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Nanoparticle based insulin delivery 
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Abstract 

Diabetic cases have increased rapidly in recent years throughout the world. Currently, for type-1 diabetes mellitus 
(T1DM), multiple daily insulin (MDI) injections is the most popular treatment throughout the world. At this juncture, 
researchers are trying to develop different insulin delivery systems, especially through oral and pulmonary route using 
nanocarrier based delivery system. This next generation efficient therapy for T1DM may help to improve the quality of 
life of diabetic patients who routinely employ insulin by the subcutaneous route. In this paper, we have depicted vari‑
ous next generation nanocarrier based insulin delivery systems such as chitosan-insulin nanoparticles, PLGA-insulin 
nanoparticles, dextran-insulin nanoparticles, polyalkylcyanoacrylated-insulin nanoparticles and solid lipid-insulin 
nanoparticles. Modulation of these insulin nanocarriers may lead to successful oral or pulmonary insulin nanoformula‑
tions in future clinical settings. Therefore, applications and limitations of these nanoparticles in delivering insulin to 
the targeted site have been thoroughly discussed.
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Background
Diabetes mellitus (hyperglycemia), a metabolic disor-
der, is caused either due to lower insulin secretion by 
the cells or due to lower binding efficiency of insulin on 
their cell surface receptors resulting in high blood glu-
cose level. According to the survey in low- and middle-
income countries there are 366 million people living with 
diabetes and the count is expected to rise to 552 million 
by 2030 [1]. Especially in the developing countries, dia-
betes has increased rapidly during the last decade. In 
21st century, this diseases have the possibility to become 
a new epidemic in the Middle East, Sub-Saharan Africa, 
Latin America, India, and the rest of Asia [2]. Symptoms 
of diabetes include excessive weight loss, polyuria, poly-
dipsia and polyphagia [3]. Diabetes has been categorized 

as Type 1 and Type 2. Type 1 diabetes is insulin depend-
ent condition, characterized by deficiency of insulin due 
to destruction of insulin-producing beta cells of islets of 
Langerhans by autoimmune system in pancreas. While, 
type 2 diabetes is distinguished as disorders of both 
insulin resistance and secretion due to defects in insulin 
receptor on cell membranes [4]. Besides these types of 
diabetes, gestational diabetes has also been reported in 
pregnant women. During pregnancy, abnormal hormonal 
production leads to woman’s sensitivity to insulin result-
ing in high blood sugar levels [5].

Treatment of diabetes need constant monitoring of 
blood glucose level, regulating it through modified die-
tary sugar intake, physical exercise and insulin therapy 
(subcutaneous administration) to attain normoglycemia 
[6]. Disadvantages of subcutaneous administration of 
insulin are hypoglycemia [7], peripheral hyperinsuline-
mia [8], lipoatrophy, lipohyperatrophy [9], obesity due 
to intensive therapy [10], insulin neuropathy and insulin 
presbyopia. Current dosage of injectable insulin, required 
to maintain acceptable serum glucose level, comprise of 
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up to four subcutaneous injections per day [11] which 
can cause psychological stress leading to poor patient 
compliance. Thus, focusing on the alternative route of 
administration (oral or pulmonary) or reducing the injec-
tion doses are beneficial to reduce the inconvenience and 
drawbacks associated with this conventional method 
[12–15]. Furthermore, orally delivered insulin reaches 
systemic circulation after passing through liver similar 
to physiological insulin secretion while injected insu-
lin may result in peripheral hyperinsulinemia and asso-
ciated complications. However, major obstructions in 
developing oral or pulmonary insulin formulations are 
either enzymatic barriers or physical barriers (i.e. intes-
tinal epithelium), which oral insulin has to overcome [11, 
16]. Insulin, 51 amino acid protein, can get deteriorated 
by gastric pH and intestinal enzymes, and even intestinal 
epithelial cell membranes serve as absorption barrier for 
intact peptide structure resulting in less than 1  % bioa-
vailabity of total insulin taken orally [17]. Taken together, 
restrictions like; fragile nature and short half-lives of 
proteins may serve as extra barriers in the formulation 
of oral dosage forms. In this context, over past few dec-
ades attempts have been made to develop suitable alter-
native formulations. Some of the methods include the 
use of permeation enhancers [18, 19]; protease inhibi-
tors [20, 21], hydrogels [22, 23], and protein–ligand con-
jugates [24, 25]. Although, significant advancement has 
been made worldwide in attaining the general objective 
for a convenient and equally effective oral insulin deliv-
ery [15], still sufficient commercial development has not 
been achieved. As a solution to these challenges, nano-
carriers have been considered as the best suited vehicle 
for oral delivery of insulin [26, 27]. Various nanocarri-
ers, like polymeric or micelles, have granted a promising 
advancement to acquire desirable biopharmaceutical and 
pharmacokinetic properties for insulin. Therefore, in this 
review we have tried to highlight several nanocarrier for-
mulations for insulin delivery related to chitosan coated 
nanoparticles, PLGA-insulin nanoparticles, dextran-
insulin nanoparticles, PACA-insulin nanoparticles and 
solid lipid-insulin nanoparticles. Moreover, limitations 
associated with these nanocarriers for insulin delivery 
has also been discussed.

Roles and possible mechanisms of nanocarriers 
in oral drug delivery system
The bioavailability of orally delivered drugs is influenced 
by the physico-chemical properties of the drugs (i.e. 
solubility, pKa, size, etc.). The absorption of drugs and 
particles in gastrointestinal tract (GIT) occurs through 
various sites depending upon their size. Particles with 
1 µm diameter are absorbed via phagocytosis by intesti-
nal macrophages while particles <10 µm in diameter are 

transported through peyer’s patches (lymphatic islands 
present on GIT). Nanoparticles (<200  nm) are absorbed 
through endocytosis by enterocytes [28]. The efflux 
transporters such as P-glycoprotein (Pgp) and enzymes, 
expressed on enterocytes surface, also render the low 
systemic bioavailability of drugs affecting the absorption 
and excretion of drugs. [29]. Nanotechnology reveals the 
application of size scale complex systems in various fields 
due to their unique properties [30, 31]. One of the exten-
sively studied areas of nanotechnology is delivering sys-
tems for the active ingredient of the medicine. Effective 
nanomedicine must be stable, biodegradable, non-toxic, 
non-inflammatory, non-thrombogenic, nonimmunogenic 
and should escape by reticuloendothelial system [32, 33]. 
Moreover, nanomedicine should be applicable to differ-
ent molecules such as small drugs, proteins, vaccines or 
nucleic acids [34]. It has been proved experimentally that, 
for therapeutic and imaging applications, nanoparticles 
may range from 2 to 1000  nm [35]. Additionally, nano-
technology offers the wide range of advantages to the 
drug delivery field including oral drug delivery in par-
ticular, i.e., increase efficacy, tolerability, specificity and 
therapeutic index of analogous drugs [36]. Furthermore, 
for oral delivery of drugs nanotechnology may assist in 
the delivery of poorly water-soluble drugs, transcytosis of 
drugs across the tight intestinal barrier, targeting of drugs 
to the specific part of the gastrointestinal tract and in the 
intracellular and transcellular delivery of bulky macro-
molecules [37]. Also, to facilitate the oral absorption of 
peptides and proteins, nanocarriers can be modified with 
specific ligands and targeted to the receptors on epithelial 
cell surface [22, 38–41]. Among various limitations of oral 
delivery of certain drugs is their poor absorption from 
the GIT. Such limitations can be overcome by the use of 
bioadhesive polymers which can facilitate the adhesion 
of nanocarrier to the mucosal epithelial membrane and 
can assist in nanoparticle uptake [42]. Other than the oral 
delivery of drugs using nanocarriers, pulmonary means of 
delivery is also an efficient route (Fig. 1).

The use of biodegradable polymeric nanoparticles have 
evolved as a better alternative for oral/pulmonary deliv-
ery of proteins and peptide drugs [43]. Furthermore, 
the stability and functional abilities of the nanoparti-
cles can be modulated by some of the pharmaceutically 
accepted excipients able to regulate pH responsivity and 
Pgp effect e.g. cyclodextrin, chitosan, PLGA, TPGS/Vita-
min E TPGS, etc. [44]. Lowman et al. (1999) formulated 
pH sensitive nanocarriers to overcome the limitations of 
oral insulin delivery and observed decrease in blood glu-
cose level for longer time (8 h) in diabetic rats at a dose 
of 25  IU/kg of loaded insulin [17]. In addition, the con-
trolled release of encapsulated insulin and its enhances 
uptake and bioavailability can also be modulated by the 
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use of various combinations of polymers and targeted 
molecules [34, 45]. Some of the pH sensitive biodegrad-
able polymers explored so far are PMAA [46], HPMCP 
(HP55) [47], dextran sulphate [48], alginate [48], PGA 
[49] etc.

Nanocarriers based insulin delivery
Due to the drawbacks of conventional injectable insu-
lin, drugs have been modified through nanocarriers with 
targeting ligands for their selective and targeted delivery 
meant for oral and pulmonary delivery [22, 41]. Different 
nanoparticles developed to form stable and efficient insu-
lin delivery system (Fig. 2) are discussed below.

Fig. 1  Major two routes of nanocarrier based insulin delivery

Fig. 2  Different types of insulin loaded nanoparticle based delivery 
system
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Chitosan coated nanoparticles
Chitosan is a linear polysaccharide, composed of β-(1-4)-
linked  d-glucosamine and N-acetyl-d-glucosamine. The 
hydrophilic drugs, like insulin, cannot diffuse across epi-
thelial cells as the intestinal epithelium is a major barrier 
for their absorption. So, it is difficult for them to enter 
the bloodstream [16]. Therefore, transport of hydrophilic 
drugs via paracellular pathways has been studied in detail 
[27]. Nevertheless, the presence of tight junctions at the 
luminal aspect of adjacent epithelial cells restricts the 
transport of hydrophilic drug through paracellular path-
way [50–53]. Chitosan is a nontoxic cationic polysaccha-
ride which has been used as the permeation enhancer 
for the absorption of hydrophilic molecules [54–57]. 
Chitosan adheres to the mucosal surface and opens 
up the tight junction between epithelial cells [58–60]. 
The expression of Claudin-4, a transmembrane protein 
responsible for tight junction integrity, is Chitosan medi-
ated [61]. Thus, advances in developing stable and effi-
cient  chitosan-based  particulate  insulin  delivery  system 
have been examined [60, 62, 63]. Enhanced permeation 
of chitosan-insulin nanoparticles, synthesized by ionic 
gelation method using tripolyphosphate sodium (TPP) or 
poly(acrylic acid) (PAA), has been reported [64]. Further, 
Lin et  al. (2007), showed that chitosan-insulin nanopar-
ticles prolong the residence time of insulin in the small 
intestine and enhance the permeation of insulin via 
paracellular pathway to the blood stream. TEM micro-
graphs showed mechanistic details that the chitosan can 
reversible open tight junctions between Caco-2 cells 
which increased paracellular permeability [65]. Chitosan-
insulin nanoparticles infiltrate into the mucus layer and 
transiently open the tight junctions located between epi-
thelial cells. In turn, these nanoparticles have become 
unstable due to pH sensitivity and degrade releasing 
encapsulated insulin [66]. Chitosan-insulin nanoparti-
cles have also been studied for their significant adsorp-
tion characteristics via nasal route of administration [67, 
68]. These nanoparticles were synthesized by ionotropic 
gelation of chitosan and insulin loading was mediated by 
ionic interaction mechanism. Polyelectrolyte complexa-
tion method was also used for insulin loaded chitosan/
alginate nanoparticles and showed their internaliza-
tion through intestinal mucosa [69–71]. Jelvehgari et al., 
used complex coacervation method for nanoparticles 
formation of 199  nm diameter using  Eudragit L100-55 
and chitosan of various molecular weights with 3.38  % 
entrapment and 30.56  % insulin loading efficiency [72]. 
The polyelectrolyte complexes of chitosan and insulin 
gets easily dissociated in acidic medium of the stom-
ach and released insulin resulted in low pharmacologi-
cal availability due to degradation by enzymatic activity 
in the GIT [64]. In order to modulate the rate of insulin 

delivery from chitosan/alginate nanoparticles, magnet-
ite nanoparticles were synthesized inside chitosan/algi-
nate matrix by coprecipitation method for subcutaneous 
implant approach [73]. Further, oral insulin formula-
tion was prepared by combining nanoencapsulation and 
lipid emulsion [74]. These microemulsions prevented 
insulin from enzymatic degradation and enhanced their 
bioavailability [75, 76]. Cui et al. [77] improved the oral 
efficiency of insulin by encapsulating it in the shell of 
pH sensitive carboxylated chitosan grafted poly(methyl 
methacrylated) nanoparticles via hydrogen bonding, 
electrostatic interaction and van der waals forces. These 
nanoparticles exhibited pH sensitive property with slow 
release at pH 2.0 and quick release at pH 6.8 and 7.4. 
Sarmento et al. constructed dextran sulfate and chitosan 
nanoparticles in varying ratios for entrapping insulin, 
and showed their efficiency as oral insulin delivery nano-
particulate system [78, 79].

PLGA‑insulin nanoparticles
PLGA is FDA approved biodegradable synthetic poly-
mer used frequently for drug delivery. Using compu-
tational analysis, Lassalla et  al. showed the presence of 
hydrophobic and hydrophilic interactions between insu-
lin and PLGA polymer [80]. PLGA nanoparticles were 
formulated by a modified solvent diffusion technique as 
model nanocarriers for  insulin  and potential  oral  drug 
delivery system [81–83]. Insulin loaded PLGA (PNP) 
and PLGA-Hp55 nanoparticles (PHNP) nanoparticles 
were also investigated as an effective method of reduc-
ing serum glucose levels, in  vivo. The relative bioavail-
ability of PNP and PHNP compared with subcutaneous 
(s.c.) injection (1  IU/kg) in diabetic rats observed was 
3.68  ±  0.29 and 6.27  ±  0.42 %, respectively [47]. Hp55 
was used as a pH sensitive cellulose coating to resist high 
acidic pH of gastric fluids for longer time simultaneously 
dissolving in lower acidic pH of small intestine. Double 
emulsion solvent evaporation method was also used to 
design PLGA encapsulated insulin nanoparticles and 
then embedded within PVA hydrogels. This compos-
ite system showed a reduction in both the release rate 
and the total amount of insulin released [84]. Attempts 
have been made to modify the slight negative surface 
charge of PLGA by using polycationic polymer, chitosan. 
Because of the positive surface charge, chitosan reverses 
the effect of negative charge on PLGA further support-
ing endocytosis of nanoparticles through their increased 
interaction with the cell membrane [85]. Previously, 
chitosan has been known as one of the Pgp modulator 
which may decrease the Pgp-mediated efflux of drug 
loaded nanoparticles from the luminal surface of cells 
[86]. As a result, chitosan modified PLGA nanoparti-
cles exhibited strong bioadhesive potency and increased 
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pharmacological availability with regard to orally deliv-
ered insulin [87]. PLGA nanoparticles harbouring 
insulin-S.O (sodium oleate) complex was prepared via 
an emulsion solvent diffusion method and was evalu-
ated for their pharmacological effects via oral adminis-
tration to diabetic rats [88]. It was seen that, after 12 h 
of administration, plasma glucose level was reduced to 
23.85 % from the initial level, and this conditioned was 
maintained till 24 h. S.O is an anionic surfactant which 
forms an ionic complex with positively charged insulin 
at suitable pH and improves the apparent liposolubility 
of insulin. Additionally, the structure of polymers used 
to fabricate drug loaded nanoparticles can also impact 
their functional properties. Thus, in another method 
bovine insulin was entrapped in linear PLGA-PEG, 
star-branched β-cyclodextrin-PLGA (β-CD-PLGA), and 
glucose-PLGA (Glu-PLGA) copolymeric nanoparticles 
using double emulsion method to enhance the compl-
exation between insulin and polymers for their sustained 
release for 24  h [89]. Such kind of approach can pro-
vide single oral dose which could eliminate the need for 
repeated insulin doses till 24 h. In a similar study, folate 
(FA) coupled PEG-PLGA nanoparticles were used to 
encapsulate insulin by solvent evaporation method and 
showed that once-daily administration would be suffi-
cient to control diabetes for at least 24 h [90].

Dextran‑insulin nanoparticles
Earlier studies suggest that the best way to treat diabe-
tes is to provide exogenous insulin level according to 
the blood glucose level of the patient [91]. Although the 
methods described above enhance insulin delivery pro-
cess, still their release mechanism is not proportional to 
the required physiological blood sugar concentration. To 
achieve the goal of glucose responsive release of insu-
lin, the researchers have focused on novel nanomateri-
als. Among these approaches, competitive binding is the 
most acceptable one [92–95]. Synthesizing nanoparti-
cles with such glucose responsive materials would carry 
the advantages of nanosized particles as well as glucose 
response dependent release of insulin in the body.

Zion et  al. (2003), synthesized a novel reverse micro-
emulsion (RM) mediated glucose-responsive dextran, 
poly(α-1,6 glucose), nanoparticles which was physically 
crosslinked with the tetrafunctional glucose-binding 
protein, Concanavalin A (Con A), for controlled insu-
lin delivery [96]. Upon contact with free glucose, Con 
A releases polymeric glucose and further binds to free 
glucose, leading to disintegration of hydrogel. As dis-
cussed above, insulin is marginally stable and can easily 
break up during their formulation as drugs [97]. There-
fore, in order to achieve stable insulin formulation, aque-
ous insulin encapsulating nanoparticle  delivery  system 

was developed. This method utilized oppositely charged 
dextran sulfate (DS) and polyethylenimine (PEI) along 
with zinc as a stabilizer and was tested for insulin stabil-
ity. However, this system showed no significant confor-
mational changes in encapsulated insulin as compared 
to free insulin [98]. Recently, for oral delivery of peptides 
the use of some natural uptake processes of the intestine 
like vitamin B12 (VB12) transport system has also been 
highlighted which utilizes VB12-IF-IFR (intrinsic factor 
receptor) mediated endocytosis through intestinal ile-
ocytes for targeting systemic circulation [99–101].

VB12–dextran NPs conjugates, chemically coupling 
insulin, acting as an oral delivery system has also been 
attempted to protect insulin against gut proteases and to 
show a faster release profile [41, 102]. These nanoparticle 
conjugates were found to be viable carrier for personal 
insulin delivery to treat diabetes. A multilayered nano-
particle system consisting of mucoadhesive polymers, 
sodium alginate and dextran sulfate, around calcium 
was also developed to entrap insulin which enhances the 
residence time at absorption site. This system was further 
stabilized by chitosan bound to ploxamer 188 further 
coated with albumin A to protect insulin from enzymatic 
degradation. This nanoformulation of insulin exerted 
an efficient and persistent hypoglycemic effect in dia-
betic rats [103]. In a similar study, Reis et al., synthesized 
mucoadhesive, biodegradable, biocompatible and acid 
protected the sodium alginate and dextran sulfate nano-
spheres, having insulin in their core. Additionally, these 
nanospheres were coated with chitosan, BSA and PEG 
4000 [104].

Polyalkylcyanoacrylated‑insulin nanoparticles
Initially, PACA were used as a tissue glue [105] in sur-
gery because of their stable and biodegradable character 
[106]. Recently, it has been utilized in the transportation 
of insulin through intestinal epithelium polymeric insu-
lin carrier for oral administration [107]. According to 
MALDI ionization coupled tandem time-of-flight (TOF) 
mass spectrometry analysis, insulin was not modified 
during covalent bonding with PACA nanoparticles [108]. 
Entrapment of  insulin in PACA nanoparticles prepared 
from microemulsions with the different microstructure 
containing  isopropyl myristate, caprylocaproyl macro 
golglycerides, polyglyceryl  oleate  and  insulin  solution 
were investigated for in vitro release and bioactivity [109]. 
Moreover, insulin-loaded  polybutylcyanoacrylate  nano-
particles  (IPN) were also tried for the hypoglycemic 
effect upon oral administration to streptozotocin (STZ) 
induced diabetic rats in an oily medium (soybean oil con-
taining 0.5  % (v/v) Tween-20 and 5  % (v/v) Vitamin E). 
It was concluded that IPN can serve as an effective and 
stable delivery system for oral insulin [110].
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Solid lipid insulin nanoparticles
As an alternative to polymeric nanoparticles, solid lipid 
nanoparticles (SLN) were developed for drug delivery 
nanoparticulate system [111]. SLN is sub micron, around 
50–1000  nm in diameter, colloidal carriers made up of 
lipids which are solid at room temperature. SLN can be 
dispersed in water or surfactant solution [112]. Advan-
tages of SLN as nanoparticle carrier systems are biodeg-
radability [111], increased bioavailability, extended blood 
residence time [113], high tolerability [114] and easy 
large scale commercial production [113, 115, 116]. More-
over, SLN can be taken up by the lymphoid tissues in the 
peyer’s patches. Oral administration of lectin modified 
SLNs with loaded insulin demonstrated declined enzy-
matic degradation and enhanced oral absorption [117]. 
It is well known that lectins consist of a diverse class of 
proteins having the capability to bind specific carbohy-
drates. Since, many proteins and lipids of GIT membrane 
are glycosylated, these lectins render a suitable alterna-
tive for recognition and enhanced uptake of drug loaded 
nanocarriers by intestinal mucosal membrane. In vivo 
hypoglycemic effect of SLN containing insulin, synthe-
sized by solvent emulsification evaporation method, was 
studied for 24 h, and it was seen that SLN can encourage 
the oral absorption of insulin. This method was based on 
a w/o/w emulsion technique [115]. Insulin mixed micelle 
loaded SLNs was prepared with reverse micelle double 
emulsion method using the mixture of stearic acid and 
palmitic acid. The liposolubility of insulin was improved 
by using sodium cholate and soybean phosphatidylcho-
line. This insulin delivery system had an excellent long 
term stability at 4  °C [118]. Octaarginine is an arginine 
rich derivative which is known as cell penetrating pep-
tide assisting in uptake of various drug carriers. Zhang 
et al. 2009 attempted octaarginine modified SLN as oral 
insulin delivery system [119]. Internalization of above 
mentioned insulin-SLN by Caco-2 cells was increased by 
18.44 folds as compared to insulin solution [120]. Fur-
thermore, researches focused on coating SLN with chi-
tosan. Mainly due to the fact that non-coated SLN were 
shown to be uptaken by RAW 264.7 cell lines, whereas 
chitosan coated SLN were not internalized by this mac-
rophage cell line. This may be due the fact that the addi-
tion of stealth layer on SLN by chitosan may enable SLN 
to escape phagocytosis [121]. Another such approach was 
carried out to produce insulin entrapped chitosan-coated 
Witepsol 85E SLNs. At first, solvent emulsification–
evaporation method based on a water/oil/water double 
emulsion method was used to produce SLN, followed by 
chitosan coating on SLN surface. This work too showed 
enhanced permeation of chitosan coated SLN in com-
parison to noncoated SLN [122]. Studies were also per-
formed to find out suitable lipid materials to synthesize 

insulin loaded SLN, and it was seen that glyceryl palmi-
tostearate was the best suited lipid in terms of hydro-
phobicity, lower burst release and high pharmacological 
availability [123]. Besides oral delivery, SLNs was also 
used for pulmonary delivery of insulin. In this method, 
both cationic and anionic insulin-SLN nanoparticles 
were prepared and were then allowed to self assembled 
into flocculates due to electrostatic interactions. Finally, 
the flocculates were lyophilized to form dry powder for 
pulmonary administration [124].

Other targeted nanoparticles encapsulating insulin
Targeted ligand modified nanocarriers were proposed 
earlier to facilitate the oral absorption of proteins and 
peptides [38]. Some of the reported targeting agents to 
enterocytes or M cells are lectins, transferrin and vita-
min B12 [22, 39–41]. However, the targeting effect of 
these ligands can be hindered by the presence of the 
mucus layer on the epithelium [125, 126]. Therefore, 
more efficient targeting and highly specific ligands need 
to be explored which can overcome the mucus barrier 
on epithelium. Lately, a peptide was identified which 
have an affinity with goblet cells. Goblet cells consist of 
the second largest population of cells in intestinal epi-
thelia. This peptide, CSKSSDYQC, was identified from 
phage-peptide library using in vivo phage display method 
[127]. Reports suggested enhanced uptake of CSKSS-
DYQC modified insulin containing chitosan nanopar-
ticles in villi and increased permeation of insulin across 
the goblet cell-like HT29-MTX cells through clathrin 
and caveolae mediated endocytosis [26]. Recently, trans-
portation of insulin loaded nanoparticles to neonatal Fc 
receptor (FcRn) across intestinal epithelium was studied 
[128]. FcRn are expressed on epithelial cells and assists 
in IgG transport through them by binding to Fc region 
of the antibodies in a pH dependent manner. Therefore, 
the transportation of various nanoparticles to FcRn can 
be facilitated by the use of Fc region of IgG as a targeting 
ligand.

Limitations
Although attempts have been made so far in the devel-
opment of oral insulin nanoparticulate (Table  1), the 
formulation and synthesis of more efficient nanoformula-
tion is required for commercial significance. Recently, a 
number of insulin nanocarriers have undergone clinical 
trials among which many of them faced failure. Draw-
backs associated with them include toxicology, low level 
of oral bioavailability and elevated intraindividual differ-
ence in insulin absorption. In the near future, to develop 
clinically significant insulin loaded nanocarriers biocom-
patibility, biodegradability and immunological responses 
should be considered. As a result, various features have to 
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be taken in account before designing novel insulin nano-
carriers. Some of the features are optimum particle size 
which can interact with the intestinal mucosa, the stabil-
ity of the nanocarriers in biological fluids after in  vivo 
administration, surface chemical composition, inter-
nal chemical composition and use of targeting ligands 
specific for apical membrane receptors. Additionally, 
detailed study about distribution kinetics and the interac-
tion of nanocarriers with the mucosal lining of intestinal 
epithelia is also needed.

Conclusion
Presently, nanoparticle based drug delivery system are 
playing an essential role in the pharmaceutical indus-
try. A new drug delivery system of an existing drug 
can provide a new marketability which is the impor-
tant in the economic point of view. The next genera-
tion nanoparticles based insulin may be the future 
medicine for T1DM. In the near future, this nano-
carrier based insulin delivery could replace the tra-
ditional and most predictable subcutaneous insulin 
injections.  Possibly this next generation nanoparticle 
mediated insulin may improve efficacy of this medi-
cine and will also help the better quality of the living 
of T1DM patients.
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