhizome δ15N (A) and shoot and rhizome δ15N (B) in

Schoenoplectus californicus from Lake Atitlán; full diamond–unpolluted sites, empty diamonds–polluted sites. Each

nitrogenase activity value is a mean of 3–4 replicates, isotope data were measured on pooled samples. Nitrogenase

activity expressed as ethylene production (nmol C2H4 gDW-1 d-1).

https://doi.org/10.1371/journal.pone.0195570.g002
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but rhizome nitrogenase activities in low and high N treatment were closely correlated (R2 =

0.81; P = 0.002). Rhizome fixation was significantly lower in the tere variety. Root (epiphytic)

nitrogenase activity was also highly variable and did not differ between zero and low N treat-

ment, while it was on average about 4x higher in high N treatment. Root nitrogenase activity

was positively correlated among all three treatments. Endo- and epiphytic fixations were not

correlated except for the low N treatment (positive correlation; R2 = 0.51; P = 0.05).

Proportion of N from N2-fixation (Ndfa). For the low N and high N treatments, we used

the mixing model to calculate the proportion of N derived from N2-fixation (Ndfa). In the low

N treatment, we found differences in the contribution to the plant N content among clones

Table 5. Nitrogenase activity of epiphytic (roots) and endophytic (rhizomes) diazotrophs measured as ethylene production (nmol C2H4 gDW-1 d-1) associated with

Schoenoplectus californicus from unpolluted and polluted locations in the littoral of Lake Atitlán, Guatemala and with its selected varieties in different nutrient

treatments of the cultivation experiment.

Roots/

Rhizomes

Location/

Treatment

16S rDNA

copies

ng-1 DNA

nif gene copies ng-1

DNA

Proportion nifH
(%)

Nitrogenase activity nmolC2H4

gDW-1 d-1

Atitlán Case rhizomes Isla 1812612 259 0.0143 21

Study rhizomes San Lucas 7698841 831 0.0108 6.5

rhizomes San Lucas 4196620 515 0.0123 9.9

rhizomes Panajab 7485182 925 0.0124 8.6

rhizomes Panajab 9327930 1257 0.0135 11.9

rhizomes San Martin 763744 58 0.0076 9.8

rhizomes San Martin 7668365 2297 0.0300 10.8

rhizomes Santiago 6269800 2273 0.0362 14.6

rhizomes San Pedro 9361064 2508 0.0268 47

rhizomes San Pedro 8266368 1910 0.0231 16

Cultivation

Experiment

Guillermo roots zero N 2241591 1740 0.0776 96.4

Guillermo roots Low N 1743083 1209 0.0694 597.9

Guillermo roots High N 2571891 4556 0.1771 216.3

Puente roots zero N 1283339 6540 0.5096 307.9

Puente roots zero N 1984252 1502 0.0757 597.6

Puente roots Low N 1504478 2501 0.1662 215.6

Puente roots High N 1941164 2610 0.1345 966.1

Puente roots High N 2335219 1251 0.0536 600.9

Rockefeller roots zero N 1759754 3556 0.2021 2328.1

Rockefeller roots Low N 2279659 801 0.0351 115.7

Rockefeller roots High N 3329109 2010 0.0604 1672.4

Ensenada roots zero N 2610378 1832 0.0702 455.2

Ensenada roots zero N 2803902 4420 0.1576 3252.9

Ensenada roots Low N 2156471 1298 0.0602 234.6

Ensenada roots Low N 3830354 5711 0.1491 2327.4

Ensenada roots High N 2370427 8624 0.3638 6087.8

Guillermo rhizomes High N 1848001 31 0.0017 46

Puente rhizomes High N 3726492 87 0.0023 110

Rockefeller rhizomes zero N 2542134 144 0.0057 320

Rockefeller rhizomes High N 2648460 48 0.0018 55

The presence of nifH genes is expressed as copies per ng DNA or as a proportion of diazotrophs (nifH gene copies) in the total bacterial DNA pool (%).

https://doi.org/10.1371/journal.pone.0195570.t005
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from different locations ranging from 13.8% for Guillermo to 32.5% for San Juan (Fig 4). Vari-

ety cali utilized the N from N2-fixation significantly more than tere (Ndfa 26.3% and 18.6%,

respectively; Mann-Whitney U-test; P = 0.01). In the high N treatment the Ndfa was very low

(0.5 to 6.4%) and the differences between clones were not significant, although San Juan loca-

tion, SJ, had the highest proportion of N from N2-fixation in both treatments. No differences

between varieties were found in the high N treatment.

Table 6. Means ± standard deviations of response variables of Schoenoplectus californicus to nitrogen treatment.

Clone DW S/R N% N-fix Rhizome N-fix Root Ndfa δ15N

Z GU 3.9 ± 1.4 0.19 ± 0.18 0.56 ± 0.20 48.7 ± 9.8 67 ± 25 N/A 4.2 ± 1.9

PT 6.8 ± 2.2 0.79 ± 0.08 0.47 ± 0.03 22.7 ± 8.3 420 ± 155 N/A 4.7 ± 1.2

E EN 5.0 ± 0.5 0.45 ± 0.29 0.66 ± 0.30 82.2 ± 44.6 1593 ± 1469 N/A 1.5 ± 0.8

CC 11.0 ± 3.5 0.57 ± 0.18 0.56 ± 0.12 88.0 ± 36.7 254 ± 89 N/A 4.7 ± 0.6

R RW 12.1 ± 2.8 0.82 ± 0.22 0.68 ± 0.11 37.67 ± 72.3 1384 ± 1334 N/A 2.9 ± 0.4

SJ 9.8 ± 1.7 0.44 ± 0.08 0.72 ± 0.17 84.7 ± 27.1 909 ± 226 N/A 3.4 ± 0.4

O HU 9.2 ± 1.8 1.21 ± 0.45 0.54 ± 0.03 162.2 ± 96.5 608 ± 590 N/A 0.2 ± 0.2

PU 12.9 ± 5.0 0.45 ± 0.02 0.60 ± 0.13 128.3 ± 50.3 1136 ± 42 N/A 0.9 ± 0.4

8.8 0.69 0.60 124.2 745.1 2.8

GU 7.5 ± 0.5 1.5 ± 0.70 1.30 ± 0.10 68.4 ± 61.3 341 ± 224 14.7 ± 0.9 58.4 ± 0.8

L PT 11.5 ± 1.7 1.6 ± 0.20 0.80 ± 0.09 49.6 ± 11.2 238 ± 133 17.8 ± 3.6 56.5 ± 2.3

EN 9.6 ± 0.1 1.5 ± 0.90 1.01 ± 0.19 193.4 ± 43.3 1632 ± 984 26.1 ± 10.0 50.5 ± 6.6

O CC 15.1 ± 2.9 1.6 ± 0.50 0.75 ± 0.22 43.2 ± 7.0 223 ± 142 26.5 ± 3.7 51 ± 2.4

RW 13.9 ± 3.0 2.2 ± 0.40 0.88 ± 0.08 77.9 ± 25.8 360 ± 291 24.2 ± 4.9 51.8 ± 2.9

W SJ 13.1 ± 1.4 1.3 ± 0.10 0.75 ± 0.06 99.8 ± 52.0 934 ± 116 34.1 ± 18.6 45.7 ± 12.0

HU 19.5 ± 2.4 2.1 ± 0.40 0.75 ± 0.19 90.3 ± 0.2 361 ± 23 22.6 ± 1.7 52.5 ± 1.2

PU 22.2 ± 2.1 1.2 ± 0.20 0.58 ± 0.07 261.6 ± 32.5 828 ± 358 30.6 ± 6.9 47.3 ± 4.6

14.1 1.63 0.85 110.6 614.6 23.7 51.7

H GU 11.9 ± 5.3 3.0 ± 0.70 2.31 ± 0.12 83.9 ± 33.3 312 ± 246 1.5 ± 1.6 66.9 ± 1.2

PT 32.3 ± 7.3 3.1 ± 1.30 1.91 ± 0.22 112.8 ± 25.2 889 ± 258 2.7 ± 2.4 66.5 ± 2.3

I EN 35.5 ± 9.3 2.8 ± 0.70 1.87 ± 0.29 217.3 ± 153.6 4219 ± 1621 2.7 ± 2.7 66.3 ± 2.4

CC 65.8 ± 11.5 2.0 ± 0.10 1.79 ± 0.17 137.9 ± 40.2 2256 ± 1101 0.5 ± 0.9 67.9 ± 0.9

G RW 43.9 ± 4.3 3.1 ± 0.90 1.60 ± 0.13 73.9 ± 62.8 2779 ± 972 2.6 ± 3.6 66.9 ± 3.5

SJ 61.8 ± 2.4 2.6 ± 0.30 1.50 ± 0.08 171.4 ± 10.4 5380 ± 29 6.8 ± 8.3 63.4 ± 5.3

H HU 74.0 ± 9.5 3.1 ± 0.20 1.22 ± 0.08 185.8 ± 190.8 3912 ± 2113 1.5 ± 2.3 67 ± 1.8

PU 111.1 ± 19.0 1.8 ± 0.20 1.48 ± 0.08 460.9 ± 32.4 2922 ± 1387 2.8 ± 0.8 65.8 ± 0.6

54.4 2.68 1.71 180.5 2833.7 2.1 66.3

Effect
TREATMENT 0.001 0.0001 0.0001 0.08 0.0001 0.0001 0.0001
CLONE zero N 0.05 0.07 NS 0.02 0.05 - 0.01
CLONE low N 0.01 NS 0.05 0.10 NS 0.05 0.08
CLONE high N 0.004 NS 0.01 0.10 0.03 NS NS
VAR zero N 0.001 NS 0.07 0.002 NS - 0.10
VAR low N 0.0004 NS 0.01 NS NS 0.01 0.01
VAR hig hN 0.0001 NS 0.01 NS 0.03 NS NS

Zero = no nitrogen added; Low = 120 mg N per pot; High = 1200 mg N per pot; DW = dry mass at the end of the experiment in g per pot; S/R = aboveground to

belowground biomass ratio; N% = aboveground tissue N content; N-fix Rhizome = endophytic N2 fixation and N-fix Root = epiphytic N2 fixation, both measured as

ethylene production (nmol C2H4 gDW-1d-1); Ndfa % = proportion of N in the shoots from N fixation; shoot δ15N in ‰ at the end of the experiment. Guiellermo, GU,

Puente, PT, and Ensenada, EN, are clones of variety tereticulmis; Copacabana, CC, Rockefeller, RW, San Juan, SJ, Huanchaco, HU, Puno, PU, are clones of variety

californicus.

https://doi.org/10.1371/journal.pone.0195570.t006
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Similarly to the Atitlán case study, there was a negative correlation between rhizome nitro-

genase activity and rhizome δ15N in both zero and high N treatments (Fig 5). Not enough data

on rhizome δ15N were available to calculate correlations for low N treatment. Rhizome and

shoot δ15N values were significantly positively correlated in zero treatment (R2 = 0.66;

P = 0.05), while non-significant positive trend was found in high N treatment (R2 = 0.43;

P = 0.15).

On average 40x more nifH gene copies were found in the root material than in the rhizomes

(Table 5). When the nitrogenase activity was plotted against the proportion of nifH gene for all

samples (rhizomes from the Atitlán case study and roots and rhizomes from the cultivation

experiment), the correlation was highly significant (Fig 6).

Calibration of ARA through 15N2 reduction assay. In both rhizomes and roots, the

nitrogenase activity measured by ARA was correlated closely to the 15N2 reduction (rhizomes:

y = 2.785x; r2 = 0.98, roots: y = 2.38x; r2 = 0.87) denoting that the C2H4 reduction: N2 reduc-

tion ratio was 2.78: 1 and 2.38: 1 for rhizomes and roots respectively.

Fig 3. Nitrogenase activity expressed as ethylene production (nmol C2H4 gDW-1 d-1) of endophytic bacteria (RHIZOMES) and epiphytic

bacteria (ROOTS) of Schoenoplectus californicus in the experiment. X-axis: Clones Guillermo, GU, Puente, PT and Ensenada, EN are of

variety tereticulmis; Copacabana, CC, Rockefeller, RW, San Juan, SJ, Huanchaco, HU, and Puno, PU are clones of variety californicus. The

error bars indicate the standard error of the mean; n = 3.

https://doi.org/10.1371/journal.pone.0195570.g003

Fig 4. The proportion of N derived from N2 fixation (Ndfa). X-axis: Clones Guillermo, GU, Puente, PT and Ensenada, EN are of

variety tereticulmis; Copacabana, CC, Rockefeller, RW, San Juan, SJ, Huanchaco, HU, and Puno, PU are clones of variety

californicus. Note the differences in the y-axes. The error bars indicate the standard error of the mean (n = 3).

https://doi.org/10.1371/journal.pone.0195570.g004
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Discussion

Our hypothesis that endophytic and epiphytic diazotrophs are associated with rhizomes and

roots of Schoenplectus californicus throughout its distributional range and that the plant is

capable of utilizing the fixed N has been confirmed by several lines of evidence (nitrogenase

activity, presence of nifH gene, and δ15N data).

There is very little information available on N2-fixation associated with members of the

Cyperaceae family and none that would relate to endophytic N2-fixation. Rhizosphere diazo-

trophs associated with Schoenoplectus americanus, a close relative of S. californicus, were

reported to fix 367 ± 46 ng 15N per plant per hour [9]. A direct comparison is difficult because

of differences in the experimental setting, but using our C2H4: N2 ratio of 2.38 (see results) and

shoot: root ratio of ~ 1 [9], their value would translate to some 20,000 nmol C2H4 g-1d-1
, i.e., an

order of magnitude higher value compared to our data. This is potentially explainable by the

fact that Dakora and Drake used intact plants for measurements and thus diazotrophs had an

unrestricted access to root carbon exudates (see below). Root associated diazotroph activity in

the same range as Schoenoplectus californicus has been reported for Cyperus papyrus, a domi-

nant species of tropical swamps in Africa [16]. Eleocharis spp. from marshes in Belize displayed

root associated N2 fixation on the order of 3000 to 4000 nmol C2H4 g-1d-1 under conditions

Fig 5. Relationship between rhizome nitrogenase activity expressed as ethylene production (nmol C2H4 gDW-1 d-1).

and rhizome δ15N in Schoenoplectus californicus from the cultivation experiment zero N treatment (A) and high

treatment (B). Each nitrogenase activity value is a mean of 3 replicates, isotope data are measured on pooled samples.

https://doi.org/10.1371/journal.pone.0195570.g005
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unlimited by carbon [11]. As for the wetland plants other than Cyperaceae, Eckard and Bies-

boer [14] reported the nitrogenase activity of 217 and 226 C2H4 g-1d-1 for Typha latifolia and

T. angustifolia, respectively, and they concluded that populations of Typha may receive as little

as 1–2% of their annual N requirement from N2-fixation.

Are there any differences between N2-fixation of roots (epiphytic) and

rhizomes (endophytic) associated diazotrophs?

Our prediction that the root associated N2-fixation will be higher than endophytic N2-fixation

was correct. In the Atitlán data set as well as in the cultivation experiment, the epiphytic N2-

fixation was 6 to 60 times higher than the endophytic N2-fixation. This is in agreement with

the general consensus that endophytic bacteria occur at lower population densities than sur-

face associated epiphytic bacteria [22]. This difference can also result from the way we present

the results, i.e., as nitrogenase activity per grams of dry weight. Because of their bulky struc-

ture, Schoenoplectus rhizomes have relatively large proportion of a “ballast” biomass, while fine

roots provide a large surface area for diazotrophs to attach to. In the case of S. californicus with

its extensive root structure, it seems possible that the plants benefit more from the epiphytic

bacteria, but at this point it is still just a speculation. We assume that the diazotrophs in the

root samples are epiphytic, but since we did not sterilize the roots, we cannot really exclude the

possibility of endophytic root diazotrophs being present.

The importance of carbon limitation

The presence of a constant C supply as energy source is an important criterion to be satisfied

for the diazotrophs [10, 48]. It is quite probable that the N2-fixation of both rhizomes and

roots in our measurements was underestimated, because in our experimental setting the diazo-

trophs on excised roots/in rhizomes did not have access to the natural and continuous input of

C. A recent trial showed that, with the addition of glucose, the root fixation was on average 6x

Fig 6. Relationship between nitrogenase activity expressed as ethylene production (nmol C2H4 gDW-1 d-1) and

proportion of nifH genes in total bacterial DNA. Combined data from Atitlán case study and the cultivation

experiment.

https://doi.org/10.1371/journal.pone.0195570.g006
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higher (Rejmánková, unpublished data). Dalton et al. [37] reported a 9-fold increase in the

nitrogenase activity associated with roots of Elymus mollis after the roots have been immersed

in 1% glucose prior to the incubation treatment. Lower N2 fixation was reported on excised

roots of Cyperus papyrus compared to fixation on intact roots [16] and the C limitation has

been further demonstrated by other authors [22, 49]. Based on the increased N2 fixation

caused by the enhanced photosynthate supply to root-associated diazotrophs, Dakora and

Drake [9] suggest that, as in legumes, a direct relationship exists between C supply and N yield

from N2-fixation associated with the Cyperaceae. The relationship between C exudates and the

diazotroph activity associated should be explored further.

Ndfa

Estimates of nitrogenase activity provide important information but it may not reflect the

amount of N actually utilized by plants. The proportion of N a plant obtains from N2-fixation

is more meaningful. In our low N addition treatment, the Ndfa ranged from 13.8% to 32.5%

and was higher in the cali variety as compared to the tere (26.3% and 18.6%, respectively). The

available data on N2-fixation contribution vary greatly and generally seem to be higher in

plants artificially inoculated with a single strain or a mix of N-fixing bacteria. Field studies

with “wild”, non-inoculated plants report N2-fixation contributions ranging from 0 to 30%

[13, 50]. The “engineered” plants, on the other hand, often obtain more than 50% of N from

BNF (e.g., sugarcane: 34.8–58.8% [51]; rice variety BAS-370 close to 70% [52]; Pennisetum 50%

[12]; poplar 65% [20], etc.). Presently, S. californicus is an important economical plant in sev-

eral regions, where it is used for boat construction or/and mat weaving [26], but the demand is

still covered by natural production. Should the larger demand for this species occur, inocula-

tion trials with endophytic diazotrophs may become important.

Constitutive endophytic N2-fixation

N2-fixation with its very high energy requirement should, theoretically, down-regulate where

there is high N availability in the soil [29]. In our experiment, we surprisingly found a larger

nitrogenase activity in both rhizomes and roots in high N treatments than in zero N treatment.

This could be potentially explained by localized depletion of available N in parts of the rhizo-

sphere. Towards the end of the experiment, plants in high N treatment were growing vigor-

ously and some could have used most/all of added N. This would activate diazotrophs, which

would likely perform well due to high quality carbon released as exudates from well growing

plants. It would be in principle similar to what Hedin et al. [53] call the nitrogen paradox,

where in the case of tropical forests, BNF from free living diazotrophs can occur in N-limited

areas of the forest separated from areas of abundant N, allowing N2 fixation to continue in

these specific areas, despite the ecosystem being N-rich as a whole. Field data from Atitlán

indicated that there was a trend towards lower BNF in the rhizosphere diazotrophs and a sig-

nificantly lower BNF in the endophytic diazotrophs among populations from polluted areas.

This confirmed our prediction that the N2-fixation will be higher in the unpolluted areas,

while in the enriched locations, plants will be utilizing N available in sediments.

Are there any differences in N2-fixation between the two varieties of S.

californicus?

The finding that S. californicus var. californicus consistently displays higher nitrogenase activity

as well as higher Ndfa than the variety tereticulmis was unexpected. Considering that the clones

used for this experiment had been in cultivation in Davis for several years prior to the experi-

ment, the result could not have been due to priming of the original locations. It demonstrates
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that the taxonomic identity can have an important effect on the N acquisition strategy and is

in agreement with Wurzburger and Hedin’s [54] finding that taxonomic identity was the

major determinant of fixation across a broad soil P gradient in lowland tropical forests, and

that soil nutrients had no or only limited influence on N2 fixation. The fact that one of the vari-

eties seems to be capable of utilizing larger proportion of N from BNF may become important

if there ever is a need to increase the production of this species.

Is the presence of nifH gene a good predictor of N2-fixation?

The presence of nifH gene means that that bacterial community has the potential to perform

N2-fixation, not necessarily that the process itself is present. Although the proportion of nifH
gene copies among the total bacterial DNA was relatively low, in the samples from the cultiva-

tion experiment, the nifH gene quantity in both the root surface associated and endophytic

bacteria was well correlated with the nitrogenase activity measured. The correlation was much

weaker in (a much smaller) data set from the Atitlán case study. However, this correlation

need not always be strong, because nifH genes are also present in DNA of inactive or non-liv-

ing microbes (for example [55]). To the extent that nifH gene copy number reflects diazotroph

abundance, the S. californicus strategy may be that of maintaining relatively low abundances of

highly efficient diazotrophs on their root systems. Our data suggest that many of the diazo-

trophs on S. californicus roots or rhizomes were indeed alive and active, despite the fact that, in

both types of experiments, they likely experienced a limitation by available plant-derived C.

Measurements of N2-fixation using excised roots may underestimate the activity on intact

roots. Unfortunately, other methods of assessing N2-fixation activity on intact roots are too

technically challenging to be used routinely or under field conditions. Because of these limita-

tions, the nifH gene does seem to be a good additional marker for the presence of N2-fixation

in S. californicus associated bacteria. Considering the difference among the two S. californicus
varieties, it remains to be assessed how the bacterial community composition varies among

them, as well as how it varies between the endophytic and epiphytic bacteria.

What can we learn from stable isotope signatures?

How does δ15N signature support our hypothesis that S. californicus utilizes N from BNF by its

associated bacteria? The best answer comes from the field data from Atitlán, where the δ15N of

S. californicus shoots averaged -2.1 ‰ (Table 4), as compared to the other, presumably non-fix-

ing lake littoral species ranging from 3.4 ‰ (Typha domingensis) and 4.6 ‰ (submersed spp.)

to 4.9 ‰ (Salix humboltiana) (Rejmánková, unpublished data). The average littoral sediment

δ15N of 3.4 ‰ is close to the values measured in the non-fixing species. Similarly, in the field

collection of the S. californicus clones, the δ15N clones from low N locations averaged 0.6 ‰,

while in the N rich locations it was 12.0 ‰ (Table 2). Although, as many authors pointed out,

the assumption that the δ15N of leaf tissues reflects that of the N source in the soil is not always

valid [56, 57], plant isotope composition is more likely to reflect that of the N source when

plant demand exceeds N supply [58],—this is clearly the case of N-limited wetlands through-

out the S. californicus distributional range.

Potential N budget

Data from our experiment demonstrated that in the low N addition treatment on average 24%

N was derived from N2-fixation. For the SJ clone originating at Lake Atitlán, this proportion

was 34%. How does this agree with a budget calculated from endophytic and epiphytic nitroge-

nase activity using Atitlán originated material? The average nitrogenase activities for plants

from nutrient un-enriched locations were 37.1 and 2567.7 nmol C2H4 gDW-1 d-1, respectively.
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If we assume the average biomass of 400 g m-2, 300 g m-2, and 300 g m-2 for the aboveground

stems, rhizomes, and roots, respectively (the biomass proportion from Castle, unpublished

data), the longevity of plants one year, and the tissue N of 1.8%, then the plant would require

18g of N m-2 y-1. With the C2H4 reduction: N2 reduction ratio of 2.8: 1 and 2.4: 1 for rhizomes

and roots, respectively (see results), the contribution of rhizosphere and endophytic N2-fixa-

tion would represent 19%. This value is lower than Ndfa from the experiment and this is assum-

ing all fixed N is available to plants. Several reasons may be responsible: the longevity of plants

may be higher; we may have underestimated the fixation by measuring it on excised roots (see

above); and the conditions during the experiment in Davis may have been more favorable.

Conclusion

Although the absolute contribution of N2-fixation is difficult to determine, our results show

that the N budget of S. californicus is substantially subsidized by fixed N. In support of this,

there have been multiple observations that throughout its range, in the areas heavily impacted

by sewage inflow, Schoenoplectus is being outcompeted by Typha domingensis (Rejmánková,

unpublished data). The S. californicus system represents a suitable model for future studies on

the effects of non-symbiotic N2 fixation on the geographical distribution of plant species and

varieties, plant physiology, or inter-species competition. As S. californicus is also an important

plant for many native communities throughout Central and South America and is a species

commonly used in constructed wetlands and wastewater treatment, the information presented

in this paper may also help to improve its more applied functional roles.
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Bárta.

References
1. Aerts R, Chapin FS. The mineral nutrition of wild plants revisited: A re-evaluation of processes and pat-

terns. Advances in Ecological Research 2000; 30:1–67.

2. Bedford BL, Walbridge MR, Aldous A. Patterns in nutrient availability and plant diversity of temperate

North American wetlands. Ecology 1999; 80:2151–2169.

3. Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use: critical adaptations by plants for

securing a nonrenewable resource. New Phytologist 2003; 157:423–447.

Heterotrophic N2-fixation and nitrogen economy of Schoenoplectus californicus

PLOS ONE | https://doi.org/10.1371/journal.pone.0195570 April 23, 2018 19 / 22

https://doi.org/10.1371/journal.pone.0195570


4. Ticconi CA, Abel S. Short on phosphate: plant surveillance and countermeasures. Trends in Plant Sci-

ence 2004; 9:548–555. https://doi.org/10.1016/j.tplants.2004.09.003 PMID: 15501180

5. Rejmánková E, Snyder J. Emergent macrophytes in phosphorus limited marshes: do phosphorus

usage strategies change after nutrient addition? Plant and Soil 2008; 313:141–153.

6. Jurelevicius D, Korenblum E, Casella R, Vital R L, Seldin L. Polyphasic analysis of the bacterial commu-

nity in the rhizosphere and roots of Cyperus rotundus L. grown in a petroleum-contaminated soil. Jour-

nal of Microbiological Biotechnology 2010; 20:862–870

7. Turner TR, James EK, Poole PS. The plant microbiome. Genome Biology 2013; 14:209. https://doi.

org/10.1186/gb-2013-14-6-209 PMID: 23805896

8. Weier KL, Pittaway PA, Wildin JH. Role of N2-fixation in the sustainability of the ponded grass pasture

system. Soil Biology and Biochemistry 1995; 27:441–445.

9. Dakora FD, Drake BG. Elevated CO2 stimulates associative N2 fixation in a C3 plant of the Chesapeake

Bay wetland. Plant and Cell Environment 2000; 23:943–953.

10. Bürgmann H, Meier S, Bunge M, Widmer F, Zeyer J. Effects of model root exudates on structure and

activity of a soil diazotroph community. Environmental Microbiology 2005; 7:1711–1724 https://doi.org/

10.1111/j.1462-2920.2005.00818.x PMID: 16232286
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