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Investigations in preventive and occupational medicine are o�en based on the acquisition of data in the customer’s daily routine. �is 
requires convenient measurement solutions including physiological, psychological, physical, and sometimes emotional parameters. 
In this paper, the introduction of a decentralized multi-sensor-fusion approach for a preventive health-management system is 
described. �e aim is the provision of a flexible mobile data-collection platform, which can be used in many different health-care 
related applications. Different heterogeneous data sources can be integrated and measured data are prepared and transferred to 
a superordinated data-science-oriented cloud-solution. �e presented novel approach focuses on the integration and fusion of 
different mobile data sources on a mobile data collection system (mDCS). �is includes directly coupled wireless sensor devices, 
indirectly coupled devices offering the datasets via vendor-specific cloud solutions (as e.g., Fitbit, San Francisco, USA and Nokia, 
Espoo, Finland) and questionnaires to acquire subjective and objective parameters. �e mDCS functions as a user-specific interface 
adapter and data concentrator decentralized from a data-science-oriented processing cloud. A low-level data fusion in the mDCS 
includes the synchronization of the data sources, the individual selection of required data sets and the execution of pre-processing 
procedures. �us, the mDCS increases the availability of the processing cloud and in consequence also of the higher level data-fusion 
procedures. �e developed system can be easily adapted to changing health-care applications by using different sensor combinations. 
�e complex processing for data analysis can be supported and intervention measures can be provided. 

1. Introduction

1.1. Project: p2Health. For the application of preventive medicine 
measures (including occupational health and social  medicine) 
mostly the individual acquisition of physical, physiological, 
and psychological data are required beforehand. �erefore, 
comprehensive telemonitoring systems are required, which 
allow the measuring of customer-specific data in the usual daily 
routine (e.g., at work, in leisure time, at sports, during the night). 
In order to get real and unaltered feedback, the minimization of 

measurement influences on the customers is a very important 
factor. �e choice of required parameters strongly depends on 
the investigation focus. Consequently, a wide range of mobile 
and preferable lightweight and small sensor solutions is required 
to cover different medical questions.

Within the project p2Health an extended concept for a 
personal preventive health management (p2Health) is to be 
implemented. It combines a personal mobile data monitoring 
by wearable sensors with a preventive medical support. �is 
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support includes, among others, an initial medical checkup, 
intelligent data interpretation, and provision of user-specific 
intervention measures by a processing cloud-solution. �e 
approach focuses on offering evidence-based and medically 
assisted possibilities for customers in all living environments 
to monitor their activities, metabolic states, and mental health 
under consideration of environmental parameters. Figure 1 
shows the general concept of the project.

Accordingly, a solution is required, which integrates the 
different types of sensor systems and prepares the inhomoge-
neous data for processing and interpretation in the cloud.

1.2. State of the Art. �e quantified self (QS) movement [1, 2] 
led to the introduction of numerous wearable, primary wrist-
worn, sensor solutions to the market, which are made for 
the application in daily routine (compact and comfortable). 
�e measured parameters include e.g., step count, traveled 
distance, caloric analysis, energy and oxygen consumption, 
fitness tracking, heart rate and sleep stages, and additional 
features, as e.g., food documentation, data sharing, and alarm 
functions [3, 4]. �ese systems usually do not achieve the quality 
of conventional methods in laboratories [5–7]. In addition, they 
partially have strong derivations if the application range differs 
from the usual one. In [8, 9], for example, the derivations of 
step counters for different movement speeds are presented. But  
there are also strong differences in quality between the offering 
device manufacturers as exemplarily shown for energy 
expenditure measurements in [10]. Nevertheless, they offer 
a sufficient compromise between data quality and usability/
comfort [11] for different medical investigations in field [12– 15].

Leading providers for such sensor solutions are e.g., Fitbit 
[16], iHealthLabs [17], or Nokia [18]. �ey channel the data 
of their sensor units via their own smart-device applications 

to their cloud servers [19]. �ese cloud servers offer compre-
hensive interfaces, which allow specific data requests. Some 
current developments of telemedical monitoring systems 
replace the common integration of single Bluetooth-devices 
by the integration of cloud-solutions. �is avoids the devel-
opment of specific smart-device applications as well as the 
integration of sensor systems. Several developments for differ-
ent applications can be found in the literature, which use these 
sensor systems and solely integrated the respective cloud serv-
ers for the health-data access. iCardia [20] is a platform for 
supporting people in cardiac rehabilitation by tracking their 
activity. �ese data are acquired by wrist-worn wearable 
devices from Fitbit and are stored in the respective provid-
er-cloud server. �e iCardia-cloud queries current data sets 
(notified by Fitbit’s Subscription API) from the Fitbit cloud 
and provides these data in the iCardia clinical app (dash-
board). Here the data are analyzed by specialists in cardiac 
rehabilitation, which send personalized feedback via SMS to 
the participants. �e platform MyHealthAvatar (MHA) [21] 
collects life-logging data, including health and social media 
data, to provide user-specific information for interdisciplinary 
healthcare research and collaboration. �e MHA server acts 
as a central data hub, which aggregates different data from 
mobile apps, wearable devices, and social media (e.g., Twitter, 
Facebook, Nike+ Fuelband, Jawbone Up, Google MyTracks). In 
more recent studies, MHA contributes this functionality to 
the iManageCancer project, which supports prostate and 
breast-cancer patients by e.g., tailored information provision 
and a personalized risk assessment [22]. MoC (Mobile Cloud) 
Medicare [23] is a mobile platform, which is developed to track 
the health status (as heart rate, sleep time, and burnt calories) 
and to detect fall situations of elder people by wrist-worn sen-
sors to obtain a higher degree of safety. In contrast to the 
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Figure 1: Fundamental concept of the project p2Health.
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previous platforms, where the respective cloud server solu-
tions are connected, every instance of MoC Medicare mobile 
application establishes an individual connection to the pro-
vider cloud server to acquire the user’s health data and to for-
ward them to the central data storage (Amazon cloud server). 
In addition, the MoC Medicare application has an implemented 
fall-detection algorithm, which uses the acceleration data of 
the mobile device for pattern recognition. In case of detecting 
a fall, the app is sending a notification to a registered emer-
gency contact.

Mobile health toolkits [24] as e.g., Apple HealthKit, Google 
Fit or Samsung Health offer cloud-based services, which func-
tion as repository for health- and fitness- related data. Besides 
vendor-specific sensor-devices and app solutions, also selected 
third-party products can be integrated and merging of data 
from different sources is supported. �e architecture of these 
systems for the integration of third-party wearable devices can 
be divided into two general approaches. �e first one offers the 
integration of the corresponding third party apps into the 
toolkit app on the mobile device and the subsequent upload 
to the provider cloud [24]. �is, for example, is applied by 
Apple HealthKit and Samsung Health, whereby these solutions 
allow only less third-party integrations, compared to Google 
Fit. �e approach applied by Google Fit offers the up- and 
download of data [25] to/from the Google Fit cloud for third-
party clouds and apps. In this case, the third-party apps do not 
interact with the Google Fit app on the mobile device [24]. All 
of these health-toolkit solutions permit the up- and download 
of data by APIs (application programming interfaces) and they 
also provide an upload opportunity of additional data into their 
clouds, independent of the data source. Due to the shutdown 
of the Google Fit websites in March 2019, a trend shi� to access 
data predominantly via mobile-device apps can be assumed.

Health toolkits are primarily used in fitness- and 
 activity-related studies, where the access to data already stored 
in the clouds for statistical analysis is required (as e.g., in 
[26,  27, 28]). �erefore, the data mostly are downloaded or 
requested on a server level. Only a few research solutions 
 feature additional integrations in health toolkits on mobile 
devices. In [29], for example, physical activity data and heart 
rate from Google Fit and Apple HealthKit are used to expand 
the seventh population based Tromsø Study (Tromsø 7, in 
Tromsø, Norway), which is repeated every 5–8 years. Reason 
of these investigations is the high prevalence in cardiovascular 
diseases in Norway. Via the Tromsø Study application on the 
mobile device, the participants’ data are once downloaded from 
Google Fit or Apple HealthKit Cloud (security clearance by 
 participants) and sent to a web-service in the Tromsø Study 
backend. �e web-service realizes the processing/adaption of 
data into the required  format to store it in EUTRO, the main 
research data storage in the Tromsø Study. A further study uses 
Google Fit to store fitness data under consideration of saving 
energy as described in [30]. Here the Google Fit-compatible 
Sony Smartband 2 (Minato, Tokio, Japan) was used to track 
patients with heart diseases. Accordingly, the data are stored 
in Google Fit and are queried by an Android app, which detects 
situations with an increased risk of heart attacks for a selected 
day. �e detection is based on thresholds, calculated by a 
weighted average of the heart rate.

However, the common integration of directly coupled 
wearable sensors (by e.g., Bluetooth, ANT, Zigbee or WiFi) 
with disclosed communication protocols or provided so�ware 
development kits (SDKs) is still essential, especially if real-time 
conditions or less common, respectively, special  parameter 
sets are required. Moreover, these sensor solutions have a 
higher variety regarding the available parameters [31, 32] and 
vendors (depending on the requested parameters and sensor 
specifications) [33, 34]. In addition, they allow more complex 
installation arrangements, as for example, the measurement 
of respiration or body orientation by chest belts [35–38] or 
motion patterns by distributed body-wide sensors [4]. �e 
typical architecture for directly coupled wearable sensors 
includes one or more sensor solutions, which are connected 
to a mobile application. �ese applications o�en realize the 
processing and presentation of data and also allow forwarding 
the data to a web server or cloud. Several applications using 
such sensor solutions are summarized in [39]. Additionally, 
the parallel acquisition of environmental parameters with 
wearable sensors plays an increasingly significant role [40–45] 
in preventive medicine. Consequently, the flexible combination 
of different wearable data sources, depending on the individual 
investigation focuses and under consideration of wearing 
comfort and adequate data quality, is a current engineering 
challenge in this field.

�e introduced examples for both sensor-integration 
approaches show that in current developments usually only 
one approach is used. Accordingly, in the literature only one 
development could be found, which deals with the fusion of 
directly coupled wearable sensors and vendor-specific cloud 
servers (here collectively designated as heterogeneous data 
sources). �is solution pursues an approach for patients with 
hypertension, where heterogeneous data sources for blood 
pressure, weight, and activity tracking are combined [44]. 
�e data fusion and the control of the process workflow in 
this solution are centrally realized by a BPM (business process 
management)-supported server/cloud platform. It collects 
data from vendor-clouds and smart devices via RESTful ser-
vices (REST—Representational State Transfer) and also inte-
grates web-connected remote sensors for ambient monitoring 
(temperature and atmospheric pressure). Depending on the 
collected data and individual preferences, the system offers 
recommendations to the patients for healthy habits and noti-
fies them, if any risk factors are detected. �e decision making 
for the recommendations is an integrated part of the 
BPM-model.

As is apparent from the previous considerations, the devel-
opments mostly concentrate on directly or indirectly coupled 
wearable sensors only. For preventive-medicine purposes both 
approaches are important regarding the measured parameters, 
the respective advantages (e.g., data quality, flexibility, and 
usability) and their availability on the market. �e fusion of 
data for such wearable sensors would cover a wide range of 
scenarios in preventive medicine. Accordingly, in this work 
the conception and development of an appropriate solution 
approach for a mobile data collection system (mDCS) [45] 
will be proposed.

In the materials and methods section, at first the system 
requirements and development issues are outlined. Section 2.2 
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acquisition of subjective user information is still a 
proven approach, especially if psychological-related 
investigations (as e.g., mental stress studies) are 
targeted.

 (ii)   System structure conception—Many telemonitoring 
systems (especially in research or for startup compa-
nies) are limited to small fields of application. �ey 
are not based on complex computer structures and 
consequently require optimization strategies regard-
ing the system design (e.g., modularization, load 
distribution, optimized system utilization) to ensure 
adequate system availability and flexibility.

 (iii)   Sensor data fusion—Final aim of the system 
 development is an adaptive complementary as well 
as cooperative data fusion. Different sensors work 
together to obtain comprehensive information about 
an investigation state and to derive indirect measur-
able parameters that could not be achieved by one 
sensor only [11, 46, 47]. �erefore, the mDCS has to 
provide a low-level fusion [48, 49], which is the base 
for higher level fusion techniques (feature and deci-
sion fusion [11, 48, 49]) and for the intelligent data 
interpretation taken over by superordinated system 
components in a hierarchical structure [50].

�e novelty of the described solution approach is the 
 decentralized sensor integration and low-level fusion (related 
to the processing cloud-solution) of all mobile, heterogeneous 
data sources on user-related nodes. �us, a more stringent 
structural decoupling of the systems’ layers and a better 
 utilization of resources can be achieved. Most of the other 
current developments focus on one kind of data source only 
or on a central fusion of the measurement data.

2.2. System Structure and Concept. �e components of the 
preventive health management system are hierarchically 
structured in accordance to the three typically used levels of 
mobile telemonitoring systems.

 (i)   Data processing level: p2Health cloud.
 (ii)   Data collection level: mobile data collection system 

with MobMedApp.
 (iii)   Data acquisition level: data sources as mobile  sensor 

solutions/smart watches.

�e highest level of the developed preventive health-manage-
ment system’s structure is represented by the p2Health cloud 
(based on Microso� Azure cloud computing platform). It 
provides the user’s access (including medics and customers) 
and combines results from baseline examinations made in 
medical laboratories with investigations in field done by the 
mDCS (see Figure 2). �e baseline examinations include, for 
example, the determination of body composition and meta-
bolic rate, a (spiro-)ergometry and a psychological load 
 analysis (e.g., by VTS—Vienna Test System), which deliver 
individual initial parameters for the data analysis. �e cloud 
obtains the data from the laboratory, the mDCS, and official 
reference databases. It also executes data-analysis routines 
(including feature and decision fusion) resulting in individual 
interventions’ measures for the customers. �e data analysis 

presents the system structure and concept in relation to the 
outlined development tasks. In Section 2.3, the communica-
tion between the involved system components and their inter-
actions is described. In the results and discussion section, the 
smart-device application MobMedApp is presented, including 
the so�ware architecture, the connection management, and 
the sensor data handling. To prove the functionality of the con-
cept an example application is offered in Section 3 before the 
paper is summarized in Section 4.

2. Materials and Methods

2.1. System Requirements and Development Issues. Due to 
the high variety of different key issues and the need of more 
precise and realistic data sets in preventive medicine, the use 
of mobile telemonitoring solutions becomes very important. 
From a medical perspective the following requirements for 
these solutions arise:

 (i)   light-weight and easy to wear (e.g., wireless solutions) 
system components,

 (ii)   simple and intuitive system handling (usability),
 (iii)   long service life,
 (iv)   high data security and integrity,

 (v)   automatic data processing and fast data availability 
(if necessary),

 (vi)   high adaptability for different parameters (by sen-
sors and questionnaires), data sources and processing 
algorithms.

Especially, the last point has higher priority in preventive 
 medicine than in most other medical fields using mobile tele-
monitoring solutions due to the wider application range. In 
addition to the medical demands, the following technical 
aspects have to be considered:

 (i)   flexible integration and adaption of diverse data 
sources to permit individual application scenarios,

 (ii)   fast provision of processing results for less complex 
cloud-solution infrastructures, especially if larger 
user groups measure in parallel (availability of pro-
cessing components),

 (iii)   clearly allocated functionalities for the system 
 components and clearly defined interfaces to allow 
a flexible adaption or exchange of single components,

 (iv)   consideration of extension possibilities for a simple 
upscaling of the system for higher number of users 
(scalability).

�e medical and technical requirements demand a holistic 
consideration of the system’s development. �us, the follow-
ing, closely related scientifically relevant development issues 
do arise:

 (i)   Data source integration—Preventive medicine inves-
tigations increasingly demand adaptive integration 
solutions of the abovementioned heterogeneous 
data sources to allow the adaption to the wide range 
of different investigation settings. Additionally, the 
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(Hidalgo Ltd.) or the self-developed environmental 
monitoring system MLMS-EMGN-4.0 [53, 54].

 (ii)   Indirectly accessible data sources [52]—provider- 
cloud servers, as e.g., by Fitbit (San Francisco, 
CA; USA) or Nokia (Espoo, Finland), offer data of 
their provider-specific sensor units (usually fitness 
watches); no open wireless communication to the 
sensor devices supported.

 (iii)   Subjective and objective data entry—query options 
(e.g., questionnaires and chronometrage) integrated 
in MobMedApp for the customers’ subjective and 
objective assessment.

Generally, indirectly accessible data sources are structurally 
more complex than direct ones due to the high amount of 
involved system components (e.g., provider app, provid-
er-cloud servers and potentially included processing services). 
�ey are also less flexible regarding the configuration, since 
many options are prescribed by the providers. Benefits from 
this approach are e.g., an independent data buffering by the 
provider-cloud servers, an o�en included data processing and 
a significant reduction of the integration effort for a wide range 
of different sensor units, dependent on the provider’s product 
range. Consequently, new or extended parameters only require 
the adaption of the interface.

In Figure 3, two solutions for the integration of indirectly 
accessible data sources are presented and compared regarding 
important divergent properties. In solution 1, a web-service 
realizes the connection between the provider-cloud server and 

is primarily based on a selection of neural-network/fuzzy 
models [51], which work problem-oriented and thus have to 
be updated or complemented for new issues. �e p2Health 
cloud offers specific web portals for users and medics. �ese 
web portals obtain an individual investigation plan for every 
user and include the acquired data as well as the processing 
results. While the users primarily use the system to inform 
themselves and to export data, the medics also use the portal 
to create and edit investigation plans including the required 
parameters, the processing and general configurations.

�e mDCS are represented by smartphones, which have 
sufficient interface options for the connection to the data 
sources and the p2Health-Cloud. Basis of the mDCS is  
the smart-device application MobMedApp, which is responsi-
ble for the establishment and maintenance of the connections 
to all required system components. �e collection and prepa-
ration of individually required data and the presentation of 
partial outcomes are additional tasks of the MobMedApp. It 
manages the data flow for the individual customer’s demands 
and transfers the data for the further processing to the 
p2Health-Cloud. For the collection of measurement data in the 
MobMedApp, the following sources for the acquisition of data 
are distinguished:

 (i)   Directly accessible data sources [52]—wireless sensor 
devices (equipped with e.g., Bluetooth low energy 
(BLE), Bluetooth Classic or Ant+) with open com-
munication protocol or provided SDKs by the ven-
dors as e.g., Mio™ Alpha (Mio™ Global), Equivital™ 
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Figure 2: General system structure with focus on the mDCS.
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Frepresent decentralized, customer-specific connection adapt-
ers and data concentrators. Disadvantages of this solution are 
the increasing mobile data traffic and the higher processing 
effort on the individual mDCS. �ese can be reduced by bal-
anced polling frequencies dependent on investigation focuses. 
However, solution 2 is preferred due to the more stringent 
hierarchically structured approach, the instant availability of 
all primary data on the mDCS and the appropriate clearly 
divided task distribution, which also supports the system’s 
scalability.

�e connection to health toolkits (as introduced in 
Section 1.2) instead of integrating several vendor clouds is a 
suitable alternative to reduce the integration effort of indirectly 
accessible data sources. However, in the presented develop-
ment a strong focus is on Fitbit-devices, which require addi-
tionally third-party adapters to transfer data into the Google 
Fit cloud (available for Android and Fitbit in combination). 
Consequently, this increases the structural complexity and the 
communication effort on the mobile device. Furthermore, 
while the users do not necessarily use Google Fit, the use of 
the vendor-specific clouds is of course binding. In addition, 
also the directly accessible data sources and questionnaires as 
well as the data preprocessing have to be considered in the 
development. �us, initially a single data node (mDCS) with-
out health toolkits is preferred.

2.3. Communication. In the health-management system’s 
structure, three different types of connections, originating 
from the mDCS, are distinguished: the connection to the 
p2Health-Cloud, to the provider-cloud-servers, and to the 
directly accessible wireless devices (currently considered 

p2Health-Cloud. In solution 2, the data are routed via the 
mDCS to the p2Health-Cloud. Both solutions can be used to 
perform appropriate procedures for data consolidation and 
pre-processing.

Solution 1 uses a service-oriented architecture (SOA) [55] 
for the implementation of web-services, which can be a 
separated solution or being combined with the p2Health-Cloud 
structure (as comparatively in [56]). �e p2Health-Cloud 
initiates data transfers via specific web-services to the provider-
cloud servers if data are required for the data-analysis routines. 
�is solution requires the p2Health-Cloud to partially realize 
pre-processing procedures as well as the final synchronization 
of data delivered by the MobMedApp and from other web-
services, which connect further provider-cloud servers. In this 
case the p2Health-Cloud has a high integration effort and 
requires a comprehensive management regarding the periodical 
and parallel connections to the specific data-source accounts. 
Moreover, the cloud has to handle all accesses including the 
consideration of restricted access rights  (pre-determined by 
the providers) and the individual customer’s registration.

In contrast to that, solution 2 encapsulates the sensor 
fusion completely on the mDCS and relieves the p2Health-
Cloud regarding the handling of several sensor-data-related 
connections. �e cloud, in this solution, is focused on the data 
analysis and only handles the connection to the mDCS and 
medical laboratories. �e MobMedApp samples and consoli-
dates user-specific data from the different sources, manages 
the data handling, and delivers them to the p2Health-Cloud 
via an appropriate interface protocol. All management tasks 
and pre-processing procedures are decoupled from the 
p2Health-Cloud and remain on the mDCS. �us, the mDCS 

Solution 1 Solution 2

HTTPS

HTTPS HTTPS

HTTPS HTTPS

Web-service

Provider-
server

Central data consolidation
Mobile data tra�c

Decoupling of data acquisition and collection

Processing e�ort for mobile data collection system

Management e�ort for P2Health-cloud

Integration e�ort on P2Health-cloud

Provider-
server

P2Health-Cloud P2Health-Cloud

Mobile data collection
system (n-1)

Mobile data collection
system (n-1)

MobMedApp MobMedAppProvider-app Provider-app

Figure 3: Comparison of two solutions for the integration of provider-cloud servers for a process-specific data request.
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for tokens). HTTPS is used for the data transfer from the pro-
vider-cloud-servers; the data are anonymized. For the com-
munication between the p2Health-Cloud and the mDCS also 
the OAuth 2.0 authorization as well as HTTPS and anonymized 
data are used.

In Figure 4 a simplified sequence diagram, comprising the 
initialization of the connections and the general control of the 
data traffic by the mDCS is shown. �e MobMedApp realizes 
the communication management for the individual customer’s 
process on the mDCS. �e first step is the establishment of a 
connection to the p2Health-Cloud to receive all necessary cus-
tomer-specific configurations of the monitoring process. 
Dependent on the required data, the MobMedApp establishes 
the connection to available sensor solutions. �e used 
Bluetooth devices require a periodical data request and a tem-
porary data storage. Data from the provider-cloud servers only 
need to be requested if the data transfer to the p2Health-Cloud 
is imminent.

standards: BLE and Bluetooth Classic). �e p2Health-Cloud and 
the provider-cloud-servers follow the same technical concept. 
�e complexity of the protocol and the data volume are higher 
with the connection to the p2Health-Cloud.

For connections to the Bluetooth devices, the generic 
attribute (GATT) profile (for BLE) and the still o�en used 
serial port profile (for Bluetooth Classic) are supported. �e 
Bluetooth-device integration follows the standard procedure 
and will thus not be described here.

Separated connections via appropriated services are used 
for the API-dependent data exchange with the p2Health-Cloud 
and the provider-cloud-servers. �e latter require the creation 
of a personal and unique developer account for each client 
and provider, parallel to the usual user account. Both accounts 
have a one-to-one relationship. In the authorization process a 
token is generated, which allows access to the customer’s data 
(Fitbit: OAuth 2.0, time-limited tokens of one or eight hours, 
refreshing tokens available; Nokia: OAuth 2.0, no time limits 

p2Health-cloud Mobile data collection system Blutooth device

Registration()

Provider server

Conformation / process
Con�guration() 

Request required data /
interventions() 

Required data with time
range() 

Deliver required data in 
prescribed time range() 

<<HTTPS>>

<<HTTPS>>

<<BLE>>

Data Formatting /
Processing /
Consolidation()
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Sensor data()

Request sensor data()

Check required
sensor systems()

Create connection()

Registration()

loop

Request sensor data for precribed time range()

Sensor data()

Figure 4: Simplified sequence diagram with the initialization procedure of the connections (between the mDCS, the p2Health-Cloud, and the 
sensor solutions) and the control of the sensor data traffic.
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includes the sensor data to be acquired, their units and 
 resolutions and the upload interval to the p2Health-Cloud. 
Every 10 minutes the MobMedApp checks for changes in the 
task table. �e task scheduler creates (or deletes) own tasks 
from the task table for execution in the MobMedApp and thus 
realizes the process management and dataflow control. �is 
management includes among others reminders for the user 
to follow the proposed intervention measures, to measure 
additional parameters (as e.g., weight or blood pressure) or to 
fill out required questionnaires. �e event queue is shown as 
a list with planned and outstanding tasks, ordered, and indi-
cated by their priority (pre-announced, execution time, 
exceeded deadline; see Figure 6). �e customers finally decide 
about the execution or rejection (as e.g., during the sleeping 
phase) of outstanding actions.

A separated module allows the presentation of processed 
and partially visualized results of the p2Health-Cloud’s data 
analysis.

3.1.2. Connection and Access Management. Regarding the 
required sensor connections the MobMedApp makes a choice 
depending on the parameters demanded by the p2Health-
Cloud, the connections authorized by the users and the 
available sensor units. �erefore, a data-source table is used 
(see Figure 7), which includes the offered parameters for each 
sensor, the sensor's configuration sets, the access conditions, 
and the sensor’s parameter priority. Currently, the data-source 
table is provided individually for every user by the p2Health-
Cloud. Accordingly, only the potentially possible sensor 
devices and cloud accesses are considered. �e data-source 
table is always updated a�er the start of the MobMedApp and 
in case of longer use additionally once per day.

3. Results and Discussion

3.1. System Implementation with MobMedApp

3.1.1. Architecture of MobMedApp. �e MobMedApp is the 
central data node for the customer’s individual monitoring. 
�erefore, different communication channels, the data 
management, and the processing, as well as support of the 
mobile customer interfaces are combined. In Figure 5, the 
used architecture of the MobMedApp including potentially 
connected external system components is shown.

For every communication channel, a service instance is 
generated to maintain the connection to the external system 
component independently of the MobMedApp-status (e.g., if 
the app is in the background of the operating system) and to 
adapt the device-specific protocol. �e incoming data are sam-
pled by the data collector, which realizes data consolidation, 
pre-processing and adaption of the required formats. It also 
handles investigation-related subjective and objective data 
inputs via questionnaires and the chronometrage-module 
(optional manually record of classified activities as e.g., sport, 
sleep, work). Data of the chronometrage allow a better tem-
poral and load-related differentiation of the acquired meas-
urement data and support the data analysis at the 
p2Health-Cloud, especially during teach and validation phases. 
Moreover, the data collector manages autonomously the inter-
vention measures to be executed dependent on the p2Health-
Clouds instructions.

A task scheduler manages the user event queue according 
to the user-related configurations by the p2Health-Cloud. 
�ese configurations are transferred into a task table, which 

MobMedApp

WLAN/
4G

BLE

External system
components

Date/Results presentation

Con�guration module p2Health-cloud

Provider (0...n)-service

BLE-device (0...n)-service BLE-device (0...n)
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Intervention module

p2Health-cloud-module
(Con�guration)

p2Health-cloud-service
(Data)

D
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a 
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Scheduler

Provider server
(0...n)

Figure 5: Architecture of the MobM edApp.
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Due to the number of accounts arising in the MobMedApp, 
and the requirements regarding a simple and safe handling of 
these accounts, two approaches are considered in more detail.

�e first approach keeps all account information only on 
the mDCS. In this case, the users handle the account data in 
the MobMedApp, including the registration of user and devel-
oper accounts for each provider. �is preserves the users’ right 
of informational self-determination. In the second approach, 
only the p2Health-Cloud-account data are handled in the 
MobMedApp. All other access data for the user and developer 
accounts of the provider-cloud servers are managed centrally 
and can be requested via the p2Health-Cloud if required. �is 
approach is especially convenient for technically inexperi-
enced customers, since there is no need to register accounts 
or to apply account data, which significantly increases the 
usability. In this paper, the second approach is preferred. 
Nevertheless, the first approach is also considered as alterna-
tive to keep the independencies of the mDCS regarding the 
sensor-data-resource accesses.

3.1.3. Sensor Data Management. �e sensor data management 
in the MobMedApp prepares the data for the individual 
data-analysis methods in the p2Health-Cloud. �erefore, the 
cloud configures the MobMedApp regarding the required 
parameters and the necessary investigation configurations 
as e.g., frequency of data provision and the conditions of 

�e sensor-configuration sets are the base for the connec-
tion establishment to the Bluetooth sensors (e.g., available 
UUIDs of sensor characteristics, device names, MAC-
addresses and authentication procedures) and to the sen-
sor-provider-cloud servers (e.g., IP-addresses, user-IDs and 
keys, authentication procedures, refresh and access tokens of 
provider and query functions). �e access conditions primar-
ily focus on the data collection via the sensor-provider-cloud 
servers. Here restrictions regarding the number of queries per 
time unit and the maximum time range for data requests (e.g., 
time range per request of maximal 200 days) are defined. Some 
providers do not offer the possibility to request all available 
user parameters in one query. Depending on the required 
number of parameters and the required polling frequency, the 
respective restrictions can be reached and affect the data trans-
fer. Since the synchronization between the sensor device and 
the provider’s smartphone application and further to the pro-
vider’s server is not continuous, a close to real-time data trans-
fer is not feasible for this approach. �e sensor’s parameter 
priority is used if several sensors acquire the same parameter 
with a different data quality. In this case, the MobMedApp 
decides which of the acquired parameters are to be preferred 
for the further processing depending on the higher priority. 
�e priority is determined by the medical group, which 
decides according to initial device test and application 
experiences.

Figure 6: Graphical user interface (GUI) of the MobMedApp; le�: main screen with supported investigation categories and listed intervention 
tasks; middle: questionnaire for individual acquisition of objective/subjective information; right: conclusion of acquired data for current 
investigation focuses.
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With the consolidation and synchronization, the requested 
data from available data sources are combined for the pre-
scribed time range. �e data time for directly and indirectly 
accessible data sources o�en complies with the time of the 
mDCS. Some sensor units with internal timing devices only 
have a manual opportunity for the synchronization. In this 
case, the approximate time offset is determined before the 
monitoring and considered for the subsequently received data 
sets.

reminders and requests for the customer to measure data or 
to fill in questionnaires. Depending on these requirements 
the MobMedApp collects the data and performs the following 
essential tasks:

 (i)   data consolidation and synchronization,
 (ii)   pre-processing,
 (iii)   data selection,
 (iv)   reformatting of data sets.

Figure 7: Entry of a provider-cloud server in the data-source table.
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�e chosen data sets can be divided into three categories. 
In the first category (Figure 8, full packages for weight and 
heart activity) a complete package request from the p2Health-
Cloud is presumed. In this case, the data selection by the 
mDCS (solution 2) has almost no effects and the additional 
communication generates a higher data volume for the 
p2Health-Cloud compared to solution 1 due to the higher com-
munication effort between the participants.

In the second category, the focus is only on single param-
eter requests from the first category packages (Figure 8, weight 
only and resting heart rate only). Consequently, the data vol-
umes for integration solution 1 are the same as in the first 
category. For solution 2, the data selection of the mDCS shows 
a partially significant reduction of the data volume for the 
p2Health-Cloud depending on the package size.

�e third category shows a complex data-set request in 
conformity to the planned first real application at the Center 
for Life Science Automation (University of Rostock). In seven 
packages, this request includes among others body weight and 
fat measurements, active and sports phases, resting heart rate, 
and parameters concerning energy consumption (summary), 
different heart rate zones, and sleep information. For this spe-
cific data-set request, the mDCS reduces the data volume for 
the p2Health-Cloud to 9% of the original data volume as in 
case of integration solution 1. �e effectiveness of the data 
selection depends on the acquired and the required amount 
of data as well as on the required polling frequency. For most 
applications, a high reduction of the data volume can be 
assumed. In any case, the data volume for the mDCS (solution 
2) is higher than for the p2Health-Cloud in solution 1, whereas 
this is compensated by the fact that every mDCS handles the 
individual data of one user only.

For the data transfer between the mDCS and the p2Health-
Cloud, the data management reformats the data to an arranged 
JSON protocol (JavaScript Object Notation), which is already 
included in the considerations before. JSON offers a simple, 
compact, and mostly preferred alternative to the tag-oriented 
XML (Extensible Markup Language) [57]. It is an effective 
format solution for resources-conserving data transfer [58, 
59], which is divided in blocks of single and series data. Every 
transferred block consists of the following information:

 (i)   timestamp of collection,
 (ii)   source of data (device/provider identification),
 (iii)   parameter type (as e.g., heart rate, weight),
 (iv)   measuring unit,
 (v)   data value/array of data values.

�e data management covers the subjective and objective data 
entries as well. �erefore, the MobMedApp provides question-
naire templates to allow the flexible design of individual ques-
tionnaires. Every template includes other input elements as e.g., 
for binary decisions (yes/no or true/false) or for grading of states 
(0…100). �ese templates can be configured by the p2Health-
Cloud for the customer’s specific investigations. �e configura-
tion includes the questions, their possible answering and 
execution options (single or multiple execution; if multiple exe-
cution then also the repetition rate), the questionnaires’ time for 
prior-notice, and the time-out for overdue questionnaires.

�e data management also covers pre-processing proce-
dures, which allow the conversion of expected default units, 
data compression, and the generation of secondary data. �e 
available processing procedures are predefined in the 
MobMedApp and need to be requested by the p2Health-Cloud 
via the respective resulting parameter. A necessary condition 
for the processing is the availability of the corresponding pri-
mary data. �e decisions regarding the required pre-process-
ing steps in the MobMedApp are made by medics and 
data-processing engineers. While medics use these pre-pro-
cessing steps for an optimized overview of the data, the pro-
cess engineers primarily use them to standardize the input 
conditions for their processing modules on the p2Health-
Cloud for the different data sources. Among others, the fol-
lowing processing routines are currently included in the 
MobMedApp:
 (i)  separation of heart rate periods depending on activ-

ities (e.g., running, biking, walking) and heart-rate 
zones (peak, cardio, fat burn) either by day or by train-
ing session

 (1)  calculation of average heart rate for respec-
tive periods (per day or training session)

 (2)  calculation of total duration of the respective 
periods (per day or training session)

 (ii)  calculation of average heart rate for day and night 
phase

 (iii)  calculation of energy consumption of the different 
activities per day

 (iv)  counting of active phases for the separated activities 
(e.g., walk, hike, workout) per day

 (v)  conversion to unified designations as e.g., for body 
orientation (upright, side, supine etc.) or sleep phases 
(wake, rem, light, deep)

 (vi)  conversion of sleep-phase duration in percent.

�e results are either attached to the primary data or even 
replace them where appropriated. To avoid data leakages, the 
p2Health-Cloud confirms all sent data packages. Occurring 
uncertainties or missing data sets (caused by e.g. faulty meas-
uring, battery problems or missing sensors) are also handled 
by the p2Health-Cloud or the appropriate processing 
modules.

Especially the provider-cloud servers offer data in specific 
packages, which always include groups of related parameters 
and additional information (e.g., IDs and pursing data links). 
Depending on the required data set, a significant data over-
head can result, especially if data of different packages are 
combined. Figure 8 shows the comparison of the transferred 
data volume depending on the two introduced integration 
solutions in Figure 3. For the integration of solution 1, the 
web-service was treated as part of the p2Health-Cloud and 
consequently considered as direct communication between 
the p2Health-Cloud and the provider-cloud server. �e pre-
sented data are generated by data requests with the Fitbit-cloud 
server, whereby initial tests have shown that the similar data 
concept of Nokia leads to similar results. �e reported volumes 
always contain all required request and answer messages for 
the respective participants.
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In the example scenario, a wrist-worn Fitbit Blaze™  
(Fitbit; San Francisco, USA) with optical heart-rate sensor was 
applied (indirectly accessible data sources) to acquire heart 
rate, sleep time, sleep efficiency, and sleep levels (as wake, light, 
deep, rem). Furthermore, the sensor system Equivital™ EQ01 
(Hidalgo Ltd.; Cambridge, UK) was used (directly accessible 
data sources), which acquires sensor data by a chest belt. �us, 
the following specific data are acquired to support the 
application:

 (i)   heart rate, rr-intervals; derived by a two channel ECG 
via integrated textile electrodes,

 (ii)   respiration rate; li�ing, and lowering of the chest by 
a strain gauge,

 (iii)   skin temperature; detected by a thermistor and
 (iv)   body activity and orientation (as e.g., supine, side 

and prone posture); determined by an acceleration 
sensors.

�e EQ01 offers an SDK and an open, proprietary protocol, 
which allows data reception and an unrestricted configuration 
of the sensor module. To maintain the full flexibility of the 
EQ01, the open communication protocol is implemented. 
Accordingly, also the continuous data transfer of the EQ01 can 
be reduced by setting the partial disclosure mode via the 
mDCS. �us, all higher resolved signal data as e.g., the ECG, 
the 3D accelerations, or the strain gauge signal are not sent by 
the EQ01. Even if the sensor module is comparably large and 

3.2. Validation Experiment. In order to validate the presented 
solution, an experimental application was executed to 
demonstrate the general feasibility of the presented system and 
the decentralized approach. �e focuses of the examination 
are hereina�er referred to:

 (i)   parallel application of directly and indirectly acces-
sible data sources,

 (ii)   provision of complementary (for analysis issues) 
and competitive (for quality-verifying issues) data, 
which are prepared for further analysis by the 
p2Health-Cloud,

 (iii)   results of the data-selection for this specific applica-
tion and

 (iv)   result of the system’s battery consumption.
Sleep monitoring is an important subject in preventive med-
icine [60, 61], especially for investigations of stress and fitness, 
which o�en require a resting phase as reference. Consequently, 
a simplified sleep monitoring is always part of such investiga-
tions (baseline) and offers a convenient possibility to validate 
the confidence and the synchrony of collected data. Hence, a 
sleep monitoring as example scenario was initiated. �e qual-
ity of the most commercial wearable sensor devices with sleep 
tracking function by far still does not reach laboratory stand-
ards [62–64] and cannot be used for professional analysis. 
Anyway, the interest in such compact devices and applications 
to acquire information about the recovery phases (as e.g., 
recovery duration and efficiency) is particularly high.
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individual overnight-data sets of both sensor devices are 
exemplarily shown for two subjects as they are offered to the 
p2Health-Cloud. �e presented combination of data sets shows 
typical reactions for sleep (Figures 9(a) and 10(a)). For exam-
ple, the low activity level during deep sleep phases can be 
determined by a consistent body orientation and the low 
dynamic of both respiration and heart rate. Due to the fact 
that a chest belt was used for the respiration-rate measure-
ment, the influence of movement artifacts needs to be consid-
ered. �e EQ01 permits a more detailed movement analysis 
by enabling the full disclosure mode and using the 3D accel-
eration data. �e measurement of sleep parameters is provided 
by Fitbit and preprocessed by the MobMedApps procedures 
(percentage of sleep-phase durations and standardization of 
the designation for body orientation and sleep phases) as 
shown in Figures 9(c) and 10(c).

Moreover, the system offers the possibility to compare 
parameters from different sensor devices and measurement 
methods, respectively, regarding the data quality (competitive 
data). �is is o�en an important feature for medical staff, espe-
cially in medical research, when new sensors devices are intro-
duced and need to be validated. In the example application, 
the heart rate was parallel acquired on the wrist and on the 

uses Bluetooth Classic, the high application potential of the 
Equivital™ series regarding parameter provision, system flex-
ibility, and data quality has already been proven in various 
studies [65–70].

For this example scenario, both sensor systems are worn 
by four male subjects overnight with the mDCS within range. 
�e MobMedApp uses a predefined task table in which the 
sensor data (as shown in Figures 9 and 10), their resolutions 
(here: maximum for all parameters), and the upload interval 
to the p2Health-Cloud (here: every hour) are configured. �is 
task table and the user-specific data-source table (including 
the access data for the Fitbit cloud server and the EQ01) are 
generated and provided by the p2Health-Cloud, and are the 
results of the medics’ investigation planning. Further config-
urations on the MobMedApp by users or investigators are not 
required. Due to the measurement overnight questionnaires 
and the chronometrage are disabled in the task table for this 
application.

�e selected combination of the chosen sensor devices 
provides complementary data sets (as e.g., sleep phases, and 
body orientation), which support the p2Health-Cloud for the 
data analysis to detect correlations and to generate interven-
tion measures. In Figures 9 and 10, the preprocessed, 
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for this high data reduction is that rr-intervals as well as the 
most indication, status, validity, and administration messages 
from the sensor are not used in this experiment.

In case of the Fitbit Blaze™ only the two Fitbit packages for 
sleep and heart rate are used (see Section 2.3). �us, a data 
amount of 47.6 kB per hour (including time stamps) is pro-
vided by the Fitbit cloud. Depending on the utilization of the 
data packages, the data amount could be reduced by 35.9%–
30.5 kB. �e overhead arises from the applied JSON-formatting 
and unused data as e.g., the detected heart-rate zones and the 
sleep summary.

Finally, the mDCS transfers the synchronized data (for-
matted in JSON), including the complementation of time 
stamps for the EQ01-data, the administrative information of 
the values and the header information, to the p2-Health-Cloud. 
�e send amount of data per hour for the considered applica-
tion is 324.8 kB. �e high difference of data amount compared 
to the acquired data is caused by the comprehensive data 
description to keep the protocol adaptable for different inves-
tigation settings and the JSON-format.

3.2.2. Battery Usage. In an additional experiment, the battery 
usage of the mDCS (smart phone and MobMedApp) was 

chest. �e data differ concerning provision interval (Fitbit 
Blaze™: ca. one value every sec.; Equivital™ EQ01: one value 
every 5 s, alternatively predictable by rr-intervals) and data 
resolution (Fitbit Blaze™: integer; Equivital™  EQ01: one deci-
mal place), but show a high correspondence (Figures 9(b) and 
10(b)) in the test application. Furthermore, in all four inves-
tigations the heart rate measurement on the wrist shows a 
lower dependency on movement artifacts (by breathing or 
usual movements).

3.2.1. Data Usage and Data Selection. Within the presented 
application experiment the data usage and data selection for 
both sensor devices are considered in detail for subject 2. �e 
EQ01 transfers the data in a binary format (payload only) to 
the mDCS with an average received data amount per hour of 
60.5 kB (in partial disclosure mode). �is value is influenced 
by the fitness-level and the activity of the user, which affects 
the number of occurring rr-intervals and indication values 
(irregular parameters). However, the data selection takes 
place before the interpretation of the binary data to avoid 
unnecessary processing steps. For the above mentioned 
application, a mean reduction of the transmitted data volume 
of 80.1% (to 12.0 kB per hour) could be determined. �e reason 
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 (iii)   strategies for the management of combined hetero-
geneous data sources,

 (iv)   execution of application-relevant evaluation 
experiments.

A mDCS (smart phone combined with the developed 
MobMedApp) was developed, which realizes data collection 
in a multi-sensor environment decoupled from the target pro-
cessing cloud solution (p2Health-Cloud). �e mDCS supports 
on the one hand the integration of devices with open 
Bluetooth-interfaces and on the other hand commercial pro-
vider-cloud servers (as e.g., Fitbit or Nokia), which offer inter-
faces for the collection of individual physical and physiological 
data from vendor-specific devices. �is approach increases the 
variety of sensor data and reduces the integration effort of the 
p2Health-Cloud significantly. In the example solution, it effects 
a stricter decoupling of the data collection by the mDCS and 
the data analysis on the cloud-solution.

�erefore, two different concepts regarding the integration 
of provider-cloud servers and the appropriate data manage-
ment are discussed in detail. �is also comprises the handling 
of occurring restrictions, additional expenditures (e.g., access 
limits and complex account handling) and also arising benefits 
as e.g., the reduction to one interface for several sensors, inde-
pendent data storage, and time-oriented data requests via the 
provider-cloud servers.

Beside the function as customer interface (to inform about 
the customer’s status, current result data and necessary pre-
ventive intervention measures) the developed MobMedApp 
realizes several data-preparation steps and performs necessary 
preprocessing routines (as e.g., secondary data generation, 
data reduction, unit conversion). �us the further data pro-
cessing on the p2Health-Cloud is supported and results in 
higher system availability. �e MobMedApp also offers the 
acquisition of subjective and objective customer’s information 
by investigation-related questionnaires if required.

Initial system experiments show that an individual, 
decentralized, and parallel data collection from inhomogeneous 
data sources can certainly be realized by the mDCS. �us 
higher data traffic for the user arises and a regular so�ware 
update for the MobMedApp needs to be considered. However, 
the pursued system structure distributes the individual data 
management and communication effort out of the cloud 
solution’s scope, supports the system’s scalability, and also 
achieves a higher system’s agility regarding upcoming events 
dependent on the user’s individual setting. �e individual data 
amount for the p2Health-Cloud can be significantly reduced 
by the MobMedApp’sselection function, especially when 

examined to estimate the operation lifetime for the executed 
user application experiment. A Samsung Galaxy S8 with an 
octa-core processor (2.3 GHz), 4 GB RAM, a battery capacity 
of 3000 mAh (claimed talk time: up to 20 h) and the operating 
system Android 8.0.0 (Oreo) was chosen. For all experiments, 
only Bluetooth and Wi-Fi are permanently enabled and 
used for data transfer (Stamina-mode disabled). During the 
measurement time the display is turned off. To estimate the 
app-related battery consumption, the integrated monitoring 
apps from Android are used.

�e experiment focuses on the battery consumption of the 
MobMedApp in different configuration cases listed in Table 1. 
For every configuration case, three eight-hour measurement 
cycles are executed, in which only the MobMedApp and if 
required the Fitbit app are started. Additional tests showed that 
the Fitbit app with less than 1% energy consumption in eight 
hours does not significantly influence the battery usage. �e 
measurement results shown in Table 1 each also includes the 
battery consumption for hardware components (as e.g., 
Bluetooth), if applied. �ese results allow the assessment of the 
MobMedApp’s utility, but it should be noted that they must be 
considered as an estimation of the battery usage, since the applied 
battery-monitoring app only offers a limited precision and 
device-related background processes are not considered in detail 
or are disabled, respectively. �e results were acquired periodi-
cally and indicate an almost linear and reproducible behavior.

�e comparably high battery consumption of the 
MobMedApp by using the Equivital™ EQ01 (case 3 and 4) can 
be traced back to its Bluetooth Classic interface. It is to be 
expected that the use of BLE devices and a periodical data 
transmission reduce the battery consumption significantly. 
However, the executed application setting in combination with 
a comparable mobile-device configuration assures minimum 
measurement duration of 24 h without charging.

4. Conclusion

�is paper deals with the integration and fusion of different 
data-source interfaces for an IoT-data-science-oriented pre-
ventive health-management system. �erefore, the following 
scientific aspects were considered:

 (i)   comparison of structural integration possibilities for 
indirectly accessible data sources,

 (ii)   introduction of an approach for the decentralized 
data source integration and low-level data fusion out 
of the central processing infrastructure,

Table 1:  Battery usage of mDCS (MobMedApp) for different configuration cases over eight-hour measurements using the smart phone 
 Samsung Galaxy S8 (mAh—milli ampere hour).

Configuration case description Battery usage of MobMedApp Battery usage of mDCS
(1) MobMedApp in idle-mode 1.7 ± 0.4% (approx. 51 mAh) 2.8 ± 0.3% (approx. 83 mAh)
(2) MobMedApp using Fitbit-provider cloud and p2-Health-Cloud 2.0 ± 0.1% (approx. 60 mAh) 3.8 ± 0.3% (approx. 113 mAh)
(3) MobMedApp using Equivital™ EQ01 (with continuous data 

transmission) and p2-Health-Cloud 15.9 ± 0.7% (approx. 477 mAh) 16.7 ± 1.0% (approx. 500 mAh)

(4) MobMedApp using Fitbit-provider cloud, Equivital™ EQ01 (with 
continuous data transmission) and p2-Health-Cloud 18.9 ± 0.7% (approx. 565 mAh) 19.8 ± 0.9% (approx. 595 mAh)
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22, no. 5, pp. 441–449, 2016.
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results from the future patient trial, phase I,” Sensors, vol. 17, 
no. 1, Article ID 211, 2017.
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Gordon, and M. D. Stein, “Developing a Fitbit-supported 
lifestyle physical activity intervention for depressed alcohol 
dependent women,” Journal of Substance Abuse Treatment, vol. 
80, pp. 88–97, 2017.

[13]  M. K. Friess and E. Stukenberg, “A quantitative pilot study on 
the use of a fitness tracker in the preventative management 
of employees at risk of chronic disease in a health care 
facility,” Online Journal of Nursing Informatics, vol. 19, no. 3,  
Article ID 1, 2016.

[14]  A. M. Hickey and P. S. Freedson, “Utility of consumer physical 
activity trackers as an intervention tool in cardiovascular 
disease prevention and treatment,” Progress in Cardiovascular 
Diseases, vol. 58, no. 6, pp. 613–619, 2016.

[15]  C. G. Valle, A. M. Deal, and D. F. Tate, “Preventing weight gain 
in African American breast cancer survivors using smart scales 
and activity trackers: a randomized controlled pilot study,” 
Journal of Cancer Survivorship, vol. 11, no. 1, pp. 133–148, 2017.

[16]  Fitbit, “Fitbit Developer,” June 2018, https://dev.fitbit.com/.
[17]  iHealth, “ iHealth Sandbox - Developers,” June 2018, http://

sandbox.ihealthlabs.com/index.htm.
[18]  Nokia, “Nokia Developer,” June 2018, https://developer.health.

nokia.com/api.
[19]  V. Gay and P. Leijdekkers, “Bringing health and fitness data 

together for connected health care: mobile apps as enablers of 
interoperability,” Journal Medical Internet Research, vol. 17, no. 
11, p. e260, 2015.

[20]  S. Kitsiou, M. �omas, G. E. Marai et al., “Development of 
an innovative mHealth platform for remote physical activity 
monitoring and health coaching of cardiac rehabilitation 
patients,” in Biomedical and Health Informatics, pp. 133–136, 
Orlando, FL, USA, 2017.

[21]  Z. Deng, P. Yang, Y. Zhao, X. Zhao, and F. Dong, “Life-logging 
data aggregation solution for interdisciplinary healthcare 
research and collaboration,” in ICCTA, pp. 2315–2320, 
Liverpool, UK, 2015.

[22]  X. Zhang, Z. Deng, F. Parvinzamir, and F. Dong, 
“MyHealthAvatar lifestyle management support for cancer 
patients,” Ecancermedicalscience, vol. 12, p. 849, 2018.

[23]  A. Kumari, D. M. Urs, S. K. Nellaiappan, and S. Khursheed, 
An Android Based Fall Detection and Dealth Monitoring System 

specific data sets from the provider-cloud servers are requested. 
Consequently, the usage of the presented solution approach is 
particularly suitable when several sensor systems (including 
systems, which allow the data access only via provider-cloud 
servers) are involved and only small- and medium-sized 
target-cloud solutions are available.

�e presented approach ensures a fast adaptable data 
acquisition for varying investigation scenarios or conditions 
for the application site. A higher number of different, inte-
grated devices can further support the system’s effectiveness 
and application potential. First application-related investiga-
tions under medical supervision in occupational health with 
gas and noise-exposed laboratory technicians (considering 
physical, physiological and environmental data) are planned 
but still under investigation.
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