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Abstract: Z-conformation nucleic acid binding protein 1 (ZBP1), a powerful innate immune sensor,
has been identified as the important signaling initiation factor in innate immune response and the
multiple inflammatory cell death known as PANoptosis. The initiation of ZBP1 signaling requires
recognition of left-handed double-helix Z-nucleic acid (includes Z-DNA and Z-RNA) and subse-
quent signaling transduction depends on the interaction between ZBP1 and its adapter proteins,
such as TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting
serine/threonine-protein kinase 1 (RIPK1), and RIPK3. ZBP1 activated innate immunity, including
type-I interferon (IFN-I) response and NF-κB signaling, constitutes an important line of defense
against pathogenic infection. In addition, ZBP1-mediated PANoptosis is a double-edged sword in
anti-infection, auto-inflammatory diseases, and tumor immunity. ZBP1-mediated PANoptosis is
beneficial for eliminating infected cells and tumor cells, but abnormal or excessive PANoptosis can
lead to a strong inflammatory response that is harmful to the host. Thus, pathogens and host have
each developed multiplex tactics targeting ZBP1 signaling to maintain strong virulence or immune
homeostasis. In this paper, we reviewed the mechanisms of ZBP1 signaling, the effects of ZBP1
signaling on host immunity and pathogen infection, and various antagonistic strategies of host and
pathogen against ZBP1. We also discuss existent gaps regarding ZBP1 signaling and forecast potential
directions for future research.

Keywords: ZBP1; innate immunity; apoptosis; pyroptosis; necroptosis; auto-inflammatory diseases;
tumor immunity; signaling transduction; pathogen–host interactions

1. Introduction

Recently, Z-conformation nucleic acid binding protein 1 (ZBP1) has become a rising
star and attracts a lot of attention [1]. Initially, ZBP1 is identified as an innate immune sensor
to activate the IFN-I response and NF-κB signaling, which powerfully resists pathogen
invasion [2,3]. Later research pointed to the great importance of ZBP1 to induce PANoptosis,
a crossed inflammatory cell death including pyroptosis, apoptosis, and necroptosis [4]. The
ZBP1-mediated PANoptosis helps to remove invasive pathogens and uncontrolled tumor
cells. However, ZBP1-mediated excessive or aberrant cell death can also cause adverse
inflammation in infected or non-infected contexts. Therefore, ZBP1 signaling is a double-
edged sword for host immunity. Pathogens need to antagonize ZBP1 signaling to ensure
infection, while host needs to regulate ZBP1 signaling to maintain immune homeostasis. In
this review, we systematically elucidated the elaborate ZBP1 signaling mechanism and the
antagonistic strategies of host or pathogen, which will lay the foundation for developing highly
efficient therapeutics for pathogenic infections, auto-inflammatory diseases, and cancer.

2. The Expression, Structure and Subcellular Location of ZBP1

ZBP1 was originally found to be significantly upregulated in mouse peritoneal tumor
stromal cells or macrophages upon stimulation with IFN-γ or LPS [5]. Later studies
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revealed that ZBP1 holds different expression levels in different cells [4,6]. As an interferon-
stimulated gene (ISG), the 5’ promoter region of ZBP1 contains both the IFN-stimulated
gene responsive element (ISRE) and IFN-γ activated site (GAS), so ZBP1 can be induced
with IFN-I or IFN-II [2,7,8]. Attributed to the heat shock element (HSE) within the ZBP1
promoter region, the expression of ZBP1 also be increased through heat shock transcription
factor 1 (HSF1) when subjected to heat stress [9].

ZBP1 is a member of both the left-handed helical Z-conformation nucleic acid (Z-
NA) binding protein family containing the Zα domain and the receptor-interacting ser-
ine/threonine protein (RIP) family holding the RIP homotypic interaction motif (RHIM).
ZBP1 harbors two N-terminal Z-NA binding domains (ZBD, called Zα1 and Zα2), two
intermediate RHIM (RHIM1 and RHIM2), and a C-terminal signal domain (SD) [3,10–12]
(Figure 1). The N-terminal ZBD enables ZBP1 to sense Z-type or other types of nucleic acid
ligands, which is usually critical for the activation of ZBP1 [12–15]; ZBP1 interaction with
other RHIM-containing proteins is the foundation of ZBP1 signaling transduction [3,16,17].
Moreover, the C-terminus SD of ZBP1 is required by the ZBP1-induced IFN-I response [12].
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The Zα domains of ZBP1 determine its location in the cell. The initial research on the
subcellular localization of ZBP1 indicated that ZBP1 presents the punctate distribution
in the cytoplasm and interacts dynamically with stress granules (SGs) and processing
bodies (PBs) [18]. SGs and PBs are dynamic non-membrane particles in the cytoplasm
used to sequester inactive messenger ribonucleoprotein (mRNP) [19], hinting that ZBP1 is
associated with RNA metabolism in cells. Subsequent studies confirmed that not only ZBP1
but also the RNA-editing enzyme ADAR1 and vaccinia virus (VACV) E3L gene-encoded
E3 protein (the other two members harboring the Zα domain) all were localized to SGs
in stressed cells [20]. In addition, the SGs localization of ZBD proteins depends on the
Z-NA sensing of the Zα domain [20]. While the formation mechanism of Z-NA in SGs is
unclear, it is sure that the SGs localization of ZBP1 is the result of ZBP1 interaction with
the Z-NA [21]. In the process of viral infection, the sensing of ZBP1 to the virus-derived
Z-NA also determines its localization. Replication of Influenza A virus (IAV) occurs in
the nucleus and produces some incomplete viral gene segments, known as defective viral
genomes (DVGs) [22]. The DVGs located in the nucleus likely form virus-derived Z-RNA
and are successfully sensed by ZBP1, leading to ZBP1 aggregation and activation in the
nucleus [23]. Destruction of ZBP1’s Z-NA binding resulted in the cytoplasmic retention
and blocked activation of ZBP1 after IAV infection [23]. Unlike IAV, VACV accumulates the
cytoplasmic Z-RNA so that ZBP1 is simply activated in the cytoplasm in response to VACV
infection [6]. In summary, ZBP1 shuttles between the cytoplasm and the nucleus and that
depends on the location of the nucleic acid ligands recognized by ZBP1.

3. ZBP1 Initiating Innate Immune Signaling
3.1. ZBP1 and IFN-I Response

IFN-I expression is mainly induced by various pattern-recognition receptors (PRRs), in-
cluding Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), cyclic-GMP-AMP synthase-
stimulator of interferon gene (cGAS-STING) [24,25]. IFN-I directly induces the ISGs ex-
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pression, therefore, it is the key to activating innate immunity and inhibiting pathogenic
infection [26,27]. Attributing the promoting effect of IFN-I to the maturation of dendritic
cells, IFN-I also acts as a bridge between innate and adaptive immunity [28].

ZBP1 was initially recognized as a sensor for double-stranded DNA (dsDNA). In
mouse embryo fibroblasts (MEFs) or L929 cells in response to immunostimulatory dsDNA
(including B-DNA, bacterial and viral DNA) overexpressing ZBP1 significantly increased
the IFN-I (IFN-α and IFN-β) expression [2,12]. Knockdown of ZBP1 also notably decreased
B-DNA or Pseudorabies virus (PRV)-stimulated IFN-β activation in PK-15 cells [29]. The
binding of ZBP1 to dsDNA required the D3 domain (a region overlapping the RHIM1
domain) [2]. ZBP1’s dsDNA ligands have no sequence specificity, but longer dsDNA
fragments are more likely to activate ZBP1. That is because longer dsDNA act as the
scaffold factor, linking many ZBP1 proteins to form ZBP1-dimer or even ZBP1-oligomer
complex [12]. The artificially induced dimerization of ZBP1 also resulted in the upregulation
of IFN-I genes in the absence of dsDNA [12]. Furthermore, the Zα, Zβ, D3, and SD domains
of ZBP1 all were indispensable to the full activation of ZBP1 [2,12]. Activated ZBP1 complex
recruit and phosphorylate TANK-binding kinase 1 (TBK1) and interferon regulatory factor
3 (IRF3), then p-IRF3 dimer migrates to the nucleus and finally initiates the transcription of
IFN-I [2,12]. In addition, ZBP1 possesses many potential serine/threonine phosphorylation
sites in the 338 to 366 amino acids region. In addition, the IFN-I induction was severely
weakened for the mutant of ZBP1 (S352A), indicating that the phosphorylation of ZBP1 is
vital to its function [12].

ZBP1 acts as both an ISG and the promoting IFN-I-expression gene, which will form
the ZBP1-mediated IFN positive feedback loop and provoke a strong innate immune re-
sponse in dsDNA stimulated cells. However, subsequent studies pointed to the limitation
in the ZBP1-dependent induction of IFN-I. Deletion of the ZBP1 did not affect the B-DNA-
mediated IRF3 activation and IFN-β production in A549, HepG2 cells, or mice [30–32]. On
the one hand, similar to the multiple RNA sensor in cells, the cellular DNA sensors are also
diverse. For example, cGAS-STING has similar abilities to ZBP1 in strongly recognizing
cytoplasmic dsDNA and inducing the IFN transcription [25]. Which represents the cell
functional redundancy and ensures effective innate immune responses during pathogenic
infection. On the other hand, the regulation of the ZBP1 signaling is very complex. Ectopic
ADAR1 or E3 expression powerfully impaired the B-DNA-mediated induction of IFN-β
mRNA in MEFs [12]. Additionally, both ADAR1 and E3 had been confirmed to competi-
tively bind Z-RNA with ZBP1 and to block ZBP1-mediated necroptosis via the homotypic
Zα domain [6,33,34]. The negative regulation of ZBP1 signaling may be beneficial to cellular
immune homeostasis or viral immune escape [35].

3.2. ZBP1 and NF-κB Signaling

NF-κB family (RelA, RelB, c-Rel, p50, IκBα/β/ε, IKKα/β/γ) play a crucial role
in regulating inflammation and innate immune [36,37]. NF-κB signaling regulates the
expression of proinflammatory cytokines and anti-infection factors, including TNF-α,
interleukin-1 (IL-1), IL-6, IL-8, adhesion molecules, cc chemokine ligand 5 (CCL5) [38]. NF-
κB signaling also controls other cellular processes, such as cell proliferation, differentiation,
and apoptosis [39,40].

The ZBP1-mediated NF-κB signaling is mechanically very similar to TLR3. TLR3
is an innate immune sensor that recognizes pathogen-associated dsRNA. TLR3 activates
NF-κB signaling via toll-like receptor adapter molecule 1 (TRIF) [41]. TRIF interacts with
receptor-interacting serine/threonine-protein kinase 1 (RIPK1) via the homotypic RHIM
domains with ZBP1 [42]. TRIF-RIPK1 interaction recruits transforming growth factor β-
activated kinase 1 (TAK1), TAK binding proteins (TAB1 and TAB2), and the IκB kinase
(IKK) complex (IKKα, IKKβ, IKKγ). The protein complex promotes IKK activation, IκB
phosphorylation, NF-κB nuclear translocation, and induction of antiviral genes [43,44].
ZBP1 also interacts with RIPK1 and mediates similar NF-κB signaling dependent on their
shared RHIM domains [3,16]. However, there is one difference between ZBP1-mediated
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and TLR3-TRIF-mediated NF-κB signaling. Receptor-interacting serine/threonine-protein
kinase 1 (RIPK3), the fourth RHIM-containing host protein, blocks TRIF-RIPK1 signaling
to NF-κB by competing with RIP1 for binding to the RHIM of TRIF [41]. For ZBP1-RIPK1
signaling to NF-κB, RIPK3 collaborates with RIPK1 to facilitate ZBP1-mediated NF-κB
activation [3,16]. The reasons for the differential regulation of RIPK3 need to be further
studied to clarify.

4. ZBP1 Initiating Panoptosis Signaling

After suffering from stress or microbial infection, the immune system of cells will initi-
ate programmed cell death (PCD) to maintain homeostasis or obliterate infected cells [45].
Major PCD includes pyroptosis, apoptosis, and necroptosis, and their molecular mecha-
nisms have been elucidated. Apoptosis depends on the activation of the initiator caspases-8
(CASP8), CASP9, CASP10, and the executioner CASP3 and CASP7 [46]. Apoptosis results
in the formation of apoptotic bodies and is defined as non-inflammatory cell death [47]. Dif-
ferent from apoptosis, pyroptosis and necroptosis both are characterized by pore-formation
and rupture in the plasma membrane [47,48]. Pyroptosis is executed by activated inflamma-
some to cleave Gasdermin-D (GSDMD) and the pro-IL-1β, pro-IL-18 [49]. The N-terminal
pore-forming domain of cleaved GSDMD forms the GSDMD-polymerized membrane
pores and pyroptotic cell death [50]. Similar to pyroptosis, canonical necroptosis forms the
membrane pores through the RIPK3-mixed lineage kinase domain-like protein (MLKL)
necrosome downstream of TNFα-RIPK1 or TLR3/4-TRIF signaling [51–53]. The GSDMD
pores or MLKL pores both enable intracellular cytokines and damage-associated molec-
ular patterns (DAMPs) to release outside the cell, causing inflammatory cell death [48].
Apoptosis, pyroptosis, and necroptosis are not isolated from each other but are closely
linked. The new concept, PANoptosis, is created as an inflammatory PCD pathway and
reflects the crosstalk and co-regulation between apoptosis, pyroptosis, and necroptosis [54].
PANoptosis is driven by the PANoptosome complex, the central molecular scaffold to
synchronously activate apoptosis, pyroptosis, and necroptosis [55,56].

ZBP1 act as a master regulator of PANoptosis and plays a vital role in initiating the
assembly of PANoptosome [54] (Figure 2). ZBP1 PANoptosome consists of ZBP1, RIPK3,
MLKL, RIPK1, FAS-associated death domain protein (FADD), CASP8, NLR family pyrin
domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD
(ASC), and CASP1 [57]. The homotypic/heterotypic interactions between ZBP1 PANop-
tosome members provide a molecular backbone of ZBP1 PANoptosome formation [56].
Upon virus-derived or endogenous Z-NA ligation, ZBP1 binds to the RHIM domains of
RIPK3 and RIPK1 [23,58]. Kinase activity-dependent RIPK3 recruits and phosphorylates
MLKL to compose the necrosome and implement necroptosis [6,23,51]. For another, RIPK1
binds with FADD via shared death domain (DD) and the kinase activity of RIPK1 is dis-
pensable for RIPK1-FADD interaction. The conserved Death Effector Domain (DED) in
FADD and CASP8 makes FADD interact with CASP8, leading to the auto-processing and
maturation of CASP8. The activated CASP8 cleaves executioner CASP3/7 to drive extrinsic
apoptosis [59,60]. In addition, ZBP1 PANoptosome also further facilitate the assembly and
activation of NLRP3 inflammasome [17,61]. Knockout of ZBP1 fully eliminated NLRP3
inflammasome activation and reduced the release of cytokines upon IAV infection [61].
Further, co-deletion of RIPK3 and CASP8 achieved similar results, indicating the close
crosstalk between ZBP1-mediated apoptosis, necroptosis, and pyroptosis [61].
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Figure 2. The pattern of ZBP1-initiated PANoptosome assembly. The sensing of ZBP1 Zα for
activated ligands allows ZBP1 interaction with RIPK1 and RIPK3 via RHIM domains and forms the
core scaffolds of PANoptosome. RIPK3 induces the phosphorylation and membrane translocation
of MLKL, which is the hallmark of necroptotic signaling. In addition, the homotypic interaction
between RIPK1, FADD, and CASP8 liberates the cleaving activity of CASP8 and CASP3/7 that causes
apoptosis. ZBP1-mediated apoptosis and necroptosis signaling promote the assembly and activation
of NLRP3 inflammasome. Activated NLRP3 inflammasome matures GSDMD, IL-1β, and IL-18,
named pyroptosis.

Much research elucidated some crosstalk between apoptosis, necroptosis, and pyrop-
tosis, which provides a basis for studying the signaling crosstalk in ZBP1-mediated PANop-
tosis. CASP8 is the key connection between apoptosis and pyroptosis. FADD/CASP8
are necessary for the activation of CASP1 and cell pyroptosis in response to LPS + ATP,
C. rodentium or Yersinia stimulation [62–64]. Consistent with that, the heterotypic in-
teraction between CASP8-DED and ASC-PYD results in the recruitment of catalytically
inactive CASP8 into the inflammasome complex, thereby activating CASP1 [65–69]. Fur-
thermore, FADD/CASP8 also mediate transcriptional priming of the NLRP3 inflammasome
under LPS + ATP treatment [62]. The upregulation effect on NLRP3 transcription may
be attributed to the CASP8-FADD-RIPK1 complex activated NF-κB signaling [70,71]. In
addition, similar to CASP1, CASP8 act as the executioners of pyroptosis to directly cleave
and mature GSDMD and IL-1β [72–75]. Necroptotic signaling became another node to
link necroptosis to pyroptosis. MLKL pores collaborate with GSDMD pores or play the
compensatory role in the absence of GSDMD pores to promote the release of inflammatory
cytokines and DAMPs [75,76]. In macrophages, MLKL pores-mediated potassium efflux
also was pointed to upstream signaling of pyroptosis and initiated the activation of NLRP3
inflammasome in a cell-intrinsic manner [77,78].
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5. ZBP1 Signaling in Microbial Infection

As a potent innate immune sensor, ZBP1 plays an essential role in immune defense
against multiple pathogens infection, including viruses, bacterium, fungi, and parasites
(Table 1). For example, ZBP1 detects the incursive virus-derived nucleic acid and destroys
the viral replication niche by initiating cell death. In turn, some pathogens have developed
diverse tactics to block the ZBP1 signaling to ensure efficient infection.

Table 1. Programed cell death mediated by ZBP1 during microbial infection.

Pathogens Genome
or Type

Ligands
of

ZBP1

Type of
Cell

Death

Subcellular
Location
of ZBP1

Virulent
Fac-
tor

Antagonism
Mechanism against

ZBP1 Signaling
Reference(s)

Viruses MCMV dsDNA nascent
RNA Necroptosis cytoplasm vIRA

Disrupts
ZBP1–RIPK3
interactions

[79–83]

HSV-1 dsDNA nascent
RNA PANoptosis cytoplasm ICP6

Disrupts
ZBP1–RIPK3
interactions

[84–88]

VZV dsDNA nascent
RNA Apoptosis cytoplasm ORF20

Disrupts
ZBP1–RIPK3
interactions

[89]

VACV dsDNA VACV
Z-RNA Necroptosis cytoplasm E3

Interdicts the
sensing of ZBP1 for

viral Z-RNA
[6,90,91]

IAV ssRNA
(−)

IAV
Z-RNA PANoptosis nucleus [23,61,92]

WNV ssRNA
(+) [93]

ZIKV ssRNA
(+) Necroptosis [94]

SARS-CoV-2 ssRNA
(+) PANoptosis ORF8

Inhibits the
IFN-γ-induced

expression of ZBP1
[95,96]

Bacterium

Escherichia coli;
Yersinia

pseudotuberculosis;
F. novicida.

Gram-
negative PANoptosis EspL

Cleaves RHIM
fragments of all

RHIM-containing
host proteins

[84,97]

Fungus Candida albican;
Aspergillus fumigatus PANoptosis [98]

5.1. Herpesviruses

Members of the herpesvirus family are classified as large dsDNA viruses. Based on
genome sequence homologies, host or cell tropism, and replication strategies, herpesvirus
is divided into alpha-, beta, and gamma-herpesviruses [99].

Cytomegalovirus (CMV) is β-herpesvirus and leads to extensive clinical symptoms,
such as scongenital infection, retinitis, and hepatitis. Mouse cytomegalovirus (MCMV)
encodes several cell death suppressors including the M38.5-encoded viral mitochondrial in-
hibitor of apoptosis (vMIA), the M36-encoded viral inhibitor of caspase-8 activation (vICA),
and the M45-encoded viral inhibitor of RIP/RHIM activation (vIRA) [100]. The vIRA of
MCMV possesses an N-terminal RHIM domain and interplays with RHIM-containing
host protein to block the host’s RHIM signaling [79,80] (Figure 3). Compared with the
wild-type MCMV (MCMVWT), the M45 mutant MCMV (MCMVM45mutRHIM) infection-
induced RIPK3-dependent but RIPK1/TRIF-independent necroptosis and show weaker
replication in 3T3-SA or SVEC4-10 cells [81]. Subsequent research confirmed that ZBP1
acts as the initiator of RIPK3-mediated necroptosis, and deletion of ZBP1 or RIPK3 both
rescue infected cell viability and MCMVM45mutRHIM virulence [4,81]. The Zα2 of ZBP1 is
indispensable for sensing the MCMV-derived nucleic acid ligands, and RHIM1 of ZBP1 is
required to interact with RIPK3 [82,83]. Intriguingly, ZBP1-mediated necroptotic signaling
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requires viral immediate-early protein 3 (IE3), an essential protein required for early and
late gene transcription, indicating that MCMV-derived RNA but not DNA became the
ligand of ZBP1 [82,83]. The vIRA of MCMVWT reshapes the ZBP1-RIPK3 complex and
impedes the necroptotic signaling to maintain viral normal replication [101]. In addition,
ZBP1 mediates the IRF3-dependent IFN-β transcription and ISG expression in Human
cytomegalovirus (HCMV) infected THF cells [102,103]. Knockdown of ZBP1 impairs the
IFN-β transcription and overexpression of ZBP1 markedly inhibits replication of HCMV in
THF cells [102].
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Figure 3. DNA viruses developed antagonistic mechanisms against ZBP1 signaling. After sensing
virus-derived RNA, ZBP1 triggers necroptosis via the ZBP1-RIPK3-MLKL axis against MCMV, HSV-1,
or VACV infection. However, the ZBP1 signaling is blocked by the DNA viruses-encoded virulence
factors. At the beginning of the necroptosis signaling, the VACV E3 protein shields the VACV Z-RNA
by its Zα domain and abolishes the activation of ZBP1. After that, the homologous RHIM of MCMV
vIRA and HSV-1 ICP6 destroys the signaling transduction from ZBP1 to RIPK3.

Herpes simplex virus-1 (HSV-1) and varicella zoster virus (VZV) both belong to the
α-herpesvirus. HSV-1 is known to induce cytolytic death and cause orofacial infections
or encephalitis [100]. Mice BMDMs infected with HSV-1 form a huge PANoptosome con-
sisting of absent in melanoma 2 (AIM2), ZBP1, pyrin, ASC, CASP1, RIPK3, MLKL, RIPK1,
FADD, and CASP8 [84]. The PANoptosome efficiently suppresses HSV-1 replication and
saves infected animals from death via driving apoptosis, pyroptosis, and necroptosis in
macrophages. AIM2, an inflammasome sensing dsDNA, acts as the initiator of the PANop-
tosome. Knockout of AIM2 in BMDMs completely abolishes CASP1/3/7/8 cleavage, the
release of IL-1β and IL-18, and the phosphorylation of RIPK3 and MLKL. In the AIM2-
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mediated PANoptosome, ZBP1 and pyrin are placed at the crucial point downstream
of AIM2. Because separately deletion of ZBP1 or pyrin in BMDMs only partially weak-
ened the CASP1/3/7/8 cleavage, release of IL-1β and IL-18. Only collective loss of ZBP1
and pyrin in BMDMs prevents the HSV-1-induced cell death-like AIM2−/− BMDMs [84].
Consistently, knockdown of ZBP1 in primary murine microglia and astrocytes relieve
inflammatory cytokines, neurotoxic mediators, and cell death, which elucidated a new
mechanism of HSV-1-induced and ZBP1-dependent neuropathology of the central nervous
system (CNS) [104]. Similar to MCMV infection, Zα2 of ZBP1 recognizes HSV-1-derived
nascent RNA and RHIM1 of ZBP1 is required to provoke HSV-1-induced necroptosis [85].
HSV-1 encoded ICP6 also contains RHIM domain and RHIM-dependent interacts with
ZBP1-RIPK3 complex to inhibit ZBP1-mediated necroptosis in host cells [85–87] (Figure 3).
Unexpectedly in HSV-1 infected murine cells, the suppression function of ICP6 on necrop-
tosis is invalid and leads to mice mortality [85,87,88]. Besides that, ZBP1 was demonstrated
to interact with HSV-1 ICP0 and inhibit the activation of the ICP0 promoter to suppress
HSV-1 replication in HepG2 cells [30]. Different from ICP6 of HSV-1, RHIM-containing
ORF20 protein encoded by VZV blocks ZBP1-mediated apoptosis rather than necroptosis
via forming stable heteromeric amyloid assemblies with ZBP1 [89].

Epstein–Barr virus (EBV) is a chronic human γ-herpesvirus that persists for life. EBV
infection causes an increased risk of cancer and autoimmune diseases [105,106]. However,
the efficient elimination of EBV is difficult because of the EBV latency after the initial
infection. A new hypothesis holds that ZBP1 is not involved in EBV’s lysis replication but is
contribute to the EBV latency [107]. There are two possible pathways by that ZBP1 induces
the establishment and maintenance of EBV latency and both depends on suppressive
dimethylation of the histone H3 lysine 9 residue (H3K9me2) [107]. The first pathway, ZBP1
senses and binds to the strong Z-DNA prone sequences in multiple promoter regions of the
EBV genome, then further locates C-terminal binding protein (CTBP) to the Z-sequences
within promoters could induce H3K9 methylation by MYC oncogene protein [107,108].
The other pathway, EBV-produced Z-NA activates ZBP1-RIPK1-mediated NF-κB signaling
during the initial stages of infection [16]. The unleash p50 homodimers interact with
euchromatic histone lysine methyltransferases (EHMT1) to induce H3K9 methylation and
the expression silence of EBV genes in viral NF-κB binding sites [109]. The hypothesis may
help the EBV eradication by suppressing ZBP1-mediated virus latency but needs to be
confirmed by further experiments.

5.2. Vaccinia Virus (VACV)

VACV belongs to the poxvirus family and has a large linear dsDNA genome and
replicates in the cytoplasm. VACV is used as a vaccine against smallpox and is currently
being further developed as an efficient vector for novel vaccines against cancer and other
infectious diseases [110,111]. The E3 protein of VACV generates cytoplasmic Z-RNA via
its C-terminal dsRNA binding domain (dsRBD), and the virus-derived Z-RNA is sensed
and bound by Zα2 of ZBP1 [6]. The interaction between E3-Z-RNA-ZBP1 triggers the
ZBP1-RIPK3-MLKL axis-dependent necroptosis to restrain viral replication and alleviate
clinical symptoms in VACV-infected mice [6,90]. However, the N-terminal Zα domain of E3
competes with ZBP1 for binding the virus-derived Z-RNA so that ZBP1 is separated from
the viral Z-RNA and does not interact with RIPK3 to induce necroptosis [6,90] (Figure 3).
The functional substitution of ZBP1 Zα1 (E3Zα1ZBP1) or ADAR1 Zα (E3ZαADAR1) for E3 Zα
still blocks necroptosis and maintains the normal virulence of the VACV, indicating the
equivalence of Zα domain of Z-NA binding family in sensing and binding Z-NA and the
significance of E3 Zα as a critical suppressor of ZBP1-induced necroptosis [6,91].

5.3. Influenza A Virus (IAV)

IAV is a negative sense, single-stranded, lytic RNA virus and belongs to the Orthomyx-
oviridae family. IAV targets and lyses lung epithelial cells and fibroblasts that cause airway
and lung dysfunction as well as cardiovascular diseases [112,113]. IAV infection upregulates
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the expression of ZBP1 relied on the activated RIG-I-MAVS signaling and IFN regulatory
factor (IRF1), and induces the TRIM34-mediated K63-linked polyubiquitination of ZBP1
on the K17 position [114–116]. The Zα2 of ZBP1 senses the viral Z-RNA derived from
the defective viral genomes (DVGs) (some IAV gene segments produced by the IAV RNA
polymerase) in the nucleus [15,23,117]. Subsequently, ZBP1 recruits RIPK1, FADD, CASP8,
RIPK3, MLKL, NLRP3, ASC, CASP1, and CASP6 to consist of the ZBP1 PANoptosome and
execute PANoptosis [61,118,119] (Figure 2). CASP6 of the PANoptosome serves as the scaf-
fold protein to strengthen the interaction between ZBP1 and RIPK3, and its caspase activity
is not required [119]. During IAV infection, ZBP1 PANoptosome-mediated necroptosis
differs significantly from TNFα signaling. Attributing to the nuclear localization of ZBP1,
RIPK3-MLKL necrosome also migrates to the nucleus so that p-MLKL pores firstly rupture
the nuclear membrane and secondly plasma membranes [23]. Although ZBP1-mediated
PANoptsis significantly suppresses IAV replication, the inflammatory death of pulmonary
cells also causes the lethality of infected mice because of the pulmonary dysfunction and
inflammation [61,92,120,121]. Therefore, ZBP1-mediated PANoptosis could be a double-
edged sword for IAV-infected hosts. In addition, other members of the Orthomyxoviridae
family, such as seasonal strains of IAV and IBV but not the Paramyxoviridae family, also
produce the nuclear Z-RNA, and whether ZBP1 also mediates similar PANoptosis against
other orthomyxoviruses infection requires further verification [23].

5.4. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

Since 2019, the Coronavirus disease 2019 (COVID-19) pandemic has led to socioeco-
nomic and psychological distress [122]. COVID-19, caused by SARS-CoV-2, is character-
ized by acute respiratory distress syndrome (ARDS), multi-organ failure and death [123].
SARS-CoV-2 is a positive sense, single-stranded RNA virus and belongs to β-coronavirus
family. High dose infection or late infection with SARS-CoV-2 induce IFN-α/γ responses
and the expression of ZBP1 [95,124]. In SARS-CoV-2 infected mice or BMDMs, the addi-
tional IFN-β inducing ZBP1 provokes PANoptosis via CASP1/3/7/8, GSDMD, GSDME,
MLKL [75,95,125], and deletion of ZBP1 (ZBP1−/−) or Zα2 deficiency of ZBP1 (ZBP1∆Zα2)
substantially alleviated the inflammatory cell death and lethality of mice upon treatment
with IFN and SARS-CoV-2 infection [95]. The ZBP1-mediated PANoptosis explains why
non-early IFN treatment is not clinically helpful in treating SARS-CoV-2 infection [126,127].
In the early stage of infection, the upregulated ZBP1 via IFN-I intervention induces the
appropriate death of infected cells which results in a mild inflammatory response to help
host clear the invaded SARS-CoV-2. Nonetheless, later administration of IFN induces the
ZBP1-mediated massive inflammatory cell death in the lungs and causes inflammatory
cytokine storm, lung dysfunction, and increased mortality [95,124]. The retrospective
research which showed the increased IFN levels in serum of patients with serious infection
compared with those with moderate COVID-19 also supports the above standpoint [128].
Hence, interfering with ZBP1 function could reverse the negative effect of IFN-I clinical
treatment and be an efficient therapeutic strategy against SARS-CoV-2 infection. Moreover,
ZBP1 also mediated the same PANoptosis against mouse hepatitis virus (MHV) infection,
another member of the β-coronavirus family [95].

Genome analysis reveals the potential Z-RNA prone sequences (called flipons) within
the coronavirus genome including SARS-CoV, MERS, and SARS-CoV-2. SARS-CoV-2-
derived flipons are mainly present in Nsp2, Nsp12, Nsp13, S, and M genes [129]. That
flipons are likely to form Z-RNA during viral replication and transcription and thus activate
ZBP1-mediated PANoptosis. Moreover, the Nsp13 helicase of coronavirus contains an
identified RHIM and a potential Z-flipon helicase (flipase) activity [129]. Thus, coronavirus
Nsp13 could strongly suppress Z-RNA-activated immune response via antagonizing ZBP1-
RIPK3 signaling or segregating and unwinding of the Z-RNA [4,129]. In addition, more
experiments were needed to confirm the above supposes.
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5.5. Flaviviruses

Flaviviruses have a positive-sense, single-stranded RNA genome and are generally
spread to vertebrate hosts by arthropods. West Nile virus (WNV) and Zika virus (ZIKV)
both belong to mosquito-borne flaviviruses and cause encephalitis and severe neurological
injuries [130,131]. ZBP1 expression is dramatically increased in the infected murine brain
with WNV or ZIKV [132,133]. In WNV-infected mice, lacking ZBP1 leads to elevatory
brain viral load, more severe viremia, and significantly higher morbidity and mortality [93].
Transcriptomics analysis shows that apoptosis and pyroptosis pathways are significantly
enriched and necroptotic genes (RIP1K, RIPK3, and MLKL) are upregulated in the WNV-
infected mice murine brain [134]. Although deletion of ZBP1 inhibited ZBP1-dependent
WNV-induced cell death in MEFs, does not cause the viability difference in WNV-infected
primary mouse cortical neurons [93]. Similar to WNV infection, ZBP1-RIPK3 also unsuc-
cessfully causes cell death in ZIKV-infected primary mouse cortical neurons [135]. However,
ZBP1-RIPK3 effectively provokes necroptosis even though not include apoptosis and py-
roptosis in ZIKV-infected human astrocytes, and the necroptosis significantly suppresses
viral titers [94]. Hence, flaviviruses may induce ZBP1-dependent cell death only in specific
brain cells, such as astrocytes, so that their replication is inhibited. In addition, interestingly,
the ZBP1-RIPK1-RIPK3 complex upregulates immune responsive gene 1 (IRG1) to turn
cis-aconitate into itaconate in ZIKV-infected primary cortical neurons [135]. Then increased
itaconate activates a metabolic state via inhibiting succinate dehydrogenase (SDH) activity
and saves the ZIKV-infected mice [135]. That presents a new anti-virus immunometabolic
mechanism for ZBP1 in neurons.

5.6. Bacterium

Yersinia pseudotuberculosis (a Gram-negative bacterium) infected or lipopoly-saccharide
(LPS, a component of Gram-negative bacteria wall)-treated BMDMs arises apoptosis and py-
roptosis via the TRIFosome consisting of TRIF, ZBP1, RIPK1, FADD, CASP8, GSDMD [17].
After TLR4 sensing LPS and translocating to the endosome, adapter protein TRIF recruits
ZBP1 and RIPK1 via the shared RHIM domains. The TRIF-ZBP1-RIPK1 complex further
binds FADD and CASP8, then CASP8 cleaves CASP3/7 and GSDMD to activate apoptosis
and pyroptosis, respectively [17,72]. The ZBD of ZBP1 is unimportant for the TRIFosome
assembling, indicating that ZBP1 only serves as a scaffold protein to promote the assembly
of TRIFosome [17]. Lacking ZBP1 markedly blocks activation of CASP8 and decreases
inflammatory death of macrophages, which are not beneficial for host defense against
Yersinia pseudotuberculosis infection [17,136]. ZBP1-mediated necroptosis in macrophages
also play a vital role in LPS-induced lung inflammatory injury [97]. TLR4-TRIF may still be
the upstream of ZBP1 signaling because of the TLR4-LPS sensing. In addition to necroptosis
signaling, ZBP1 of TRIFosome act as a scaffold to promote TRIF-RIPK1 interaction and
M1-ubiquitination of RIPK1, which is important for LPS- or dsRNA-activated inflamma-
tory responses by TLR3/4 [137]. Additionally, knockout of ZBP1 mitigates the release of
mtDNA, cytokines, and the activation of the NF-κB pathway in macrophages following LPS
stimulation, showing that ZBP1 signaling triggers other innate immune pathways [97]. In
addition, Francisella novicida (an intracellular Gram-negative bacterium) infected BMDMs
form the AIM2 PANoptosome similar to HSV-1 infection [84]. AIM2 functions as the apical
sensor to bind the bacterial DNA and initiate the assembly of the PANoptosome [138].
ZBP1 acts as the adapter protein of the AIM2 PANoptosome and is indispensable to pro-
voking PANoptosis [84]. Similar to viruses, some bacterium also develops the capacity
to antagonize the ZBP1 signaling. Enteropathogenic Escherichia coli (EPEC) encoded type
III secretion system (T3SS) effector EspL has a tripartite cysteine protease motif (Cys47,
His131, Asp153) that cleaves within the RHIM domains and degrades the RHIM-containing
proteins (including ZBP1, RIPK1, RIPK3, TRIF) [139]. The interfering effect of Espl on
RHIM signaling could be an important tactic to ensure EPEC infection.
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5.7. Fungi

Candida albicans and Aspergillus fumigatus infection also activate ZBP1-dependent PANop-
tosis and inflammation in BMDMs [98]. Compared to wild-type BMDMs, ZBP1−/− or ZBP1∆Zα2

BMDMs show significantly attenuated PANoptosis and the release of IL-18 after fungi infec-
tion [98]. While it is not clear how ZBP1 is activated during fungal infection, it is expected
that ZBP1-mediated PANoptosis may be important in controlling fungi infection via the
inflammatory response [140,141].

5.8. Toxoplasma Gondii

Toxoplasma gondii belongs to obligate intracellular parasites and is able to invade all
nucleated cells in warm-blooded animals including humans [142]. T. gondii infection up-
regulates and maintains the ZBP1 expression [143,144]. Deletion of ZBP1 promotes the
replication rate of T. gondii in macrophages or mice and reduces host survival against oral
challenge, confirming the suppression of ZBP1 on T. gondii infection [145]. But the deletion
of ZBP1 does not influences the cell viability, and increases the level of proinflammatory
cytokines, such as TNFα, IL-6, and MCP-1 in infected mice or BMDMs, showing ZBP1 is
not involved in the inflammatory cell death during T. gondii infection [145,146]. Although
BMDMs lacking ZBP1 present lower nitric oxide concentration (NO, an important im-
mune molecule), a recent study confirmed that nitric oxide synthase (iNOS) lacking mice
completely resist to T. gondii infection [145,147]. Thus, the relevance of ZBP1 to T. gondii
infection could need more effort to illuminate.

6. ZBP1 Signaling in Auto-Inflammatory Diseases

Sensing host-derived nucleic acid ligands causes the spontaneous activation of ZBP1,
that is responsible for many auto-inflammatory diseases, such as perinatal lethality, inflam-
matory bowel disease (IBD), heatstroke and oxidative stress-induced injuries, and acute
pancreatitis (AP).

In the setting of pathogens infection, RIPK1 is an important member of the ZBP1-
PANoptosome and the key to ZBP1-mediated PANoptosis [23,57]. Paradoxically, various
genetic and biochemical approaches have confirmed that the RHIM not kinase activ-
ity of RIPK1 disturbs the ZBP1-RIPK3 necrosome and avoids the aberrant necroptosis
in the absence of infection (Figure 4). RIPK1−/− mice or RIPK1mR/mR mice expressing
RIPK1 with mutated RHIM develop systemic inflammation and early postnatal lethality
due to ZBP1-mediated necroptosis in multiple tissues [148–151]. RIPK1E-KO mice (with
the epidermis-specific RIPK1-knockout) suffer from skin inflammation because of ZBP1-
dependent keratinocyte necroptosis [149,152]. The dendritic cell (DC)-specific RIPK1−/−

mice with loss of RIPK1 kinase activity in other cells, exhibit spontaneous colonic inflam-
mation relied on ZBP1-RIPK3 necrosome [153]. Advanced research indicated that the Zα2
and RHIM1 of ZBP1 are vital for this RIPK1−/− caused spontaneous necroptosis, and
endogenous retroviruses (ERV)-derived complementary reads were detected in epidermal
RNA [15,58,154] (Figure 4). Besides that, a histone methyltransferase safeguarding genome
stability, SETDB1 deficiency in intestinal stem cells (IECs) liberates the ERV and products
excessive viral mimicry [155]. The Zα and RHIM1 domains-dependent ZBP1 sense the
viral dsRNA to induce necroptosis in IECs, which inevitably destroys the homeostasis of
the epithelial barrier and causes inflammatory bowel disease (IBD) [155]. Hence, excluding
pathogenic nucleic acid ligands, endogenous ERV-derived dsRNA is also effectively recog-
nized by ZBP1 that induces spontaneous cell death, autoimmune inflammatory diseases,
and even death.
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Figure 4. The model for endogenous ZBP1 activation and the host antagonistic mechanisms targeting
ZBP1 signaling. The endogenous retroviruses (ERV)-derived dsRNA, released cytoplasmic mitochon-
dria DNA (mtDNA), and Z-RNA enriched in 3’UTR of ISGs mRNA that harbor inverted SINEs or
GU-type simple repeats act as the activated ligands of ZBP1 and induce endogenous ZBP1 signaling.
The endogenous activation of ZBP1 causes many auto-inflammatory diseases or stimulates tumor
immunity. ADAR1-p150 inhibits the ligands sensing of ZBP1 by the Zα domain and RIPK1 blocks
the signaling transduction of ZBP1 by its RHIM.

In addition to RIPK1, ADAR1 is another host antagonist protein against ZBP1 signaling.
ADAR1 is responsible for the adenosine to inosine (A-to-I) edits of ERV-derived dsRNA
and represses abnormal immune responses activated by ERVs [156–159]. Deletion of
ADAR1 or mutant of the Zα domain of ADAR1 causes the accumulation of ERV-derived
dsRNA and spontaneous activation of ZBP1 [160,161]. The abnormal activation of ZBP1
causes embryonic lethality, intestinal cell death and skin inflammation similar to RIPK1−/−

or RIPK1mR/mR mice [162,163]. ZBP1 plays a dual role in mice with impaired ADAR1
function. On the one hand, ZBP1 induces RIPK3-mediated necroptosis and CASP-8-
mediated apoptosis which is MAVS-independent [162,163]. On the other hand, ZBP1
promotes the RIPK1- and RIPK3-independent, but MAVS-dependent IFN-I responses and
stimulates interferonopathies [160].

Impaired mitochondrial DNA (mtDNA) is another endogenous ligand to activate ZBP1
(Figure 4). PUMA, NF-κB signaling induced proapoptotic protein, facilitates the rupture
of mitochondrial membrane, the cytosolic release of mtDNA, and mtDNA-ZBP1 binding,
leading to necroptosis in CASP-inactivated HT-29 cells [164–166]. A lack of FADD/CASP8
in IECs leads to ZBP1-dependent IBD, but deletion of PUMA can rescue embryonic death
via reducing mtDNA-ZBP1 binding in FADD−/− mice [164,167]. Beyond that, mtDNA-
ZBP1 interaction mediated inflammation also is the result of chronic oxidative stress. The
chronic low-level oxidative stress-stimulated retinal pigment epithelial (RPE) cells show
mtDNA fragmentation and cytosolic release, and the damaged mtDNA is packed into
extracellular vesicles (EVs) that transfer to surrounding microglia. The cytoplasmic mtDNA-
ZBP1 binding in RPE cells and microglia triggers the TBK1/IRF3-dependent the expression
of proinflammatory cytokines, such as IL-1α/β, IL-8, and TNFα, which contributes to
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the aberrant activation of microglia and ocular pathologies [168]. The ZBP1-mtDNA
complex-mediated inflammation in response to oxidative stress also is demonstrated in
lung epithelial cells [169].

Intriguingly, the latest research indicated that the ZBP1 without binding to any nucleic
acid ligands can also provoke cell death when suffering from heatstroke [9]. Heat stress
upregulates ZBP1 via HSF1 and promotes PANoptosome assembly resulting in PANoptosis
in BMDMs and circulatory failure, organ injury, and lethality in mice. The Zα2 of ZBP1 is
unnecessary but RHIM1 of ZBP1 is pivotal to interact with RIPK3. Lacking ZBP1 or RIPK3
significantly relieved alleviates the fatal injuries from extreme hyperthermia [9].

Moreover, the uncontrolled expression of ZBP1 and following ZBP1-dependent py-
roptosis are the main reason for acute pancreatitis (AP) [170]. The tRF3-THr-AGT, an
endogenous tRNA-derived small RNAs (tsRNAs), specifically binds the 3’ untranslated
regions (3’-UTR) of ZBP1 mRNA to form short dsRNA that causes the degradation of
ZBP1 mRNA [170]. In the cellular and animal AP models, the tRF3-THr-AGT is aberrantly
decreased resulting in the upregulation of ZBP1, the activation of ZBP1-mediated NLRP3
inflammasome, and the extracellular release of cytokines and DAMPs [170,171]. In addition,
further verification is needed to affirm whether the upregulated ZBP1 mediates apoptosis
or necroptosis in acinar cells to aggravate AP.

7. ZBP1 Signaling in Tumor Immunity

Although ZBP1-induced aberrant cell death and inflammation are harmful to the
host, there is a positive effect in the background of tumorigenesis. Advanced solid tumors
generally suffer from necroptosis [172]. However, the tumor cell necroptosis may not
be related to the TNFα-RIPK1 pathway [173,174]. In the late breast cancer cells, glucose
deprivation causes the cytosolic release of mtDNA through mitochondrial protein NOXA.
The ZBP1-mtDNA binding initiates RIPK3-MLKL-dependent tumor necroptosis and blocks
metastasis in the lung [174]. In irradiated MC38 tumors, the ZBP1-mediated necroptotic sig-
naling is crucial for anti-tumor immunity. That is not only because of ZBP1-mediated tumor
necroptosis but also attribute to mtDNA release via the necroptotic signaling. The cytoplas-
mic mtDNA activates the cGAS-STING pathway and IFN-I responses. Deletion of ZBP1
inhibited the activation of cGAS-STING signaling and priming of CD8+ T cells in tumor cells
with radiation treatment [175]. Mechanistically, the cytoplasmic release of mtDNA induced
by ZBP1-necroptosis could be attributed to the translocation of RIPK3-MLKL necrosome to
mitochondria. On the one hand, RIPK3 targets and activates the mitochondrial pyruvate de-
hydrogenase complexes, which require RIPK3-MLKL to be recruited into the mitochondria.
Mechanistically, the cytoplasmic release of mtDNA induced by ZBP1-necroptosis could be
attributed to the translocation of RIPK3-MLKL necrosome to mitochondria. On the one
hand, RIPK3 targets and activates the mitochondrial pyruvate dehydrogenase complexes,
which require RIPK3-MLKL to be recruited into the mitochondria [176]. On the other hand,
the mitochondria membrane contains phospholipids, including phosphatidylinositol phos-
phates that anchor MLKL to the plasma membrane and nuclear membrane [23,177–180].
For these reasons, the hypothesis that RIPK3-MLKL necrosome punch pores in the mito-
chondrial membrane leading to mtDNA divulgence is possible. Nevertheless, it is worth
affirming that the release of mtDNA caused by the ZBP1-mediated necroptotic signaling
cascade and subsequent IFN-I responses via the cGAS-STING pathway will shape strong
positive feedback of antitumor immunity [175,181].

In addition to mtDNA, the endogenous dsRNA remains the important ligand for
ZBP1-mediated tumor immunity. However, the ZBP1 sensing for endogenous dsRNA is
still interdicted by ADAR1. The latest research points out that some 3’UTR of ISGs mRNA
containing short interspersed nuclear elements (SINEs) or GU-type simple repeats and
naturally fold into Z-type dumbbells [161]. Such Z-RNA is segregated by the Zα domain
of cytoplasmic ADAR1-p150 isoform or accumulates to activate ZBP1-dependent tumor
necroptosis when ADAR1 is depleted or mutated [161] (Figure 4). The deficiency of ADAR1
encouraged ZBP1-mediated PANoptosis and limited tumorigenesis [33] (Figure 4). The
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antagonism strategy of ADAR1 against ZBP1 is very similar to the E3 of VACV, and all block
the recognition of ZBP1 for activated Z-RNA ligands through the twin Zα domains [6,33].
ADAR1’s restriction on ZBP1 signaling complements the mechanism of the oncogenic role
of ADAR1, and developing new drugs capable of repressing ADAR1 function or directly
activating ZBP1 may be the new strategy for treating cancer [33,161,182].

Through genetic engineering, previous studies have applied ZBP1 to tumor ther-
apy. Various genetic adjuvants enhance vaccine immunogenicity and strengthen adaptive
immune responses [183–186]. Co-inoculation of the plasmid expressing ZBP1 (pZBP1)
and the DNA vaccine encoding immunogenic tumor-associated antigens (TAAs) in mice
more effectively activated NF-κB and IFN-I signaling and enhanced the TAA-specific cy-
totoxic CD8+ T lymphocytes (CTLs) and CD4+ Th1 responses, compared to the empty
vector plus TAAs vaccine inoculation [187]. Compared to the solely vaccinated mice with
pTRP2 (tyrosinase-related protein-2, a highly expressed glycoprotein in human melanomas),
the higher percentage of TRP2-specific IFN-γ-producing CD8+ T cells and more durable
stronger resistance to B16 melanoma was detected in co-vaccinated mice with pZBP1 and
pTRP2 [187]. In addition, modifying oncolytic viruses to express therapeutic genes is a
significant tumor immunotherapy strategy [188]. A ZBP1-armed oncolytic vaccinia virus
has been created as a fast and effective self-recognition immune enhancement system. The
VACV expressing ZBP1 induces T cell infiltration (especially TAA-specific T cells) which
establishes a powerful antitumor immune response system and strongly controls tumor
volume [189]. Although the above two experiments did not emphasize the relationship
between ZBP1 and tumor cell death, the ZBP1-mediated antitumor therapeutic effect has
been confirmed in vivo.

8. Concluding Remarks

ZBP1 is another Z-NA binding protein in addition to ADAR1 in mammals. Initially,
ZBP1 was shown to be a cytoplasmic DNA sensor that promotes innate immune responses,
and subsequent studies confirmed the importance of ZBP1 in PANoptosis initiation. ZBP1
signaling typically relies on the combination of the Zα2 domain with active ligands, such
as virus-derived Z-RNA (VACV and IAV) [6,23,161,190]. In addition to sensing invasive
pathogens, ZBP1 also binds with endogenous nucleic acid ligands, such as ERV-derived
dsRNA and cytoplasmic mtDNA [155,168]. In surprise, endogenous ERV-derived Z-RNA
recently has been confirmed to be present in some 3’UTR of ISGs mRNA that contain
inverted SINEs or GU-type simple repeats and is sensed by ZBP1 in the absence of ADAR1-
p150 [161]. In addition, the histone chaperone inhibitor, CBL0137 can directly induce
Z-DNA formation in the LINE-1 element and activate ZBP1 in the presence of ADAR1-
p150 [161]. The ZBP1 agonists will be a potential therapeutic avenue for tumors with limited
ZBP1 function. However, there is no direct evidence as to whether the cytoplasmic damaged
mtDNA detected by ZBP1 belongs to the Z-conformation. Moreover, even without ligands
binding function, ZBP1 also acts as an adapter protein of AIM2 or TLR3/4-TRIF to transfer
PANoptosis signaling [17,84].

ZBP1-PANoptosome initiates PANoptosis and plays a double-edged sword role in anti-
infection and development. ZBP1-mediated PANoptosis efficiently limits the replication
of intracellular pathogens, and stimulates the recruitment of immune cells and adaptive
immune responses, which is beneficial to host survival [4]. Nonetheless, the excessive cell
death activated by ZBP1 also provokes lethal inflammatory cytokine storm, organ dysfunc-
tion even host mortality. For instance, ZBP1-dependent PANoptosis restrict the viral loads
of IAV and SARS-CoV-2 but caused severe inflammation and lung dysfunction in critical
patients [23,95]. ZBP1-mediated brain cell death may be a key cause of the neuropathology
during HSV-1 or SARS-CoV-2 infection [104,125]. In addition, the endogenous activation of
ZBP1 causes multiple auto-inflammatory diseases. ZBP1 binding with ERV-derived dsRNA
activates embryonic lethality in RIPK1−/− mice and colitis in RIPK1−/− IECs [58,155],
and binding with leaked mtDNA leads to chronic oxidative stress-induced ocular patholo-
gies [168]. However, the endogenous activation of ZBP1 also has a positive effect in the
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setting of cancer. ZBP1-PANoptosome promotes tumor death and immune cell infiltration,
and limits tumor volume and metastasis [33,174].

Both the pathogen and the host have evolved skills to regulate ZBP1 signaling to ensure
pathogen replication or immune homeostasis (Tables 1 and 2). Relying on the homogenous
Zα domains, ADAR1-p150 and VACV E3 segregate the activated Z-RNA of ZBP1 to
inhibit ZBP1 signaling [6,33,161]. RIPK1, MCMV M45, HSV-1 ICP6, and VZV ORF20 all
block the signaling transduction of ZBP1-RIPK3 via shared RHIM domains [4,85,89,150].
Furthermore, SARS-CoV-2 ORF8 is a new negative regulator that antagonizes the IFN-γ-
stimulated expression of ZBP1 [96]. ZBP1 may also play a role for others viruses, and its
influence could be antagonized by some unknown virulence factors which need follow-up
studies to investigate.

Table 2. The host proteins regulating the ZBP1 signaling.

Host
Regulatory

Factors

Positive(P) or
Negative(N)
Regulation

Regulatory Mechanisms Reference(s)

AIM2 P Interacts with ZBP1 to drive
PANoptosis [84]

TRIM34 P
Induces the K63-linked

polyubiquitination of ZBP1 on the
K17 position

[116]

CASP6 P Strengthens ZBP1–RIPK3
interactions [119]

PUMA P Promotes the cytoplasmic release
of mtDNA and activation of ZBP1 [164]

ADAR1 N Inhibits the ZBP1 sensing for
activated Z-RNA [33,160–163]

RIPK1 N Disrupts ZBP1–RIPK3 interactions [149,150]

SETDB1 N
Holds down the level of
ERV-derived dsRNA and

activation of ZBP1
[155]

tRF3-Thr-AGT N Degrades the mRNA of ZBP1 [170]

In this review, we have elucidated the ZBP1-mediated signaling mechanisms of innate
immune response and PANoptosis. We also discussed the pathogens and host-developed
multiple regulation strategies for ZBP1-mediated signaling; ZBP1 plays a double-effective
role in infection and host health. Understanding the impact of ZBP1 signaling on host
or pathogens and developing novel positive or negative regulated drugs against ZBP1
signaling will be helpful to anti-infection, alleviation of inflammatory disease, and anti-
tumor immunity.
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