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Background: Low grade gliomas(LGGs) present vexatious management issues

for neurosurgeons. Chromatin regulators (CRs) are emerging as a focus of

tumor research due to their pivotal role in tumorigenesis and progression.

Hence, the goal of the current work was to unveil the function and value of CRs

in patients with LGGs.

Methods: RNA-Sequencing and corresponding clinical data were extracted

from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas

(CGGA) database. A single-cell RNA-seq dataset was sourced from the Gene

Expression Omnibus (GEO) database. Altogether 870 CRs were retrieved from

the published articles in top academic journals. The least absolute shrinkage and

selection operator (LASSO) algorithm and Cox regression analysis were applied

to construct the prognostic risk model. Patients were then assigned into high-

and low-risk groups based on the median risk score. The Kaplan–Meier (K-M)

survival curve and receiver operating characteristic curve (ROC) were

performed to assess the prognostic value. Sequentially, functional

enrichment, tumor immune microenvironment, tumor mutation burden,

drug prediction, single cell analysis and so on were analyzed to further

explore the value of CR-based signature. Finally, the expression of signature

OPEN ACCESS

EDITED BY

Jianrong Lu,
University of Florida, United States

REVIEWED BY

Huacheng Luo,
The Pennsylvania State University,
United States
Lu Li,
University of Florida, United States

*CORRESPONDENCE

Jianzhong Li,
jianzhong-0520@163.com
Shouping Gong,
shpingg@126.com

SPECIALTY SECTION

This article was submitted to
Neurogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 30 May 2022
ACCEPTED 31 August 2022
PUBLISHED 26 September 2022

CITATION

Zhang Y, Yu B, Tian Y, Ren P, Lyu B, Fu L,
Chen H, Li J and Gong S (2022), A novel
risk score model based on fourteen
chromatin regulators-based genes for
predicting overall survival of patients
with lower-grade gliomas.
Front. Genet. 13:957059.
doi: 10.3389/fgene.2022.957059

COPYRIGHT

© 2022 Zhang, Yu, Tian, Ren, Lyu, Fu,
Chen, Li and Gong. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Abbreviations: LGGs, Low grade gliomas; CR, Chromatin regulator; TCGA, The Cancer Genome Atlas;
GEO, Gene ExpressionOmnibus; CGGA, Chinese GliomaGenome Atlas; KEGG, Kyoto Encyclopedia of
Genes and Genomes; FDR, False discovery rate; FC, Fold change; GO, Gene ontology; WHO, world
health organization; LASSO, least absolute shrinkage and selection operator; K-M, Kaplan–Meier;
ROC: receiver operating characteristic curve; IHC, immunohistochemistry; qRT-PCR, quantitative
real-time PCR; tSNE, T-distributed Stochastic Neighbor Embedding; scRNA-seq, single cell RNA-
sequencing; IDH1, isocitrate dehydrogenase 1; MGMT, O-6-methylguanine-DNA methyltransferase;
DE-CRs, differentially expressed-CRs; TMB, tumor mutation burden; NHA, normal human astrocyte;
DSigDB, Drug Signatures database.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 26 September 2022
DOI 10.3389/fgene.2022.957059

https://www.frontiersin.org/articles/10.3389/fgene.2022.957059/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.957059/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.957059/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.957059/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.957059/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.957059/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.957059&domain=pdf&date_stamp=2022-09-26
mailto:jianzhong-0520@163.com
mailto:shpingg@126.com
https://doi.org/10.3389/fgene.2022.957059
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.957059


genes were validated by immunohistochemistry (IHC) and quantitative real-

time PCR (qRT-PCR).

Results: We successfully constructed and validated a 14 CRs-based model for

predicting the prognosis of patients with LGGs. Moreover, we also found

14 CRs-based model was an independent prognostic factor. Functional

analysis revealed that the differentially expressed genes were mainly

enriched in tumor and immune related pathways. Subsequently, our

research uncovered that LGGs patients with higher risk scores exhibited a

higher TMB and were less likely to be responsive to immunotherapy.

Meanwhile, the results of drug analysis offered several potential drug

candidates. Furthermore, tSNE plots highlighting the magnitude of

expression of the genes of interest in the cells from the scRNA-seq assay.

Ultimately, transcription expression of six representative signature genes at the

mRNA level was consistent with their protein expression changes.

Conclusion: Our findings provided a reliable biomarker for predicting the

prognosis, which is expected to offer new insight into LGGs management

and would hopefully become a promising target for future research.

KEYWORDS

low grade glioma, chromatin regulators, prognostic signature, tumor immune
microenvironment, tumor mutation burden, single cell analysis

1 Introduction

Gliomas are the most common primary tumors of the

central nervous system. Despite the prognosis of LGGs being

more favorable than glioblastoma, nearly 70% of LGGs grow

unceasingly and usually transform to higher grades of

malignancy (van den Bent 2014). The time to progression

can range from a few months to several years, with median

survival for LGGs patients varying from 5 to 10 years (Vitucci

et al., 2017). In recent years, several classical molecular

phenotypes are applied in the stage of LGGs management,

such as isocitrate dehydrogenase 1 (IDH1), O-6-

methylguanine-DNA methyltransferase (MGMT) and 1p/

19q codeletion. There are many therapies targeting these

markers designed in clinical trials, whereas the overall

survival (OS) of LGGs shares unmet needs for effective

treatment. Hence, the identification of novel targets for

LGGs management remains imperative.

Epigenetic modification interferes with transcriptional

gene signatures, and abnormal patterns are related to

tumorigenesis (Lu et al., 2018). In this regard, the function

of CRs is of great interest. According to the roles in

epigenetics, CRs can be categorized into three main types:

histone modifiers, chromatin remodelers, and DNA

methylators. Under specific conditions, these three

categories may synergize with each other or take

precedence (Plass et al., 2013). Previous studies have

demonstrated that CRs involved in a wide spectrum of

biological phenomena, such as apoptosis (Sui et al., 2021),

inflammation (Ding et al., 2019), autophagy (Li et al., 2020),

proliferation (Yan et al., 2020), ferroptosis (Zhang et al.,

2018), etc. As a promising therapeutic target, CRs were

reported to be closely associated with a myriad of diseases,

including neurodegenerative diseases (Li et al., 2020) and

multiple types of cancers (Au et al., 2012; Chen et al., 2015;

Li et al., 2017).

The association between glioma and CRs has been reported

(Bao et al., 2017). However, few studies have comprehensively

elaborated the correlation between CRs and LGGs. Herein, our

current work aimed to construct a CRs-related signature and

assess the values in LGGs via bioinformatic analysis.

By identifying differentially expressed-CRs (DE-CRs), we

successfully developed and validated a risk model, which has

potential prognostic value for LGGs patients. Furthermore,

function analysis was performed between high- and low-risk

groups to uncover the potential pathway. Subsequently, Given

the tumor microenvironment is involved in the pathological

process, we identified the relationship between the immune

landscape and prognostic signature. Similarly, we quantified

the differences in tumor mutation burden (TMB) between the

two groups. Moreover, we also screened 10 small molecule drugs,

which may be beneficial to the treatment of patients with LGG.

Additionally, tSNE plots highlighting the magnitude of

expression of the genes of interest in the cells from the

scRNA-seq assay. Ultimately, transcription expression of six

representative signature genes at the mRNA level was

consistent with their protein expression changes.

Taken together, we constructed a 14 CR-based signature,

which may be expected to provide a new idea for the

management of LGGs.
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2 Methods

2.1 Cell culture and reagents

U87 and U251 cells lines (Chinese Academy of Medical

Sciences, Beijing, China) were cultured in DMEM/high

glucose supplemented with 10% fetal bovine serum (FBS, Life

Technologies, Carlsbad, CA, United States). NHA were

purchased from he China Academia Sinica Cell Repository

(Shanghai, China) and cultured in RPMI-1640 medium with

10% FBS. All the cells were cultured in a humidified incubator

(37°C, 5% CO2).

2.2 Dataset and source

The RNA-seq expression data and corresponding clinical

data sheets of LGGs were retrieved from the TCGA(https://

portal.gdc.cancer.gov/) database as a training cohort.

Thereafter, mRNA expression and relevant clinicopathological

information of LGGs tissues were downloaded from the CGGA

database (http://www.cgga.org.cn) for validation (Table 1).

Furthermore, the dataset of somatic simple nucleotide was

also obtained from the TCGA database for analysis of TMB.

Then, patients without prognostic information were excluded

from this analysis. Ultimately, we harvested a TCGA training set

with 515 patient samples and a CGGA validation set including

568 patient samples.

2.3 Differential analysis

The SVA package was applied to remove batch effects and

filter other substandard variations among datasets mentioned

above. Genes with |log2FC|> 1 and FDR<0.05 were considered

as the significance threshold. Then, the LIMMA package was

applied to screen DE-CRs based on R software, the script for the

analysis is available in supplementary material (Additional file

12: Supplementary Text S1).

2.4 Construction and external validation of
a risk-score system

In the context of DE-CRs, univariate Cox regression analysis

was performed to identify the prognostic value of CRs, which was

subsequently applied in the construction of the risk model by the

lasso Cox regression analysis using the “glmnet” R package.

Furthermore, we calculated the signature risk score in light of

the normalized gene expression levels and constructed a survival

risk score model according to the following formula:

Risk score � ∑
n

i�1expression(i) × coefficient(i)

Where expression (i), coefficient (i), and n represent the gene

expression level, the coefficient of the corresponding mRNA, and

the number of genes, respectively. According to the median risk

score in the training set, LGGs patients were taken as a cutoff

TABLE 1 Overview of clinical features of LGG data set.

Variables TCGA (452 samples) CGGA (499 samples)

Cases Percentage Cases Percentage

Age <41 215 47.6% 264 52.9%

≥41 237 52.4% 235 47.1

Gender Female 204 45.1% 209 41.9%

Male 248 54.9% 290 58.1%

Grade WHO II 217 48.0% 241 48.3%

WHO III 235 52.0% 258 51.7%

IDH1 Mutatation Wildtype 103 22.8% 122 24.4%

Mutant 349 77.2% 377 75.6%

1p.19q.codeletion Codeletion 151 33.4% 156 31.3%

Non-codeletion 301 66.6% 343 68.7%

MGMT promoter Methylated 375 83.0% NA NA

Unmethylated 77 17.0% NA NA

Risk group Low 226 50.0% 226 45.3%

High 226 50.0% 273 24.7%

Survival time (years) Median IQR Median IQR

1.67 (1.12–3.06) 3.28 (1.54–6.26)

NA, not applicable; IQR, interquartile range.
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point for dichotomization into low- and high-risk groups.

Survival analysis was displayed with R (i.e. survminer

packages) by using KM curves. A time-dependent ROC

analysis was executed to calculate the AUC and then assess

the prognostic ability of the multivariate Cox model. For

further validation of the prognostic ability of the model, both

ROC and KM curves were also drawn based on a CGGA dataset.

2.5 Development and evaluation of the
nomogram

To develop a clinically applicable tool for predicting the

prognosis of LGGs patients at 1, 3, 5, and 10 years, a nomogram

was established according to the results of Cox regression

analyses. Finally, five independent prognostic factors,

including gender, age, grade, IDH1 status, and risk score were

applied to construct a nomogram based on the several classic R

packages. Discrimination of the nomogram was assessed with a

calibration plot and quantified as a concordance index.

2.6 Functional annotation and enrichment
analysis

To functionally annotate DE-CRs during the analysis, the

GO and KEGG pathway analyses were performed by using R

software. Enrichment was considered to have significance with

an FDR p-value < 0.05. Subsequently, We performed GSEA to

detect the underlying molecular mechanisms between the two

risk groups mentioned above. Gene sets were permuted

1,000 times for each analysis. Meanwhile, we set the following

standards for statistically significant terms: I. FDR<25%; II. p

value < 0.05.

2.7 PPI network analysis

DE-CRs were uploaded to the STRING database to construct

the PPI networks. Cytoscape, an open-source software platform,

was utilized to generate and visualize complex networks. And the

most significant module in the PPI networks was identified using

betweeness.

2.8 The correlations between CR-based
signature and immune cell infiltration

To comprehend the relevance between immune cell

infiltration levels and prognostic risk models, four reliable

methods were applied to calculate the immune infiltration

status of LGGs patients (Chen et al., 2018). Cell-type

identification by estimating relative subsets of RNA transcript

(CIBERSORT) is a method for quantifying cell fractions from

bulk tissue gene expression profiles. In this study, characteristics

of infiltrating immune cells between high- and low risk group

were analyzed by CIBERSORT and the results are shown in the

form of violin diagram. Furthermore, the Wilcoxon test was used

to explore the correlation between the expression of the immune

checkpoint genes and prognostic risk scores. Eventually,

considering the TIMER database is a powerful website that

provides versatile analysis of immune cell infiltration, We

explored the relevance between fourteen signature genes and

immune cells.

2.9 TMB analysis

The R package Maftools was used to extract somatic

mutational profiles from the TCGA database. At this point,

non-synonymous mutation counts were recognized as TMB.

Subsequently, mutation number is used to calculate the TMB

score for each sample to identify the relationship between the two

risk groups. The number of TMBs in each sample was statistically

calculated to distinguish high or low TMB group. Next, we

compared the differences between the high- and low- TMB

groups. Then we stratified patients into four subgroups based

on TMB (high or low) and riskscore (low or high). Further we

evaluated the synergistic effect of the risk score grouping and the

TMB grouping in the prognostic stratification.

2.10 Screening for potential small
molecule drugs and drug sensitivity
analysis

The Drug Signatures database (DSigDB), a new gene set

website that relates drugs and their target genes, currently holds

thousands of gene sets and consists of unique compounds and

corresponding genes (http://tanlab.ucdenver.edu/dsigdb) (Yoo

et al., 2015). We uploaded DE-CRs to DSigDB to filter

unexcavated small molecule drugs. Besides, to assess the

differences in single-drug sensitivity between two risk groups,

the GDSC was used to evaluate the drug sensitivity by analyzing

the IC50 of drugs on basis of the classical pRRophetic package

(Geeleher et al., 2014). A p-value of <0.05 was considered to be

statistically meaningful.

2.11 Characterization of signature genes
by single-cell RNA sequencing

The single-cell sequencing data of gliomas were sourced from

GSM6094425 and GSM5705583 using the GEO database. Seurat,

an R package for single-cell analysis (http://satijalab.org/seurat/),

was then used to analyze gene sequencing data. Gene expression
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in fewer than three cells and in less than 250 cells was ruled out.

For quality control, the following criteria were applied for quality

control: total UMI count between 2,000 and 6,000, UMI

counts>1,000, mitochondrial gene percentage <20% and

ribosomal gene percentage >1%. Next, the single-cell

sequencing data were dimensionally reduced using principal

component analysis (PCA). For clustering and tSNE

representations, the first 20 principal components from the

scaled data were used. According to DEGs of each cluster by

tSNE analysis, by combining automatic and manual annotation

based on single R and marker genes reported by previous articles,

cells from each cluster were annotated. In order to identify

specific cell types, specific cell markers were obtained from

the official CellMarker website (http://biocc.hrbmu.edu.cn/

CellMarker/). Finally, we characterized the expression of

signature genes in different clusters.

2.12 Quantitative real-time PCR

Total RNA was isolated from normal human astrocytes

(NHA) and U87 cells using TRIzol reagent (Invitrogen,

United States). GAPDH was employed as an endogenous

control. Total RNA was extracted from each sample using

The extracted RNA was reverse transcribed into

complementary DNA using PrimeScriptTM RT Master

Mix (TaKaRa, Japan). The primer sequences are listed in

Table 2. Relative mRNA expression was calculated using the

2-ΔΔCt method and compared to that of the control

group (GAPDH mRNA 128 expression). Statistical

comparisons were performed using the student’s t-test;

differences with p < 129 0.05 were considered to be

statistically significant.

2.13 Validation of signature genes at the
protein level

Human Protein Atlas(HPA) database contains

transcriptome and proteome sequence data derived from

RNA-sequencing analysis and immunohistochemistry analysis,

reflecting its important value in protein expression analysis. Six

up-regulated genes (TRIM24, IDH1, LBR, HMG20B, USP49, and

RCC1) were extracted from CRs-related signature. Following the

age and gender matching rules, we tried to validate the protein

expression of signature genes between normal and tumor tissues

in the HPA database. Additionly, Image analysis was carried out

using the free and public domain software ImageJ (NIH Image,

Bethesda, MD, United States). Unpaired Student’s t test was used

to calculate the p values for comparisons of quantitative

evaluation of immunohistochemical staining between normal

and tumor tissues. All data were analyzed and plotted using

GraphPad Prism (GraphPad Software).

2.14 Statistical analysis

All statistical analyses were carried out with the RStudio and

its appropriate packages. For continuous numerical variables

consistent with normal distribution, t-test was used for

comparison between two groups, one-way ANOVA was used

for comparison of three or more groups, and pairwise

comparison was performed after the event. LSD test was used

for homogeneity of variance, and Dunnett’s T3 test was used for

uneven variance. For continuous numerical variables that did not

fit to normal distribution, the nonparametric test method is used

for grade data; Mann-Whitney tests is used to comparison

between two groups, and the statistics are expressed by Z

value; Kruskal–Wallis Test was used for comparison between

groups. Categorical variables were expressed as a percentage,

applying chi-square test to analyze the differences between

groups. And a two-tailed p value of <0.05 was considered

statistical significance.

3 Results

3.1 Establishment and external verification
of CRs-related prognosis model

RiskScore features had the greatest impact on survival rate

prediction, which indicated that the risk model based on 14 genes

could better predict outcomes. To systematically expound our

work, a work flow was summarized in detail (Figure 1).

Compared with normal brain tissue, 149 CRs in the TCGA

database were identified as DE-CRs, of which 108 were up-

regulated and 41 were down-regulated (Supplementary Sheet S1

Part 1). Then, the univariate Cox analysis was applied to screen

TABLE 2 Specific primers used for quantitative real-time PCR.

Primer Sequence

GAPDH-F GGAGCGAGATCCCTCCAAAAT

GAPDH-R GGCTGTTGTCATACTTCTCATGG

TRIM24-F GAAGTGGCTGGACTCTCTAAAC

TRIM24-R TGCCGTAACCGGTATGTAATC

IDH1-F GACTTGGCTGCTTGCATTAAA

IDH1-R GGCCTGAGCTAGTTTGATCTT

LBR-F CTGGCAGTGAGAACCTTTGA

LBR-R AGCAACAGGAAGAGGAACAC

HMG20B-F GGAGAAGAAGATCAAGAAAGAAGAC

HMG20B-R CTGGGCCAGGATTTCCTTGAT

USP49-F TGGTCTGGCCGTAATCATCG

USP49-R CCTGCAGCAGTAAGGTTCCA

RCC1-F GCTCCTTCCGGGACAATAAC

RCC1-R ACCTTTACCACAGGCACATC
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DE-CRs based on their prognostic value. The results suggested

that 51 CRs met the criteria(Supplementary Sheet S1 Part 2–3),

top20 genes of 51 CRs were presented in Supplementary Figure

S1. Furthermore, based on these filtered genes, we used LASSO-

regularized Cox regression to establish a risk model. Finally,

14 DE-CRs (IDH1, TRIM24, HMG20B, PCGF2, CBX6, SGF29,

RCC1, RYBP, NAP1L1, ZNF541, CBX7, USP49, HNRNPA1, and

LBR), have been utilized to successfully construct

prognostic models (Supplementary Table S1). The risk

score was calculated by the corresponding coefficient of

14 CRs with the following formula: Risk score =

∑14
i�1expression(i) × coef f icient(i).

After that, the patients were divided into a low- (n = 231) and

high-risk group (n = 230) based on the median value of risk score

in the TCGA cohort(Figure 2A). Our data also demonstrated that

the mortality of the high-risk group was significantly higher than

the low-risk group (Figures 2C,E), which suggested that a high-

risk score was associated with poor OS in the TCGA cohort. As

the risk score increased, the survival time of patients decreased

and the number of deaths increased. Next, the model’s reliability

has been further testified through the ROC curve, and the AUC

was 0.893 at 1 year, 0.815 at 3 years, 0.719 at 5 years, and 0.693 at

ten yesrs (Figure 2G). ROC curve was used to evaluate the

predictive efficacy of the predictive model for patient

FIGURE 1
The flowchart of data preparation and analysis.
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FIGURE 2
Prognostic value of the CRs-based risk signature in LGG. (A,B)Distribution of patients with different risk scores in the training set and external
independent validation set. The red and green points represent patients in the high- and low-risk grouop respectively. (C,D) Survival analysis of
patients in the training set and external independent validation set. The number of patients gradually decreased in both groups as time progressed.
The survival curve shows that patients in the high risk group had a poorer outcome than low risk group. (E,F) Survival status of patients with
different risk scores in the training set and external independent validation set. The red and blue points represent patients who were dead and alive,
respectively. As the risk score increased, the survival time of patients decreased and the number of deaths increased. The higher the risk score, the
closer the corresponding point is to the right of the horizontal axis and the lower of the vertical axis. (G,H) The AUC of time-dependent ROC curves
identified the prognostic performance of the risk score. The ROC curve describes the trade-off between sensitivity and specificity of a classifier, with
the ideal ROC curve reaching the top left corner. The gray diagonal line in each ROC figure is the baseline, which presents the ROC curve of a random
classification. (I,J) Distribution of specific gene expression based on risk score. Heatmap of the prognostic signature scores in the training set and
external validation set. The red and green parts represent patients in the high and low risk group, respectively.
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prognosis. The closer the ROC curve is to the upper left corner,

the closer the area is to 1, and the better the classification effect. A

diagonal indicates a random guessing method. Finally, we

present the heatmap for signature genes between the high-

and low-risk group in the TCGA cancer set (Figure 2I).

Furthermore, we also validated the reliability of the CRs-

related signature according to the data from the CGGA

database preliminarily. Notably, SGF29 was not found in the

CGGA database, so it was validated with the remaining

signature genes. Likewise, the patients were dichotomized as

a low- (n = 288) and high-risk group (n = 287) based on the

median value of risk score in the CGGA cohort(Figure 2B). By

and large, the results of survival analysis were grossly in line

with the training set (Figures 2D,F). Besides, the AUC of time-

dependent ROC indicated that CRs-based signature had a

better predictive ability (AUC = 0.675, 0.694, 0.747, and

0.795), at one, three, five and 10 years, respectively

(Figure 2H). Similarly, we also observed a different gene

signature between low-risk and high-risk individuals in

CGGA databse. Of note, It was revealed that the expression

of most genes was generally consistent with results of TCGA

cancer set, such as TRIM24, HMG20B, CBX6, IDH1, RCC1,

RYBP, CBX7, and LBR (Figure 2J).

3.2 Relationship between CRs-related
signature and the clinical features

To determine whether CRs-related signature affects the

clinical characteristics of LGGs, we used the Chi-square test to

compare differences between the two risk groups. The result

suggested that there was a significant difference in

IDH1 mutation status, 1p/19q codeletion status, MGMT

promoter and World Health Organization (WHO) grade,

whereas gender and age do not (Figures 3A,B).

Furthermore, each grid in the heat map represents the

expression level of each signature gene corresponding to

different clinical factors and risk groups. The greener the

color of the heatmap, the lower the gene expression, and

the redder the color of the heatmap, the higher the gene

expression. Sequentially, stratified analysis was performed to

explore the prognostic difference of the CRs-related signature

in subgroups. The patients were divided into two subgroups

according to clinicopathological factors of the patients.

Following that, patients were dichotomized according to

their median risk scores into low- or high-risk subgroups,

respectively. The results showed that CRs-related signature

have higher practical value in predicting prognosis under

different clinical characteristics. The figure shows that the

expression of <41-, > = 41-years, female, male, WHO grade

III, wild type, 1p/19q non-codeletion, MGMT promoter

methylated and unmethylated subgroups are significantly

different between high and low-risk groups (Figure 4).

3.3 Independent prognostic factors of OS

In the current analysis, we performed both univariate and

multivariate Cox analyses to determine whether CRs-based

signature can be used as an independent prognosis factor. For

univariate cox regression analysis, A p-value less than 0.05 (p <
0.05) signified that the variable is a prognostic factor for overall

survival statistically. Similarly, as for multivariate Cox regression

analysis, A p-value less than 0.05 (p < 0.05) suggested that the

variable is as independent prognostic factor for overall survival.

The univariate and multivariate Cox regression revealed that

WHO grade, IDH mutation status, and risk score were

significantly correlated with poor OS both in the training set

and external independent validation set, older age was associated

with shorter overall survival times in TCGA dataset but not in

CGGA dataset (Figures 5A–D). So, in other words, the risk score

based on hub genes can be seen as an independent prognostic

marker. Likewise, tumor grade, and IDH mutation status were

also remarkably related to prognosis. All of these mentioned

above showed that CR-based signature can be used as

independent prognostic factors of LGGs.

3.4 Establishment of a nomogram

In the process of quantifying individual risk in a clinical setting by

combiningmultiple risk factors, the nomogramacts as a powerful tool

for assessment. By synthesizing 14 CRs-related signature, a

nomogram was constructed based on risk score, age, tumor grade,

and IDH1 mutation status to predict the probability of 1-, 3 -, 5, and

10-years overall survival rates (Figure 5E). The calibration curve

showed that the actual survival time of patients was broadly consistent

withmodel predictions.Meanwhile, the calculated concordance index

was to be 0.833 (95% CI = 0.790–0.876), which suggested the good

predictive power of the nomogram (Figure 5F).

3.5 GO and KEGG pathway enrichment
analyses

Both GO and KEGG analyses were performed for functional

annotation of DE-CRs. The results of BP(Biological Process)

analysis indicated that differential genes are enriched in histone

modification, chromatin organization, peptidyl-lysine

modification, chromatin remodeling, and DNA conformation

change. CC(Cellular Component) analysis showed that these CRs

were intensively involved in the chromosomal region, SWI/SNF

superfamily-type complex, ATPase complex, histone deacetylase

complex, and PcG protein complex. The feature DE-CRs were

also presented in MF(Molecular Function), such as histone

binding, methylated histone binding, transcription coregulator

activity, etc (Figures 6A,C). Moreover, the KEGG analysis

revealed that the genes were mainly located in the Cell cycle,
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FIGURE 3
Correlation between CRs-based signature risk scores and clinical-pathological characteristics. (A) Heat map of the clinical-pathological
characteristics and signature genes expression; (B–G) distribution of the risk scores in different cohorts stratified by the clinical-pathological
characteristics.
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FIGURE 4
Survival differences stratified by Age, Gender, Grade, IDH1, 1p/19q codeletion status or MGMT promoter status between the high- and low-risk
groups. (A,B) The patients were divided into < 41- and >= 41-years subgroups according to their age. (C,D) The patients were divided into female and
male subgroups according to their gender. (E,F) The patients were divided into WHO II and III subgroups according to WHO classification. (G,H) The
patients were divided into mutant and wild type subgroups according their IDH1 mutatation status. (I,J) The patients were divided into 1p/19q
codeletion and non-codeletion subgroups according to their 1p/19q codeletion status. (K,L) The patients were divided into MGMT promoter
methylated and unmethylated subgroups according to their MGMT promoter methylation status.
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FIGURE 5
Construction of a nomogram for predicting the Personalized OS of patients with LGG. (A,C) Univariate Cox regression analysis evaluating the
independent prognostic value of the risk score and clinicopathological in terms of OS in the training set (TCGA cohort) and external independent
validation set(CGGA cohort); (B,D) Multivariate Cox regression analysis assessing the independent prognostic value of the risk score and
clinicopathological in terms of OS in the training set and external independent validation set; Solid squares represent the Hazard Ratios (HR) of
death, and horizontal lines represent the 95% confidence intervals(CIs). All p values were calculated using Cox regression hazards analysis. Note that
if the 95% confidence interval (CI) crosses the vertical dotted line, the factor is not statistically significant. (E) The nomogram was applied to predict
the OS of patients with LGG at 1, 3, 5 and 10 years. The value of each of variable was given a score on the point scale axis. A total score could be easily
calculated by adding each single score and, projecting the total score to the lower total point scale, we were able to estimate the probability of
patients with LGG; (F) The calibration curves for the nomogram to predict 1-, 3-, 5- and 10-years OS. The x-axis represents the nomogram-predicted
probability and y-axis represents the actual probability of LGG patients. Ideal prediction would correspond to the 45° gray dashed line. The solid line
represents the entire cohort (n = 452), vertical bars indicate 95% confidence intervals (CIs), and the oppositely placed triangle symbols indicate bias-
corrected estimates, indicating observed nomogram performance. The calibration plots presented good agreement between the nomogram
prediction and actual observation.
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Viral carcinogenesis, Lysine degradation, Hepatocellular

carcinoma, and p53 signaling pathway (Figures 6B,D).

Meanwhile, The gene names were mapped to the pathway

based on information provided by GO and KEGG by the

chord plot (Figures 6C,D).

3.6 GSEA

To clarify the potential molecular mechanisms of the signature

genes, GSEA analysis was performed both in the two risk groups. The

results suggested that several immune-oncologic and metabolism

related pathways, such as complement and coagulation cascades,

cytokine cytokine receptor interaction, FC gamma R mediated

phagocytosis, leukocyte transendothelial migration, and toll like

receptor signaling pathway were enriched in the high-risk

group. In parallel, some pathways that related to cell cycle

regulation, proliferation and apoptosis were also enriched in the

high-risk group, such as apoptosis, cell cycle, homologous

recombination, mismatch repair and nucleotide excision repair

signaling pathway (Figure 6E). Also, the GSEA results of the low-

risk group are shown in the supplementary material, the enrichment

score (ES), nominal enrichment score (NES), nominal p-value (NOM

p-val), and false discovery rate (FDR) for each gene set are shown

(Supplementary Sheet S2). These findings have revealed the potential

role of CRs-related genes in the carcinogenesis, tumor

microenvironment, and metabolic response of LGGs.

3.7 PPI network construction

Then we constructed a PPI network to further explain the

potential interaction among DE-CRs and obtained 87 hub genes

with the most interaction (Supplementary Figure S2). Size and

location of the circle represent the importance of genes, the larger

circle area, the closer to the central of the disk center, the more

important the gene is.

3.8 Immune cell infiltration and immune
checkpoint analysis

To further explore the efficiency of signature genes on the

status of the tumor microenvironment, four kinds of

algorithms were applied between two risk groups

(Figure 7A). Furthermore, the result of CIBERSORT

suggested that the proportions of B cell naive, T cell CD4+,

T cell CD4+ memory resting, T cell follicular helper were

higher in the low-risk group, while the B cell plasma,

Macrophage M1, Macrophage M2, Myeloid dendritic cell

activated and neutrophil had higher proportions in the

high-risk groups (Figure 7B). We then investigated the

expression levels of immune checkpoints among samples

with different risk groups, the outcomes suggested a

prominent difference in the expression of CTLA4,

PDCD1LG2, PDCD1, TMIGD2, and CD274, etc

(Figure 7C). The results unveiled that CRs-related genes

might be potential indicators for the regulation of immune

activity in the tumor immune microenvironment.

3.9 TIMER analysis

TIMER database was performed to identify the correlation

between 14 prognostic CRs and several kinds of immune cells.

The results suggested that TRIM24, IDH1, RCC1, and LBR were

positively related to infiltrating immune subsets, such as CD4+

T cells, B cells, dendritic cells, and CD8+ T cells. Likewise,

PCGF2, SGF29, CBX6, NAP1L1, CBX7, USP49, and

HNRNPA1 were negatively related to macrophage, dendritic

cells, B cells, neutrophils, and CD4+ T cells (Supplementary

Figure S3).

3.10 Differential tumormutation burden in
different risk groups

The WHO classification of CNS tumors includes somatic

mutation and copy number variation (CNVs), combined with

histological features to make a summary diagnosis. A high TMB

is related to better outcome of immunotherapy. In the current

analysis, we analyzed the somatic mutations and identified the

differences between the two risk groups. As shown in Figures

8A,C, missense mutation was the most common type of variant

classification (Figure 8A,C-a), and single nucleotide

polymorphisms(SNP) occurred more frequently than

insertions(INS) or deletions(DEL) (Figure 8A,C-b). Moreover,

C > T was the most common single-nucleotide variation (SNV)

(Figure 8A,C-c). Then we counted the number of base changes in

each sample, with different colors representing different types of

mutations. According to the value of TMB, we divided the LGG

patients into the high and low TMB groups. In all, the TMB in the

high risk group was higher than that in the low risk group

(Figure 8E). Consistently, missense mutation(green) was the

most common type of variant classification on average in each

sample (Figure 8A,C-e). And then, the results revealed that the

low-risk group had higher mutation rates (Altered in 224

(99.56%) of 225 samples) than the high-risk group (Altered in

209 (92.48%) of 226 samples) (Figures 8B,D). Moreover, some

important differentially mutated genes with different risk scores

were compared (Figure 8A,C-f), TP53, ATRX, PTEN, and EGFR

with more significant mutations in the high-risk group whereas

NOTCH1, CIC, IDH1, and so on with more remarkable

mutations in the low-risk group. Of note, IDH1 not only was

the gene with the highest percentage of mutated genes but also

seen among the 14-CRs based signature. Additionally, K-M
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FIGURE 6
Gene enrichment analysis. (A) Enriched GO functions of DEGs. GO: Gene Ontology; BP: biological process; CC: cellular component; MF:
molecular function; (B) KEGG-enriched analysis; The bubble size represents the number of the target in the enriched pathway terms, bubble color
represents the pathway’s p value; (C) Chord plot of biological process; (D) Chord plot of KEGG pathways; Name of identified genes out of the DEGs
associated with each pathway are shown. (E) GSEA analysis was performed in the high-risk group (nominal p value < 0.05, FDR < 0.25). ES,
enrichment score; FDR, false discovery rate.
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FIGURE 7
The overview of immune infiltration and expression of immune checkpoints in LGG patients with different risk scores. (A) Heat map showing
differences in the infiltration of immune cell types calculated via four different algorithms in the low- and high-risk groups. On the left edge of the
heat map, the color bars from top to bottom represent the four algorithms used in the calculation. As shown in the illustration on the right, plum,
orange, sky blue and green represent TIMER, CIBERSORT, CIBERSORT-ABS and QUANTISEQ, respectively. On the top edge of the heat map,
the color bars from red (left) to yellow (right) represent the high- and low risk group. (B) Violin plots showing infiltration fractions of different immune
cells in the high- and low-risk groups by CIBERSORT. (C) Violin plots showing the expression level of immunocheckpoints in high- and low-risk
groups, (p0.01 < p < 0.05, pp0.001 < p < 0.01, and pppp < 0.001).
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FIGURE 8
Overview of LGG single nucleotide variant information. (A,C) Classification of mutation types according to different TMB in specific samples
between low (A) and high (C) risk score groups. (B,D)OncoPrint of distinctly mutated genes in low (B) and high (D) risk subgroups; (E) TMB difference
between low- and high-risk subgroups. (F) Survival of patients with LGG based on the high- and low-TMB. (G) Survival of patients with LGG based on
the TMB and risk scores. TMB-H, high tumor mutation burden; TMB-L, low tumor mutation burden.
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survival analysis demonstrated significant differences in survival

when the patients were stratified into high TMB vs. low TMB

groups. And the results suggested that patients with lower

mutation load may gain better prognosis (Figure 8F). Also,

the low-TMB and low-risk groups had the highest overall

survival rates, while the high-TMB and high-risk groups had

the lowest (Figure 8G).

3.11 Explore potential small molecule
drugs

Based on the DSigDB database, we found the 10 most

potential small molecule drugs closely related to CRs-related

signature. They were cephaeline HL60 DOWN, emetine

HL60 DOWN, cephaeline MCF7 DOWN, piroxicam CTD

00006571, emetine MCF7 DOWN, formaldehyde CTD

00006001, NSC95682, phenobarbital CTD 00006510, hydrogen

peroxide CTD 00006118 and piperlongumine HL60 UP, etc

(Supplementary Table S2).

3.12 Drug sensitivity analysis

Moreover, according to the risk score model based on the

signature genes, high risk scores correlate with lower IC50 values

for Bortezomib, Rapamycin, Cyclopamine, Metformin, Cisplatin,

Gemcitabine, Roscovitine, Paclitaxel, AKT. inhibitor.VIII, CMK,

and Etoposide, whereas they were related to a higher IC50 for

Camptothecin. The IC50 represents the concentration of an

inhibitor required to inhibit cancer cells by 50 percent. The

lower IC50, the better drug sensitivity. Patients with higher risk

scores were more sensitive to Bortezomib, Rapamycin,

Cyclopamine, Metformin, Cisplatin, Gemcitabine, Roscovitine,

Paclitaxel, AKT. inhibitor.VIII, CMK, and Etoposide, and so

on. Similarly, Patients with lower risk scores were more

sensitive to Camptothecin. (Figure 9 p < 0.001).

3.13 Overview of the scRNA-Seq data
generated from gliomas

The single-cell data were pre-filtered using the Seurat package,

yielding a total of 5,977 and 5,082 cells from GSM6094425 and

GSM5705538, respectively. Following a second filtration process

conducted with UMI counts, mitochondrial content, and

ribosomal gene content, there were 4,364 and 3,730 cells that

remained from GSM6094425 and GSM5705538 (Supplementary

Figure S4A,B). After that, the top 20 hypervariable genes were

labeled (Supplementary Figure S4C). By using principal

component analysis (PCA) to reduce dimensionality, we kept

the top 20 components for further tSNE and UMAP dimension

reduction, fifteen cell subpopulations were obtained

(Supplementary Figure S4D, Supplementary Figure S5A). The

percentages of different cell subpopulation in total cells are

indicated on the ratio diagram (Supplementary Figure S5C).

Seurat was used to identify the DEGs within each cluster, and

the top 5 genes in each cluster were visualized with a heatmap and

Bubble chart (Supplementary Figure S5D,E). We manually

annotated above clusters as the following five cell types: 1)

Neoplasm (SOX2, TPI1, PARP1, CCND2, and SMOC1); 2)

Neurons (MAP2, STMN2, and GAD2); 3) Macrophages (CD74,

CD86). Astrocytes and endothelial cells were annotated using the

SingleR algorithm (Figure 10A, Supplementary Figure S5B). To

investigate the expression of signature genes in distinct cells, we

visualized these with tSNE and violin plots (Figures 10B,C). Most

of siganture genes are highly expressed in tumor cells, such as

HMG20B, PCGF2, CBX6, SGF29, IDH1, TRIM24, LBR, and

HNRNPA1, which is basically consistent with the results at the

RNA and protein level.

3.14 Verification of the six representative
signature genes using RT-qPCR and
immunohistochemistry assay

We validated expression of six of signature genes at the

transcript and protein level. The RT-qPCR assay showed that

the six signature genes (TRIM24, IDH1, LBR, HMG20B, USP49,

and RCC1) were up-regulated in glioma cell lines in mRNA

expression level (Figures 10D–I). It is worth pointing out that

compared with NHA cell line, IDH1 is highly expressed in both

U87 and U251 Cell Lines, but the expression difference in U87 is

more significant than that in U251 Cell line. Therefore, we show

the results of U251 compared with normal astrocytes (Figure 10E).

Furthermore, the immunohistochemistry assay revealed that the

protein expression of six signature genes were also up-regulated in

glioma compared with normal brain tissues (Figure 11A–L), which

is consistent with the results of differential gene expression analysis

(Supplementary Sheet S3).

4 Discussion

The term “lower-grade gliomas”was invented to denoteWHO

Grade II and III oligodendrogliomas and astrocytomas, in contrast

to glioblastoma. LGGs form a group of relatively independent bio-

heterogeneous tumors (Picca et al., 2018). In practice, histology

alone is often difficult to make a relatively accurate prognosis

estimation, and tumors belonging to the same WHO grade may

exhibit different malignant behaviors, depending on their

molecular characteristics (Mair et al., 2021).

In recent years, it has been found that molecular subsets of

LGGs could stratify patients into distinctly prognostic groups,

which are superior to histological classification (Lin et al., 2020;

Tu et al., 2020; Zhang et al., 2020). Meanwhile, models with
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FIGURE 9
Drug sensitivity analysis between the high and low-risk groups. (A–K) Drugs with higher drug sensitivity in the low-risk group are shown. (L)
Drugs with higher drug sensitivity in the high-risk group are shown.
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FIGURE 10
Verification and characterization by sc-RNA seq and RT-qPCR. (A) tSNE plots of cells generated from gliomas. The plots are colored by cell
cluster, and the cells are clustered into five sub-clusters. Each dot represents a single cell. (B) The expression of signature genes in gliomas visualized
in tSNE. (C) Violin plots depicting the expression of signature genes in clusters of gliomas. The y axis shows the normalized read count. t-SNE:
t-distributed stochastic neighbor embedding. (D–I) RT-qPCR data demonstrated that six representative signature genes was significantly
upregulated in glioma cell lines comparedwith NHA cell lines. **p < 0.01; ***p < 0.001; NHA, normal human astrocyte; U87 and U251, human glioma
cell line.
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FIGURE 11
Representative immunohistochemistry images of TRIM24, IDH1, LBR, HMG20B, USP49, and RCC1 in the normal cerebral cortex and glioma
tissue derived from the HPA database. (A–L) The expression quantity of representative genes in the tumor tissues higher than that in the paired
normal tissues. Scale bar = 100 μm pp < 0.05, ppp < 0.01, and pppp < 0.001, compared with the control groups.
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reliable performance are considered valuable prognosis markers

for cancers. Despite much researches have shown that CRs play a

specific role in gliomas (Gusyatiner & Hegi 2018; Chung et al.,

2020), its in-depth value in LGGs management was previously

rarely reported.

In our current work, We first identified 149 DE-CRs. Then

we comprehensively analyzed the functional enrichment for

149 CRs and constructed PPI networks. Next, we filtered

51 CRs associated with the prognosis of LGGs by

univariate regression analysis. Followed by LASSO and

multivariate Cox regression analysis, we constructed an

efficient risk model which consisted of 14 CRs and

stratified patients into high- and low-risk groups by the

risk score. The good predictive performance of the CRs-

related risk model was also confirmed via KM and ROC

curves both in TCGA and CGGA cohorts. Subsequently,

the independent predictive role of the signature was

verified. Additionally, combined with other

clinicopathological factors, a personalized predicted

nomogram taking risk score was established to predict

prognosis. The CRs-related signature is also closely related

to immune cell infiltration, and tumor mutation and 10 small

molecule drugs have been found, opening a new window for

the management of LGGs. Finally, We verified several

representative signature genes using IHC, SC-RNA

sequencing analysis and RT-qPCR. We found that the

expression of six representative genes was consistent at the

transcriptional and protein levels. These results are in

agreement with the results of the differentially expressed

genes.

In this research, we identified that the CRs-related signature

includes fourteen genes, nine of which have been reported in the

literature (Li et al., 2013; Minchenko et al., 2014; Zhang et al.,

2015; Bao et al., 2017; Chen et al., 2021; Huang et al., 2021; Li

J. et al, 2022; Li SH. et al, 2022; Hu et al., 2022). Chromobox 7

(CBX7), is a member of the chromobox family. It has been

reported to involve in oncogenesis, which may be deregulated in

gliomas (Bao et al., 2017), breast cancer (Kim et al., 2015),

cervical carcinoma (Maimaitirexiati et al., 2021), lung cancer

(Yang et al., 2021), etc. Studies have shown that CBX7 can

participate in maintaining the growth of a variety of normal

cells and immortalizing mouse fibroblasts (Jung et al., 2019), but

the controversy about its role persists. Some works of literature

have reported that CBX7 is carcinogenic in several types of

cancer. But other studies have found that CBX7 may play an

anticancer role in some cancers. Besides, as a tumor suppressor,

CBX7 is pivotal to regulate tumor invasion and migration via the

Wnt/β-catenin pathway in glioma [14]. Our study found that

compared with normal brain tissue, CBX7 was continuously

down-regulated at the transcriptional and protein levels in LGGs

tissue. Previous studies have shown that hnRNPA1, as a protein-

coding gene, is up-regulated in glioma. Furthermore, the siRNA-

based strategy against USP8 is effective to deal with glioma tumor

reoccurrence by targeting the hnRNPA1 oncogene [13]. Yan et al.

first identified IDH1 mutations in exon sequencing of gliomas

(Yan et al., 2009). In 2016, WHO added molecular informatics

including IDH1 mutations to the classification of central nervous

system tumors on a histological basis. As one of the most

common mutations in glioma cells, the R132H variant of

IDH1 occurs in 80%–90% of grade II and III gliomas (Louis

et al., 2016). Especially, gene-expression analysis of single cell,

RT-qPCR and protein level are warranted to validate our

findings, all of which indicated that it was highly expressed in

tumor tissues. NAP1L1, as a marker of malignancy. It has been

reported that the expression was significantly increased in

gliomas, which was significantly correlated with WHO grade,

KPS, Ki-67 index, and tumor recurrence (Chen et al., 2021). L-H

Zhang et al. showed that TRIM24 promotes glioma cell

infiltrating and enhances resistance to temozolomide (TMZ)

through activation of the PI3K/Akt signaling [15]. In our

research, half of these fourteen CRs (TRIM24, HMG20B,

IDH1, RCC1, RYBP, ZNF541, and LBR) were related to poor

prognosis, whereas the other half genes (PCGF2, CBX6, SGF29,

NAP1L1, CBX7, USP49, and HNRNPA1) had the opposite effect.

Our study suggests that TRIM24, IDH1, LBR, HMG20B,

USP49 and RCC1 were all highly expressed in glioma tissues

and gliomar cell lines both at the mRNA and protein level. These

studies pointed out that the inhibition or activation of CRs has

potential clinical value, and a better understanding of CRs might

provide therapeutic candidates and prognostic value for LGGs.

Based on DE-CRs between the two risk groups, we executed

GO and KEGG analyses. The results suggested that DE-CRs were

remarkably enriched in the cell division cycle, such as histone

modification, chromatin remodeling, Cell cycle, p53 signaling

pathway, and so on. Histone modification can change gene

expression catalyzed by histone modification enzymes, which

play an important role in the pathological process of malignant

tumors (Strahl & Allis 2000). An in-depth study of histone

modification not only helps to understand the gene expression

and regulation but also provides a new theoretical basis for the

treatment of tumors. In addition, Combining the results of

disease enrichment with the results of PPI core genes, we

found that the TP53 gene had the highest correlation in the

PPI network. TP53, a transcription factor, is the most commonly

mutated gene in all human cancers (Mendiratta et al., 2021).

Emerging evidence showed that the activation of TP53 leads to

cell cycle arrest (Chen 2016).

CRs have been reported to be widely involved in

tumorigenesis by reprogramming the microenvironment

(D’Angelo et al., 2019; Griffin et al., 2021). Consistently, Our

research also showed that the CRs-related signature may play a

strong regulatory role in immune-based pathways. The different

risk groups exhibited distinct immune landscapes. For example,

in recent years, gliomas with a higher abundance of CD8 T cells

have been found to respond better to immunotherapy drugs

(Kane et al., 2020; Watson et al., 2021). Similarly, our study

Frontiers in Genetics frontiersin.org20

Zhang et al. 10.3389/fgene.2022.957059

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.957059


unveiled that the abundance of CD8 + T cell was lower in LGGs

patients with high-risk scores. Furthermore, We also explored

the TMB and the response of patients in different risk groups to

several chemotherapeutic drugs. TP53, ATRX, PTEN, and EGFR

evinced higher mutation rates in the high-risk group whereas

NOTCH1, CIC and IDH1 had higher mutation rates in the low-

risk group. Notably, IDH1 is not only the gene with the highest

percentage of mutated genes, but also can be seen in 14 CRS

based features. Subsequently, GSEA results showed that CRs-

related signatures were mainly enriched in immune-based

signaling pathways, such as the complement and coagulation

cascades, cytokine cytokine receptor interaction, FC gamma R

mediated phagocytosis, leukocyte transendothelial migration,

and toll like receptor signaling pathway, etc. Studies focusing

on immune checkpoints have shown that the expression of major

targets, such as CTLA4, PDCD1LG2, PDCD1, TMIGD2, and

CD274 is higher in the high-risk patients than in those with lower

risk scores, which may be related to the prognosis caused by

different immune landscapes.

It is important to note, however, that the present study had

some inherent limitations. First, it was based on bioinformatics

analysis and in vitro experiments, and the results still need to be

validated in clinical LGG patients. Second, this study also

suffered from the inherent drawback of confounding bias in

time and space, which include race, region, and time period of

LGG patients. Finally, The stability of the model is only verified

in the CGGA database, and a large number of tests need to be

made in practice.

5 Conclusion

In short, we demonstrate that CRs related signature may

participate in the pathological process of LGGs. A risk model

based on fourteen genes was constructed, which could predict the

clinical prognosis of LGGs individuals. Furthermore, our research

provides a new perspective for an in-depth understanding of the

relation between LGGs and CRs. Considering this article is based

on transcriptional level data, a further study focusing on exploring

the prognostic value of 14 CR-related genes was required.
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