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Abstract: As part of the risk management plan for human system risks at the US National Aeronautics
and Space Administration (NASA), the NASA Human Systems Risk Board uses causal diagrams (in
the form of directed, acyclic graphs, or DAGs) to communicate the complex web of events that leads
from exposure to the spaceflight environment to performance and health outcomes. However, the
use of DAGs in this way is relatively new at NASA, and thus far, no method has been articulated
for testing their veracity using empirical data. In this paper, we demonstrate a set of procedures
for doing so, using (a) a DAG related to the risk of bone fracture after exposure to spaceflight;
and (b) four datasets originally generated to investigate this phenomenon in rodents. Tests of
expected marginal correlation and conditional independencies derived from the DAG indicate that
the rodent data largely agree with the structure of the diagram. Incongruencies between tests and the
expected relationships in one of the datasets are likely explained by inadequate representation of a
key DAG variable in the dataset. Future directions include greater tie-in with human data sources,
including multiomics data, which may allow for more robust characterization and measurement of
DAG variables.

Keywords: spaceflight; microgravity; causal diagrams; directed acyclic graphs; bone fracture;
translational science

1. Introduction

The risks to human health and performance in spaceflight are myriad and
complex [1–5]. The work involved in characterizing and mitigating those risks draws
from highly disparate groups of expertise, including life scientists, physicians, engineers,
and program managers. The de facto approach to both the research and management of
spaceflight human health risks has been to consider the major risks as isolated problems,
with little to no relation to the others [4]. This allowed deep exploration by specific sets
of experts in the characterization phases but introduced challenges into the translation to
clinical and operational domains where both logic and experience tell us that these risks
are interconnected, with risk systems sharing common causes and contributing to common
outcomes [3,4]. Effective reduction in the risks humans face in spaceflight requires transla-
tion of the knowledge gained in areas such as space biology to improve mitigations and
countermeasures at the human level. These translational challenges are experienced in dif-
ferent forms across many fields [6]. The attempt to develop countermeasures to reduce the
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likelihood of one potential problem may lead to the unintended increase in the probability
of others. To approach and manage this complexity, the Human Systems Risk Board (HSRB)
at the National Aeronautics and Space Administration (NASA) embarked on a pilot project
creating a series of causal diagrams that explicitly graph the pathways between known
and suspected contributing factors at the highest level, and the sequence of events between
them. These pathways all start with exposure to spaceflight environmental hazards, and
end with mission level outcomes of interest to the astronauts and the agency. One narrative
causal diagram was created for each of 29 individual spaceflight risks [5,7]. Examples of
HSRB risks include those organized around hazardous exposures (e.g., Toxic Exposure
Risk, Celestial Dust Risk, Radiation Risk), those centered on medical outcomes (e.g., Bone
Fracture Risk, Venous Thromboembolism Concern, Spaceflight-Associated Neuro–Ocular
Syndrome), and those concerned with in-flight deconditioning (e.g., Muscle Risk, Aerobic
Risk). Insight from these areas helps inform how to set standards and adjust design to
accommodate the human in the spaceflight vehicles, habitats, and spacesuits. Thus, the in-
terconnected relationship among risks extends to Human Systems Integration Architectures
with the attendant increase in system complexity.

The causal diagrams used in conjunction with the HSRB risks are created and main-
tained as Directed Acyclic Graphs (DAGs), a type of network diagram with properties
well-suited to causal diagramming [8,9]. The resultant DAGs facilitate better communi-
cation of complex risks, and the structure of the fully integrated risk network allows for
insights generated through social network type analysis and leaves open the possibility of
evolving the combined risk network to a Bayesian Network.

The creation of causal diagrams via subject matter expert opinion does not guaran-
tee accuracy of the causal explanations they contain. In fact, one goal of creating and
configuration managing these diagrams by the HSRB is to invite evidence-based recom-
mendations for evolving the diagrams. Without the addition of empirical data to back the
causal explanations on a diagram, it is only speculation—however well-informed it may
purport to be. These DAGs, and the validation of DAGs (with data underpinning their
structural relationship), will ultimately be used by mission planners and NASA leadership
to create systemic quantifiable biomedical health risk probabilities for upcoming deep
space missions (i.e., cis-Lunar, Mars transit, Mars surface missions). Once empirical data
populate the many risks via DAGs, and those DAGs are validated, approaches are enabled
for mission planners to receive concrete individualized probability values of adverse health
risks on deep space missions. It must be made clear at this point that the currently avail-
able quantified probabilities for mission planners are limited to the Integrated Medical
Model and the NASA Space Cancer Radiation model, which together address only 2 of the
29 HSRB risks (the Medical Conditions Risk and the Radiation Carcinogenesis Risk) [10–12].
Mission planners currently proceed with the best information that is available, but there
is a strong need to develop innovative approaches for quantifying systemic risk in an
evidence-based manner.

As causal diagrams are relatively new to the biomedical field at NASA, there has not
yet been the exposition of a method and procedure for using data to validate them. An
objective and repeatable procedure is needed so that researchers both inside and outside
NASA can use data in a standardized, meaningful fashion for validating, and as necessary,
proposing amendments to the causal explanations encapsulated in the 29 risk diagrams.
An ideal method is one that can be generalized to utilize data from various organisms
(humans, animals, or cells), and from either spaceflight or terrestrial analogue exposures.
These data from various levels of evidence (astronaut clinical, human research, animal,
cellular) are scored at varying levels of strong, moderate, weak, or speculative in the greater
DAG data schema [5]. Here we expand upon the framework put forth by Ankan et al. [8]
and propose that this method be used for translating space or analog data into evidence
either in support of or in refutation of a causal diagram. We illustrate the method using
data from a limited portion of the HSRB Bone Fracture Risk DAG, with data from four
studies of rodent bone turnover from either spaceflight or a partial weightbearing exposure
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analog. This paper serves as an exploration of methods to validate DAGs as well as a
pathfinder for approaches to translating valuable human and animal research data into a
domain that is intended to inform risk reduction in human spaceflight.

2. Materials and Methods

Causal diagrams attempt to visually represent the cause-and-effect relationships be-
tween multiple factors or events. DAGs are a form of network graph that have requirements
and properties making them useful for causal representation [8,9]. DAGs are inherently
visual (graph), have one-way links (directed), and contain no loops (acyclic). These latter
two requirements of DAGs are important as they are what establishes and enforces the
temporal relationship between variables: causes must precede effects.

The objects on DAGs are often called “nodes” or “vertices” and they represent random
variables. Causal relationships between variables are represented as directed (one-way)
arrows, originating with causes and terminating in effects. These arrows are referred to as
“links” or “edges”.

In this framework, one factor is a “cause” of another if two conditions are met: the
cause temporally precedes the effect, and the probability distribution of the effect varies
over the values of the cause. Note that this is equivalent to saying that the variables
in the cause–effect relationship are not statistically independent from one another. This
also means that we can consider each node to have a conditional probability distribution
inside of it, which depends on the values assumed by all its causes. It is this probabilistic
relationship between causes and effects which we will exploit in the validation of causal
diagrams.

The causal diagram we present as our example here is a slightly modified subgraph
extracted from a larger causal diagram developed by scientists at NASA to explain the risk
of skeletal fragility in response to changes in skeletal loading under conditions of altered
gravity [7]. This example is the first attempt to populate and validate with empirical data
any section of the 29 HSRB-created space health risk DAGs.

Data were obtained from the NASA Ames Life Science Data Archive (ALSDA) [13].
In 2021, ALSDA integrated with NASA GeneLab [14], and began scientifically curating
datasets in-line with NASA GeneLab standards (a multiomics-centric repository), thus
enabling scientific spaceflight and space-relevant data to be minable concurrently (both
multiomics and phenomic–physiological–behavioral). In addition, this integrative ALSDA
transformation ensured data quality and scientific confidence in datasets accessed by
researchers and the public for reuse. This also included ensuring ALSDA datasets were
maximally open access [15], FAIR (findable, accessible, interoperable, reusable) [16], and
data files were curated to be machine-readable (e.g., “tidy” data format) [17], transparent,
reproducible, and maximally “AI-ready” [13,18,19]).

This study’s method for DAG validation for the Bone HSRB-produced risk involves
four datasets from rodents [20–23] produced through the bioassays of: (1) micro-computed
tomography (µCT), (2) dual-energy X-ray absorptiometry (DXA), (3) histomorphometry, or
(4) biomechanical strength testing [24–27]. Values derived from the studies pertained to one
or more of: bone formation (mineral apposition rate, ceased bone formation, mineralized
surface/bone surface, and bone formation rate/bone surface); bone resorption (label length
and osteoclast perimeter); bone mass (bone volume/tissue volume, bone mineral content,
and bone mineral density); trabecular microarchitecture (trabecular thickness, number, and
separation/spacing); or bone strength (maximum load/fail load). Table 1 provides details
of these studies, including the number of animals, study conditions, and measurements
made. The study by Dubeé et al. contained data from µCT only; the 2015 Keune et al. study
provided data from both µCT and DXA; the 2016 Keune et al. study offered measurements
from histomorphometry; and Ko et al. had data obtained by µCT, histomorphometry, and
biomechanical strength testing data.
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Table 1. Study design characteristics.

Study Animal Type Exposure Control Bone Assayed Duration (days) N

Dubeé [20] C57BL/6 mice Spaceflight Terrestrial L4 vertebra 37 27
Keune 2015 [22] Fisher 344 rats Spaceflight Terrestrial Femur 14 24
Keune 2016 [21] Fisher 344 rats Spaceflight Terrestrial L2 vertebra 14 22

Ko [23] Wistar rats Terrestrial: 80% or
60% unloaded

Terrestrial: 0%
unloaded Both femurs 28 33

Three of the included studies were of rats [21–23] and one was of mice [20]. There was
one ground-based study which used partial body weight unloading as the exposure, while
the other three studies sent animals to space. The design of the spaceflight studies was
generally one exposure group with one or more terrestrial control groups. Total sample
sizes of the studies were approximately 24 animals, save for the ground analog study of Ko
et al., where rats were randomized to one of four partial weightbearing levels and one of
three exposure durations, for a total of 12 exposure groups. Each exposure condition had
12 rats assigned to it, for a total of 144 animals. However, due to missing data, the working
dataset had complete observations on only 140 rats.

To avoid adding variables to the bone DAG used here, to make the data comparable
to the spaceflight studies, and to ensure any bone effects due to unloading were clearly
observable in the data, we included only the 0% (control group), 60%, and 80% unloaded
exposure groups, and only those animals that were exposed for 28 days. This resulted in a
dataset of 33 observations from the Ko et al. study. Of those 33, 14 had measures of bone
formation and bone resorption, making the effective sample size for the tests of conditional
independencies only 14. Thus, the tests of marginal correlation had a sample size of either
33 or 14, depending on whether or not they were testing a relationship that included bone
formation or resorption.

The original datasets contained variables that were related to—but not necessarily
synonymous with—the random variables on the bone DAG. In most cases, the data con-
tained more than one variable related to single concepts on the causal diagram. As a
method of using all available information from multiple measures in a compact way, we
created composite variables using principal component analysis (PCA). The details of this
procedure and its results can be found in the Supplementary Materials to this article.

The statistical analyses in this study consisted of building composite measures of
the random variables on the bone causal diagram and then using those measures to
test relationships implied by the diagram. The testing procedure for these relationships
generally follows the approach set out by Ankan et al. [8].

Through structural analysis of the bone risk DAG, we extracted the set of expected
marginal correlations and conditional independencies implied by the structure of the
DAG [9,28]. These serve as testable hypotheses for the accuracy of the network structure.
Marginal dependencies are pairs of variables that should have a non-zero bivariate correla-
tion (i.e., when not controlling for other factors). Conditional independencies are pairs of
variables that should have zero correlation when controlling for one or more variables as
specified by analysis of the DAG structure. To define the variable relationships implied
by the bone risk DAG, we used the dagitty web interface (available at dagitty.net) and
the package “dagitty” in the R statistical computing software, version 2021.09.2, Vienna,
Austria [8,29]. To compute marginal correlations between pairs of variables we used the
“ci_cor” function in the “confintr” package [30]. This function computes the correlation
as well as the 95% confidence interval for the correlation. To guard against violations
of linearity between pairs of variables, we specified the function to use the Spearman
correlation statistic. Confidence intervals for the Spearman correlation coefficient were
generated with bias-corrected accelerated bootstrapping, the default for the package. This
method adjusts the endpoints of the bootstrapped confidence interval to compensate for
skew among the bootstrapped samples, leading to more robust estimates.
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The “dagitty” package in R offers the function “localTests”, which takes both a DAG
(in the form of dagitty code) and the correlation matrix of variables that correspond to
the DAG’s variables as its input. The function then returns partial correlations for each
conditional independency in the DAG and their 95% confidence intervals. We used this
function to compute the set of correlations corresponding to the conditional independencies
on the DAG.

Whereas marginal correlations are pairs of variables expected to have non-zero correla-
tion, conditional independencies are relationships where the partial correlation is expected
to be 0 after controlling for specific intermediate variables along causal pathways (and if
the DAG is correct). We considered a correlation to be non-zero if it passed both of the
following criteria: (a) the correlation is the direction (positive or negative) consistent with
the posited causal relationships; and (b) the absolute value of the correlation is greater
than or equal to 0.15. In other words, a marginal correlation is validated as non-zero if it
is directionally correct and is of sufficient magnitude to be distinguishable from 0. Partial
correlations generated to test conditional independencies are validated if the absolute value
of the partial correlation coefficient is less than 0.15 (i.e., is indistinguishable from 0). We
chose a threshold of magnitude for non-zero correlation because it is possible to have values
that are close to 0 with tight confidence intervals that do not include 0. In such instances
the correlation is effectively zero, and the magnitude threshold allows us to interpret it as
such. We chose the value of 0.15 as a minimal heuristic standard. As such, this value can be
considered arbitrary, and other thresholds can and should be considered depending on the
context.

Another possible validation criterion could be that the 95% confidence interval sur-
rounding the correlation does not include 0. In our view, directionality and magnitude
of correlation are far more important criteria in biological systems, and thus, together are
sufficient to consider a variable pair to be correlated. Perhaps more importantly, Ggiven
the potential lack of statistical power in spaceflight research, and recent criticisms of statis-
tical hypothesis testing in spaceflight research [31,32], we believe that a lack of statistical
precision alone should not be enough to disqualify a marginal correlation from being
validated. As such, we do not consider the confidence interval to be a necessary ingredient
for validating DAG structure, but report it here for comparison and discussion.

3. Results
3.1. Causal Diagram

A modified portion of the bone risk DAG (i.e., a “subgraph”) is shown as Figure 1. In
this causal diagram, skeletal unloading is the “exposure” as denoted by the green node
color and the label “E”. As such, it is the ultimate cause of all downstream nodes through
its direct causal influence on bone formation and bone resorption. These two processes are
both causes of bone mass and trabecular architecture, which in turn are both causes of the
outcome, bone strength, here marked with an “O”. The arrows between all variables are
colored green, which denotes that all paths on this diagram are on causal paths between
skeletal unloading and bone strength.

3.2. Variable Relationships

Analysis of the DAG in Figure 1 revealed the marginal correlations and conditional
independencies implied by the diagram. Because of the general linear flow of the causation
in the DAG, all variables on the DAG should have non-zero marginal correlation. Table 2
lists the pairs of variables which should be marginally correlated, and the expected direction
(positive or negative) between them. In general, skeletal unloading should result in less
bone formation (negative correlation) and more bone resorption (positive correlation).
These in turn should lead to lower bone mass and a sparser trabecular microarchitecture.
Lower mass and a sparser trabecular microarchitecture should result in lower bone strength.
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Figure 1. Causal diagram (in DAG form) showing the causal pathways between skeletal unloading
and bone strength.

Table 2. Marginal correlations and their expected directions of association.

Variable 1 Variable 2 Expected Direction

Unloading Bone resorption Positive
Bone formation Negative

Bone mass Negative
Trabecular microarchitecture Negative

Bone strength Negative

Bone resorption Bone formation Negative
Bone mass Negative

Trabecular microarchitecture Negative
Bone strength Negative

Bone formation Bone mass Positive
Trabecular microarchitecture Positive

Bone strength Positive

Bone mass Trabecular microarchitecture Positive
Bone strength Positive

Trabecular microarchitecture Bone strength Positive

Table 3 displays the conditional independencies implied by Figure 1. Careful study of
the statements in Table 3 reveals that variables are conditionally independent whenever all
paths between them are “blocked”. For example, bone strength is independent of exposure
when we control for bone formation and bone resorption, or when we control for bone mass
and trabecular microarchitecture. Similarly, exposure is independent of both bone mass
and trabecular microarchitecture when we control for bone formation and bone resorption.

Table 3. Conditional independencies of the DAG in Figure 1.

Variable 1 Variable 2 Conditioning Set

Trabecular microarchitecture ⊥ Unloading | Bone formation, Bone resorption
Bone mass ⊥ Unloading | Bone formation, Bone resorption

Trabecular microarchitecture ⊥ Bone mass | Bone formation, Bone resorption
Bone Strength ⊥ Unloading | Bone formation, Bone resorption
Bone Strength ⊥ Unloading | Bone mass, Trabecular microarchitecture
Bone Strength ⊥ Bone Formation | Bone mass, Trabecular microarchitecture
Bone Strength ⊥ Bone resorption | Bone mass, Trabecular microarchitecture

Bone resorption ⊥ Bone formation | Skeletal unloading

In the notation used here ⊥means “is independent of” while | means “given”. Thus, A⊥B|C would be read “A
is independent of B, given C”.



Biomedicines 2022, 10, 2187 7 of 15

Two variables on a DAG are also independent whenever we have accounted for
their common causes. This is demonstrated when bone formation is independent of bone
resorption after controlling for skeletal unloading, and with bone mass being independent
of trabecular microarchitecture after controlling for bone formation and bone resorption.

3.3. Tests of Marginal Correlation

The results of the tests of marginal correlation are displayed in Figure 2. Point values
are correlation coefficients between the pairs of variables (marked with arrowheads), and
the segments are their 95% confidence intervals. Blue arrowhead markers represent correla-
tions whose absolute values are greater than or equal to 0.15—the required minimum value
to be considered a non-zero correlation—and are in the expected direction of association
(i.e., positive or negative). Blue confidence bands are those that do not intersect 0 (the
dotted, vertical line in Figure 2). Those with red arrowhead markers have absolute values
less than or equal to 0.15 and/or are not in the expected direction; those with red confidence
bands are those that cross 0.
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Figure 2. Correlations and 95% confidence intervals for testing marginal associations. The grey band
represents the no-effect zone, or the zone in which a point estimate is considered indistinguishable
from zero. Arrows point in the direction of expected correlation, above or below zero; blue arrows
are those of sufficient magnitude to be considered non-zero (outside of the grey band), while red
arrows are of insufficient magnitude to be considered non-zero (inside the grey band). Blue interval
bands exclude 0 while red interval bands include 0.
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The bone DAG implied 15 marginal correlations among its six variables. Although
the datasets used here enabled us to conduct 38 tests in all, not all studies offered tests of
all relationships. Of note is the study by Ko et al., which offered the only measurement of
bone strength, and thus the only set of tests of this variable against the others.

Examination of Figure 2 reveals that all correlations from the Dubeé data were in the
expected direction, and had sufficient magnitude of effect size to be considered non-zero
correlations. The correlation between exposure and trabecular microarchitecture was the
only correlation lacking statistical precision, with its confidence interval inclusive of zero.

The 2015 Keune data enabled us to test three relationships with nine marginal correla-
tions. Once again, all of these correlations were in the correct direction and of sufficient
effect size to be considered non-zero correlations. Here too, a single correlation lacked
statistical precision.

The Keune 2016 data afforded six correlations. All six of the point estimates were in
the expected direction and of sufficient magnitude to be considered non-zero. Three of
these had confidence intervals that crossed zero.

The Ko data provided the opportunity to compute 15 correlations. Among these, four
fell within the grey zone in Figure 2, making them effectively zero. Two correlations had
point values outside the grey zone but were in the wrong direction. The remaining nine
correlations were directionally correct and large enough to be considered non-zero. Three
of them had confidence intervals inclusive of 0.

3.4. Tests of Conditional Independencies

The bone DAG of Figure 1 offered eight conditional independencies, but only the
Keune 2016 and the Ko datasets contained variables that would allow for testing them. The
Ko data were able to test all eight conditional independencies, while the Keune 2016 data
were able to test two of them. Figure 3 displays the results of these tests.
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The Keune 2016 data offered tests of the independence of bone formation from bone
resorption given exposure, and the independence of bone mass from exposure given bone
formation and bone resorption. Both correlations were within the −0.15 to 0.15 limits
effectively validating these two conditional independencies in those data.

In the Ko data, only two out of eight conditional independencies were validated.
Among the six non-zero correlations, all of them involved either bone resorption, bone
formation, or both. Four of the failed tests were conditional on both bone formation and
bone resorption, which was the entire set of relationships that were conditional on this pair.
One of the other two non-zero results also involved bone formation but not resorption,
and the other involved bone resorption but not formation. The relationships that were
confirmed included the conditional independence of the exposure and bone strength when
controlling for bone mass and trabecular microarchitecture, and the independence of bone
formation and resorption when controlling for exposure.

4. Discussion
4.1. Interpretation of Findings

In this example DAG validation, we used data from four studies of the effects of
skeletal unloading from rodents to test the causal explanation of how unloading may lead
to diminished bone strength. Our results were mixed in that the marginal correlations
provided some evidence for the involvement of all the included variables in the story of
skeletal unloading and bone strength, but six of the eight conditional independencies were
not validated by the data. At first blush, this might lead us to reject at least some of the
structure of the DAG presented as Figure 1. This, however, would be premature; the lack of
concordance between the expected relationships defined by the DAG and the correlations
that test them could be due to one or more of several explanations:

a. The causal diagram could be drawn incorrectly for the outcome. The first and most obvious
reason a DAG is not validated by empirical data is that the DAG is fundamentally
incorrect. This could be due to incorrect causal relationships drawn between vari-
ables, the lack of needed connections between variables, the erroneous inclusion of
irrelevant variables, or the omission of needed explanatory variables or confounders
(See Section 4.2 below for further discussion).

b. Analogs could have a different mechanism. In this scenario the causal diagram is correct
for the real-world system it explains, but incorrect for a particular analog dataset that
is attempting to approximate it. In other words, the analog is an imperfect simulation
of the causal mechanism under study. This is of the utmost concern when using ani-
mal models to approximate human exposures (e.g., sending rodents to space), when
there may be interspecies differences in physiology, or when humans experience
analog exposures (e.g., bed rest studies). In these situations, the correct DAG for
the analog could have different nodes and/or slightly different causal mechanisms.
For example, in this DAG the terms, bone mass, trabecular microarchitecture, and
bone strength were originally modeled as bone density, bone structure, and skeletal
fragility in the HSRB official DAG. Where “strength” may be a corollary of fragility,
the effects of brittleness as opposed to a load-based conception of strength may
impact these results.

c. Variables used in the testing may not be appropriate measures of the random variables on the
causal diagram. In this scenario, the DAG is drawn correctly, any analog in use is a
good representation of the real causal system, but one or more measures in the data
are inappropriate to represent random variables on the DAG. This can be because the
measure is capturing the wrong phenomenon, or because it is measuring the correct
phenomenon at the wrong time or in the wrong way.

Among the set of marginal correlations (Figure 2), there were two that were direc-
tionally inconsistent, two that lacked sufficient magnitude to be considered non-zero, and
two that were lacking in both criteria: directionally inconsistent and of insufficient mag-
nitude. Blending expert knowledge with the details of our results, rather than conclude
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that the DAG is incorrect, we believe that the measure of bone resorption in the Ko et al.
dataset is an inadequate measure (Scenario C from above). We come to this conclusion for
several reasons.

First, the correlational failures are highly specific to one dataset and one variable: five
out of six failed marginal correlations and five out of six failed conditional independencies
were in the Ko dataset and involved bone resorption. Next, three out of the six failed
marginal correlations and one of the three failed conditional independencies involving
bone resorption in the Ko data were validated by independent tests in the Keune 2016
data. The validation of these relationships in a different setting makes the conceptual
relationship more believable and the Ko bone resorption measure more suspect. Finally,
the Keune 2016 resorption measure (fluorochrome label length) specifically measures the
cumulative extent of bone resorption from the beginning of the study to the end, whereas
the measure present in the Ko data is a measure of bone resorption activity, providing a
look at this activity at the time of assay only. Essentially, if the rodents in the Ko data had
already reached a new homeostasis of bone mass and trabecular microarchitecture by day
28 after exposure, the cross-sectional resorption activity would be comparatively low, and
a cumulative resorption measure would be comparatively high. Using the former in place
of the latter would mean that the bone resorption measure is not capturing bone resorption
in the way the DAG is describing it, and would create the exact opposite of the expected
correlations.

4.2. Revising Incorrectly Drawn Causal Diagrams

In part (a) of Section 4.1 above, we identified the possibility of having an incorrect
visual hypothesis of the variable relationships as a cause of validation failure. It is important
to note that failure modes (b) and (c) in Section 4.1 are applicable to the data and its
validity in representing variables on the causal diagram (rather than the structure of the
diagram itself). These possibilities should be thoroughly investigated and eliminated
before entertaining the idea that the diagram may be drawn incorrectly. If the researcher
is confident that the causal diagram is incorrect, an attempt may be made to modify it
based on the correlation structure of the data used in the validation study. However,
this runs the risk of producing a causal diagram completely biased to those data, and
repeated validity testing with the same data will only indicate how fully this has been
achieved. For these reasons, we advocate that, in the context of HSRB causal diagrams,
any modifications should only be proposed when researchers are confident that the data
upon which they are basing the modifications are generalizable, such as when they are the
result of a systematic literature review, or a large, well-controlled randomized study. Short
of this, a more epistemologically sound approach may be to develop the diagram that is
most consistent with the currently available data as a proposed update, then perform new
studies or otherwise obtain new data to test its validity.

4.3. Statistical Precision as a Criterion

As mentioned previously, we have not considered statistical precision to be a validation
criterion in this exercise, but included it here for consideration. Had we included it as a
criterion, an additional eight marginal correlations in Figure 2 would have failed to be
validated on this standard alone, even though the (absolute) magnitudes of all of these
correlations were in excess of 0.25. The wide confidence intervals for the estimates derived
from the Ko data in Figure 3 would have led to three correlation confidence intervals that
were suggestive of non-zero correlation, while the absolute values of the point estimates
were all well beyond the 0.15 threshold. These issues illustrate the effect of low statistical
power on these intervals, and underscore why we feel that in the context of spaceflight
research, statistical precision is a poor criterion.
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4.4. Limitations of the Method

As with any empirical scientific exercise, the methodology exemplified here has lim-
itations. First among them is that using secondary datasets for DAG validation can be
challenging, as few studies will have all the variables needed to validate an entire DAG,
and, as in meta-analysis, the variables may take various forms that do not map perfectly
to DAG variables. This may require that validations be performed piecemeal, as we have
shown here, utilizing datasets to validate only portions of the DAG. This leaves scientists
to collect these partial validations and form a judgment from potentially incomplete infor-
mation. From this perspective, DAG validation—far from being an epistemological silver
bullet—merely formalizes our certainties and remaining uncertainties. However, this too
has value inasmuch as it defines our understanding and our needs for targeted follow-on
mechanistic research. In this case, the identification of knowledge gaps is critical to help
scientific program managers consider targeted funding. Additionally, this has significant
value in encouraging translational communication between different groups of experts
who otherwise may not interact.

Even if the DAG presented here were to be fully validated by the included rodent data
(i.e., all marginal correlations and conditional independencies were met), we would still not
definitively declare the DAG to be correct; this is the well-known philosophical “Problem
of Induction” revisited [33]. It reminds us that just because there is good correspondence
between a causal explanation and the observed data, that does not mean it is the correct
explanation, as there are many alternative explanations that could correspond with the
data equally well. In the context of causal diagramming, this means there could be many
more DAGs whose testable implications could be met by the data. Thus, causal DAGs will
ideally be validated with a variety of data over time, building the cumulative evidence for
its veracity and inspiring edits and improvements as the data warrant.

4.5. DAG Validation and NASA’s Level of Evidence Assessments

DAG validation, such as what we have demonstrated here, is related to the Level
of Evidence (LoE) assessment performed by Risk Custodial Teams as part of NASA’s
Human System Risk Management Process [5,7]. The LoE process refers to assessing the
strength of evidence for each individual arrow on a DAG. It assigns an ordinal rating
based on a subset of causal guidelines first defined by epidemiologist Sir A. Bradford
Hill in 1965 [34]. Assignment of LoE for an individual causal relationship requires careful
review and synthesis of the published literature as well as any unpublished data that
NASA has which may be germane. Though this may seem like a highly similar activity to
DAG validation, there are important differences. First, LoE assessment is the process of
documenting a specific set of heuristic evidentiary criteria for a given causal connection.
It attempts to answer the question, “How strong is the evidence that this single arrow
is correct?” In contrast, the DAG validation process asks, “Does the available evidence
support that this causal system is correct?” There can be discordance between these two
approaches if important causal relationships have been missed in the DAG; all defined
arrows may be true, but the DAG may be incorrect for lack of needed causal relationships
and/or important variables. Thus, DAG validation should occur after the LoE assessment
is at least preliminarily complete, and both assessments should be repeated as often as new
evidence warrants.

However, even if all testable implications were validated, further evidence would still
be needed, since all studies used here were of rodents, and none were of humans. Full
evaluation of LoE involves an assessment of Quality of Evidence (QoE). While LoE applies
to the full set of evidence that informs the justification for a specific edge in a DAG, QoE
applies to the specific publications, studies, or datasets used; in this case, it would be the
four datasets mentioned above [20–23]. The 12 guidelines for assessing QoE in the context
of animal or cellular studies are provided in Table F-3 in the NASA Human System Risk
Management Plan [5]. In short, animal studies are initially considered as “weak” evidence
for human system risks based in large part on known translational challenges. Animal
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studies are eligible for a higher LoE if they demonstrate attention to experimental design
and external validation of animal translational research methods, using animal models
or cellular or molecular endpoints to generalize from animal to human. Given the pilot
nature of this study and the selection of four convenience datasets, a formal evaluation of
QoE and LoE has not been performed here. This is because effort was primarily focused
on exploring the methods of validation prior to investing resources in a full analysis.
However, increasing demonstration of high-quality evidence in the studies/datasets used
in future research can help inform assessments of a lack of concordance in these validation
approaches. Namely, that studies and datasets that meet high quality guidelines may be
more likely to suggest an issue with the DAG itself than with the data being used to validate
the DAG.

While this approach applies specifically to the edge or edges in question within the
DAG, the question remains as to whether an LoE rating can apply to a whole DAG or
subset of a DAG. This would bring the potential for rapid visualization of knowledge
gaps that can be tailored to levels of confidence. In the larger systems domain of risk
analysis for spaceflight missions, streamlined communication of locations of high and low
confidence in our causal understanding of risk can yield large dividends. Engineers and
program managers require a high-level justification for science investments and system
trades in human spaceflight. Walking through the nuances of cellular, molecular, or animal
research can be counterproductive in trade-space analyses which are already detail-oriented
towards systems engineering challenges. The DAG validation processes explored here may
eventually provide a pathway that enables better communication of critical information for
human system risk contributions to total mission risk.

4.6. Future Directions

For cis-Lunar, Mars transit, and Mars surface missions (deep space), the approach the
space biomedical field took towards low Earth orbit (LEO) will likely evolve for research and
risk analysis/quantification. Indeed, a recent analysis of the proportion of medical/health
risk per overall deep space risk mission posture estimated that an initial Mars mission
will carry a level of medical health risk that is equal to or greater than the entire mission
risk that astronauts faced on the Space Shuttle [11]. Beyond the inclusion of human data
(both spaceflight and terrestrial analog) housed in the NASA Life Sciences Data Archive
(LSDA), and the curation of more non-human data for DAG validation from sources such
as the NASA ALSDA, future spaceflight experiments/grants (whether from NASA or
partner agencies) should specifically include experiments that address gaps in knowledge
identified by the DAGs, consistent with applied research needs.

In future studies, the wealth of human spaceflight multiomics data being collected
by the NASA Human Research Program (for NASA astronauts), and NASA GeneLab
(for animals, humans, and model organisms) must be incorporated into the DAGs to
provide molecular-level evidence and relationships. Incorporation of multiomics (e.g.,
transcriptomics, proteomics, metabolomics) may enable the description of greater detail
within and between HSRB nodes. In addition, once scientists generate robust measurement
models from existing multiomics data, this will enable the development of new assays and
biomarkers that characterize key aspects of risk. Further, machine learning is poised to
help analyze multiomics, imaging, and other tabular evidence to add towards this causal
DAG risk assessment. Previous work has demonstrated the utility of machine learning for
biological causal inference, with the development of CRISP (Causal Relation and Inference
Search Platform) for biomedical omics data [35]. Additionally, recent machine learning
innovations have led to algorithms which are designed to learn the structure of a DAG from
a given set of data, broadening the capabilities for incorporating existing space biological
data with the DAG structure [36].

In some instances, it may be necessary to omit some detailed variables from multiomics
datasets or add some explanatory details to DAGs to understand how the multiomics data
and DAG fit together, as the data may speak to causal phenomena that fit “between” the
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existing nodes on the HSRB DAG. Thus, a maximally “open science” community approach
is necessary to unite original investigators with external collaborators to facilitate such
understanding and ultimately build a robust community consensus on all DAGs.

The voice and expertise of the communities who produce and reuse these data (and
metadata) are critical to standardizing and incorporating space biological and scientific
data towards risk probability estimation. Across the 29 DAGs [7] in the effort to validate
and enrich them with empirical data, voices must be heard from a wide span of biological
and human health researchers. At the core of such a collaborative science campaign is
the need to make the necessary biomedical data findable, accessible, interoperable, and
reusable for populating DAGs.

5. Conclusions

In this example, we have demonstrated a working procedure for the validation of a
DAG with data submitted to a NASA data repository (with data not used to originally
formulate the DAG). When considering the totality of the evidence these datasets provide,
the results largely validate the DAG, and thus affirm the story: skeletal unloading, whether
from entering microgravity in space or from partial weightbearing in a terrestrial analog
study, stimulates bone resorption and reduces bone formation at some skeletal sites. This
in turn leads to lower bone mass and a sparser trabecular microarchitecture, factors which
ultimately result in reduced bone strength.

Though this example validated only a small portion of a single larger HSRB risk DAG,
the method illustrated here is a general framework for using empirical data to validate
causal explanations encoded as a DAG, and as such, may be applied to any DAG for
which data can be brought to bear (be that data from NASA data repositories or from other
sources).

While the computation of marginal correlations and partial correlations are basic
statistical procedures, the interpretation of the results of these tests requires active reasoning
and is anything but procedural. Determining why certain implications fail to be validated
requires the investigator to wade through the specifics of the results and carefully reason
against the possible explanations. It may require multiple iterations of DAG revision and
testing, and possibly additional research. This is how NASA’s risk management process is
intended to function: existing DAGs prompt evaluation of evidence, which in turn inspires
improvements in the causal explanation, which prompts further research and an update to
the DAG, and so on, in a virtuous cycle.

Like any other hypothesis, a DAG is never fully proven true, but instead may mount
enough evidence in its favor that it becomes no longer worth doubting; we leave it to
subject matter experts and other stakeholders to decide when that point has been reached,
on a risk-by-risk basis. NASA’s strategy to make long-term human space exploration as
safe as possible is to reduce risk through the strategic application of mission and procedure
planning, and engineering or medical countermeasures. Whether in complex systems or
simple ones, no problem can be effectively solved that is not first effectively understood
(and measured). The use of DAGs for modeling complex risk systems and the method we
illustrate here for validating them are additional steps in building that understanding.
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