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Abstract: The cardinalized probability hypothesis density (CPHD) filter is an alternative
approximation to the full multi-target Bayesian filter for tracking multiple targets. However,
although the joint propagation of the posterior intensity and cardinality distribution in its recursion
allows more reliable estimates of the target number than the PHD filter, the CPHD filter suffers from
the spooky effect where there exists arbitrary PHD mass shifting in the presence of missed detections.
To address this issue in the Gaussian mixture (GM) implementation of the CPHD filter, this paper
presents an improved GM-CPHD filter, which incorporates a weight redistribution scheme into the
filtering process to modify the updated weights of the Gaussian components when missed detections
occur. In addition, an efficient gating strategy that can adaptively adjust the gate sizes according to
the number of missed detections of each Gaussian component is also presented to further improve
the computational efficiency of the proposed filter. Simulation results demonstrate that the proposed
method offers favorable performance in terms of both estimation accuracy and robustness to clutter
and detection uncertainty over the existing methods.
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1. Introduction

Multiple targets tracking (MTT) is a key technology for many practical applications in both
military and civil fields [1,2]. In most cases, the MTT algorithm need to jointly estimate the time-varying
number of targets and their individual states via using the measurements corrupted by noise and
clutter. The most popular approaches, such as multiple hypothesis tracking (MHT) [3] and the joint
probabilistic data association (JPDA) filter [4], are involved in traditional MTT algorithms to solve the
problem of measurement origin uncertainty (also referred to as the data association problem). Generally,
the association-based techniques suffer from heavy computational costs and can be very unreliable in
the presence of detection uncertainty and clutter [5]. Alternatively, the MTT problem has been recast
in the Bayesian filtering framework by modeling the multi-target systems using random finite set
(RFS) formulation [6], and the resulting optimal multi-target Bayesian filter has laid the foundation for
developing many innovative multi-target filters [7–9]. Based on moment approximation, the probability
hypothesis density (PHD) filter [7] and cardinalized PHD (CPHD) filter [8] were proposed. Specifically,
the PHD filter propagates the posterior intensity of the multi-target state, while the CPHD filter
additionally propagates the cardinality distribution, i.e., the probability distribution of the number of
targets. To implement the PHD and CPHD filters, the sequential Monte Carlo (SMC) method and the
Gaussian mixture (GM) method have been introduced in [10–12]. During the past decade, the PHD and
CPHD filters have been applied to many practical problems and generated substantial interest [13–15].

The main advantages of the PHD and CPHD filters over traditional methods are that they
operate on the single-target state space and avoid the intractable problem of data association.
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In addition, they provide the ability to resolve the uncertainties in both the number of targets
and their corresponding states in a cluttered environment. Compared with the PHD filter, the
CPHD filter can achieve significant improvements in the accuracy of cardinality estimation and
tracking performance [12,13]. Meanwhile, the GM-CPHD filter provides a closed form solution to
the CPHD recursion, which makes it more computationally efficient than the SMC implementation.
However, the studies in [16,17] demonstrated that the CPHD filter exhibits a counter-intuitive behavior:
upon missed detections, the PHD mass of the undetected targets will be shifted to that of the detected
targets, regardless of the spatial locations of the targets. This phenomenon is also referred to as the
spooky effect [17] in the CPHD filter, and the amount of the shifted PHD mass depends on the total
target number. One possible way to reduce this effect is to find a general decomposition of the CPHD
filter with respect to separated regions and then apply the filter to each of the regions individually [16].
Unfortunately, no rigorous method has been reported to achieve this task for more general situations.
To alleviate the PHD interaction via missed detections, a dynamic reweighting method was proposed
in [18], where the components with large updated weights were exploited to compensate the
components with small updated weights. However, this process suffers from the drawbacks that
only the single-frame information is considered, and the total excess weight will be unreasonably
assigned to all of the existing Gaussian components with lower updated weights, including the invalid
birth components and the residual components, which belong to the detected targets, but are not
merged into the corresponding detection components. Although many new techniques have been
incorporated into the CPHD filter to improve its performance and generality [19–21], the spooky
effect remains an inherently unfavorable factor for practical applications of the CPHD-based filter;
because the exaggerated reduction of weights on tracks with missed detections might significantly
degrade tracking performance and even lose track of targets [18,20].

Another critical issue for the CPHD filter is the high computational complexity arising from the
joint propagation of the intensity function and cardinality distribution, which directly depends on the
number of measurements with a cubic relationship [12]. Therefore, when there is a large number of
false alarms or clutters in the monitoring region, the real-time performance of the algorithm would
be worse. At present, the existing solutions mainly resort to gating techniques [22,23] to improve
the computational efficiency of the CPHD filter. The adaptive gating method outlined in [23] shows
some advantages as compared with the standard elliptical gating method. However, the adaptive
characteristic is obtained by directly using the predicted weight of each component to enlarge the
gate sizes, which will result in an excessive increase in the validation region for the component with
a large weight. As a result, more non-target-originated measurements may be selected for the filter.
This goes against the principle of reducing the number of candidate measurements and results in low
overall effectiveness.

In this paper, we propose an improved GM-CPHD filter, which aims at addressing the
aforementioned drawbacks of the original version. In particular, starting from distinguishing between
the detected components and the undetected components, a weight redistribution scheme is introduced
into the update step of the filter to compensate the updated weights of the undetected targets, where the
information in multiple frames (missed detection or consecutive missed detections) is considered
to redistribute the total transferred PHD mass to each undetected target. The resulting filter can
effectively reduce the spooky effect in the GM-CPHD filter. Besides, a principled gating strategy is
also proposed to improve the computational efficiency of the filter, which adaptively enlarges the gate
sizes for undetected targets in the previous iteration to ensure the inclusion of true measurements.
Simulation results demonstrate that the proposed method yields favorable tracking performance and
good robustness in missed detection and a cluttered environment.

The remainder of this paper is organized as follows. Section 2 presents an overview of the RFS
formulation of the MTT problem, together with the CPHD filter and its GM implementation. Section 3
presents the proposed method. Simulation results are presented in Section 4, and conclusions are
drawn in Section 5.
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2. Background

2.1. Random Finite Set Model

In MTT scenarios, the number of targets often changes over time. As a consequence, the
unknown multi-target state generates corresponding measurements whose number is also time-varying
at each time step. The random finite set (RFS) approach provides a mathematically-elegant
treatment of multi-target systems by modeling the collections of target states and measurements
as RFSs. For example, if there are nk targets with states xk,1, xk,2, . . . , xk,nk

and mk measurements
zk,1, zk,2, . . . , zk,mk

at time k, then the RFS representation of the multi-target state and measurements are
respectively defined as [7,11]:

Xk =
{

xk,1, xk,2, . . . , xk,nk

}
∈ F (X ) (1)

Zk =
{

zk,1, zk,2, . . . , zk,mk

}
∈ F (Z) (2)

where F (X ) and F (Z) are the collections of all finite subsets of single-target state space and
single-target observation space, respectively. In general, some clutter measurements may be collected,
and some of the existing and newborn targets may not be detected due to the imperfect detectors.
Given a multi-target state Xk−1 at time k− 1, we consider the multi-target dynamics modeled by:

Xk =

[
∪

ζ∈Xk−1
Sk|k−1(ζ)

]
∪ Γk (3)

where Sk|k−1(ζ) denotes the RFS of survival target at time k that evolved from a target given the state ζ

at the previous time step, and Γk denotes the RFS of newborn targets at time k.
The received measurements by the sensor are modeled by:

Zk =

[
∪

x∈Xk
Θk(x)

]
∪Kk (4)

where Θk(x) denotes the RFS of measurement, which originates from the true target and Kk denotes the
RFS of clutter measurements (or false alarms) at time k. Based on the RFS model and finite set statistics
(FISST) theory, the optimal multi-target Bayesian filter was developed to propagate the posterior
density of the multi-target state recursively in time; further details on mathematical derivations and
analysis can be found in [6].

2.2. CPHD Filter and Its GM Implementation

The CPHD filter can be regarded as a higher-order generalization of the PHD filter, which still
remains the first-order PHD of the multi-target state, but the higher-order information in target
number [8]. Concretely, the CPHD filter jointly propagates the intensity function and the cardinality
distribution to improve the overall estimation accuracy of target number. Let vk−1 denote the posterior
intensity and pk−1 denote the posterior cardinality distribution at time k− 1, then the prediction step
of the CPHD filter is given by [12]:

pk|k−1(n) =
n

∑
j=0

pΓ,k(n− j) ∏
k|k−1

[vk−1, pk−1](j) (5)

vk|k−1(x) =
w

pS,k(ζ) fk|k−1(x|ζ)vk−1(ζ)dζ + γk(x) (6)
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where pΓ,k(·) is the cardinality distribution of birth targets at time k, γk(x) is the intensity of
spontaneous births at time k, pS,k(ζ) is the probability that a target will survive at time k given the
state ζ at the previous time step, fk|k−1(·|ζ) is the transition probability density of a single target and:

∏
k|k−1

[v, p](j) =
∞

∑
l=j

Cl
j

〈
pS,k, v

〉j 〈1− pS,k, v
〉l−j

〈1, v〉l
p(l) (7)

with Cl
j = l!

j!(l−j)! representing the binomial coefficient and 〈·, ·〉 representing the inner product
operation defined between two real-valued functions a and b by 〈a, b〉 =

r
a(x)b(x)dx.

Given the predicted intensity vk|k−1 and the predicted cardinality distribution pk|k−1, the update
step of the CPHD filter is given by:

pk(n) =
Ψ0

k [vk|k−1, Zk](n)pk|k−1(n)〈
Ψ0

k [vk|k−1, Zk], pk|k−1

〉 (8)

vk(x) =

〈
Ψ1

k [vk|k−1, Zk], pk|k−1

〉
〈

Ψ0
k [vk|k−1, Zk], pk|k−1

〉 × [1− pD,k(x)]vk|k−1(x)

+ ∑
z∈Zk

〈
Ψ1

k [vk|k−1, Zk\ {z}], pk|k−1

〉
〈

Ψ0
k [vk|k−1, Zk], pk|k−1

〉 × ψk,z(x)vk|k−1(x)

(9)

where:

Υu
k [v, Z](n) =

min(|Z|,n)

∑
j=0

(
∣∣Z∣∣−j)!pK,k(

∣∣Z∣∣−j) Pn
j+u ×

〈
1− pD,k, v

〉n−(j+u)

〈1, v〉n
ej(Ξk(v, Z)) (10)

ψk,z(x) =
〈1, κk〉
κk(z)

gk(z|x)pD,k(x) (11)

Ξk(v, Z) =
{〈

v, ψk,z
〉

: z ∈ Z
}

(12)

pK,k(·) is the cardinality distribution of clutter at time k; pD,k(x) is the probability of detection for
a target in state x; gk(z|·) is the measurement likelihood of individual targets; κk(z) is the intensity
of clutter measurements; Pn

j = n!
(n−j)! ; and ej(·) is the elementary symmetric function (see [12] for

more details).
It can be observed that the CPHD filter still involves multiple integrals in its recursion and admits

no closed-form solution in general, except the class of linear Gaussian multi-target systems [11,12].
For the linear Gaussian multi-target models, the dynamical model and measurement model of
individual targets are required to follow:

fk|k−1(x
∣∣∣ζ) = N (x; Fk−1ζ, Qk−1) (13)

gk(z|x) = N (z; Hkx, Rk) (14)

where N (·; m, P) denotes a standard Gaussian density with mean m and covariance P, Fk−1 denotes
the state transition matrix, Hk denotes the observation and Qk−1 and Rk denote the covariance of
process noise and observation noise, respectively. Moreover, assuming that the survival probability
and detection probability of each target are state independent and the intensity of birth RFS can be
modeled as:

γk(x) =
Jγ,k

∑
j=1

wj
γ,kN (x; mj

γ,k, Pj
γ,k) (15)
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where the weight wj
γ,k, mean mj

γ,k and covariance Pj
γ,k are the given model parameters. The following

prediction and update steps [12] show how the CPHD filter analytically propagates the multi-target
posterior intensity and the cardinality distribution in time based on the CPHD recursion
Equations (5)–(9).

Prediction: Suppose at time k − 1, given the posterior cardinality distribution pk and the GM
representation of vk as:

vk−1(x) =
Jk−1

∑
i=1

wi
k−1N (x; mi

k−1, Pi
k−1) (16)

The CPHD prediction is given by:

pk|k−1(n) =
n

∑
j=0

pΓ,k(n− j)
∞

∑
l=j

Cl
j pk−1(l)pj

S,k(1− pS,k)l−j (17)

vk|k−1(x) = pS,k

Jk−1

∑
j=1

wj
k−1N (x; mj

S,k|k−1, Pj
S,k|k−1) + γk(x) (18)

where γk(x) is given in Equation (15), and:

mj
S,k|k−1 = Fk−1mj

k−1 (19)

Pj
S,k|k−1 = Fk−1Pj

k−1FT
k−1 + Qk−1 (20)

After the prediction step, vk|k−1 can be rewritten as:

vk|k−1(x) =

Jk|k−1

∑
i=1

wi
k|k−1N (x; mi

k|k−1, Pi
k|k−1) (21)

Update: Given the predicted pk|k−1 and vk|k−1, the CPHD update is given by:

pk(n) =
Υ0

k [wk|k−1, Zk](n)pk|k−1(n)〈
Υ0

k [wk|k−1, Zk], pk|k−1

〉 (22)

vk(x) =

〈
Υ1

k [wk|k−1, Zk], pk|k−1

〉
〈

Υ0
k [wk|k−1, Zk], pk|k−1

〉 × [1− pD,k]vk|k−1(x) + ∑
z∈Zk

Jk|k−1

∑
j=1

wj
k(z)N (x; mj

k(z), Pj
k) (23)

where:

Υu
k [w, Z](n) =

min(|Z|,n)

∑
j=0

(
∣∣Z∣∣−j)!pK,k(

∣∣Z∣∣−j) Pn
j+u ×

(1− pD,k)n−(j+u)

〈1, w〉j+u ej(Λk(w, Z)) (24)

Λk(w, Z) =

{
〈1, κk〉
κk(z)

pD,kwTqk(z) : z ∈ Z
}

(25)

wk|k−1 =
[
w1

k|k−1, · · · , w
Jk|k−1
k|k−1

]T
(26)

qk(z) =
[
q1

k(z), · · · , q
Jk|k−1
k (z)

]T
(27)



Sensors 2016, 16, 1964 6 of 18

qj
k(z) = N (z; η

j
k|k−1, Sj

k|k−1) (28)

η
j
k|k−1 = Hkmj

k|k−1 (29)

Sj
k|k−1 = HkPi

k|k−1HT
k + Rk (30)

wj
k(z) = pD,kwj

k|k−1qj
k(z)×

〈
Υ1

k [wk|k−1, Zk\ {z}], pk|k−1

〉
〈

Υ0
k [wk|k−1, Zk], pk|k−1

〉 〈1, κk〉
κk(z)

(31)

mj
k(z) = mj

k|k−1 + Kj
k

(
z− η

j
k|k−1

)
(32)

Pj
k =

[
I−Kj

kHk

]
Pj

k|k−1 (33)

Kj
k = Pj

k|k−1HT
k

[
Sj

k|k−1

]−1
(34)

More details on the mathematical derivation about the GM-CPHD filter can be found in [12].
In practice, the non-unity probability of detection of an MTT system leads to detection uncertainty.
Although the CPHD filter has the ability to handle misdetections during its filtering iterations,
the spooky effect is undesirable. For the GM-CPHD filter, the influence of the spooky effect is reflected
in gaining or losing the weights of Gaussian components: the weights of the detected targets will
increase, while the weights of the undetected targets will be artificially decreased in proportion to
the estimated target number [17]. Thus, the filter is prone to report multiple estimates from detected
targets in place of the undetected targets and even lose track of targets, which seriously deteriorates
the estimation accuracy and tracking performance.

3. Improved GM-CPHD Filter

3.1. The Proposed GM-CPHD Filter

In the GM representation of the posterior intensity, many Gaussian components will be propagated
and preserved at each time step [12]. Assuming that the posterior intensity vk−1 is approximated
by a GM of the same form as Equation (16) at time k − 1, in order to distinguish between the
confirmed Gaussian components (reported as state estimates) and the tentative components in{

wi
k−1, mi

k−1, Pi
k−1

}Jk−1

i=1
, we mark the parameter of each Gaussian component with a tag β, denoted as

{wi
k−1,β, mi

k−1,β, Pi
k−1,β}

Jk−1

i=1
, where:

β =

{
0 for others
1 for confirmed components

(35)

Note that the idea of using a tag or a label to serve as an indicator has been adopted in [21],
wherein the newborn targets are distinguished from the existing targets to derive novel extensions
of the PHD and CPHD filter. Our work, however, uses this technique to mark the parameter of each
Gaussian component for the development of the subsequent weight redistribution scheme. Then,
vk−1 can be expressed as:

vk−1(x) =
1

∑
β=0

Jk−1

∑
i=1

wi
k−1,βN (x; mi

k−1,β, Pi
k−1,β) (36)
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Besides, considering the possible misdetections for the existing targets, a counter variable nmiss

is also introduced to record how many times the consecutive missed detection happens on each
component. The value of nmiss for each component will be assigned during the filtering iterations.

Prediction: Since the parameters β and nmiss have no influence on the prediction of the posterior
intensity and cardinality distribution, the prediction step is performed according to the original
Equations (17) and (18). The components associated with the existing targets retain their tags and
nmiss at this stage. Meanwhile, β = 0 and nmiss = 0 are assigned to the components arising from γk in
Equation (15). Hence, let r represent the number of the confirmed components; the predicted intensity
can be rewritten as:

vk|k−1(x) =
1
∑

β=0

Jk|k−1

∑
i=1

wi
k|k−1,βN (x; mi

k|k−1,β, Pi
k|k−1,β)

=
r
∑

i=1
wi

k|k−1,1N (x; mi
k|k−1,1, Pi

k|k−1,1) +
Jk|k−1

∑
i=r+1

wi
k|k−1,0N (x; mi

k|k−1,0, Pi
k|k−1,0)

(37)

Update: Given the predicted intensity vk|k−1 and predicted cardinality distribution pk|k−1,
the cardinality update is still computed according to the original Equation (22) without regard to the
parameters β and nmiss. However, for the intensity vk|k−1, the update step is performed in a different
way within the CPHD filtering scheme.

Let vk|k−1(x, 1) denote the intensity associated with {wi
k|k−1,1, mi

k|k−1,1, Pi
k|k−1,1}

r

i=1
and

vk|k−1(x, 0) denote the intensity associated with {wi
k|k−1,0, mi

k|k−1,0, Pi
k|k−1,0}

Jk|k−1−r

i=1
; we have

vk|k−1(x) = vk|k−1(x, 1) + vk|k−1(x, 0). According to Equation (23), the updated posterior intensity
vk consists of two parts: the missed detection update term and the detection update term. Based on
the fact that the spooky effect is mainly caused by the improper update of the undetected targets,
the following update calculations for vk|k−1(x, 0) and vk|k−1(x, 1) are proposed.

For the components in vk|k−1(x, 0), they consist of both the tentative components with negligible
weights and the birth components, which need to be confirmed. Based on the analysis in [18], the total
transferred PHD mass on these components is relatively small, and therefore, we propose to update
this part of intensity via Equation (23) as:

vk(x, 0) = Φmissvk|k−1(x, 0) + ∑
z∈Zk

Jk|k−1−r

∑
j=1

wj
k,0(z)N (x; mj

k,0(z), Pj
k,0) (38)

where wj
k,0(z), mj

k,0(z) and Pj
k,0 are the corresponding updated parameters obtained according to

Equations (31)–(33) for the components with β = 0 and Φmiss is the updating factor for the missed
detection update term and is defined as (for notational convenience):

Φmiss =

〈
Υ1

k [wk|k−1, Zk], pk|k−1

〉
〈

Υ0
k [wk|k−1, Zk], pk|k−1

〉 × [1− pD,k] (39)

In addition, all of these updated components retain the tags of the underlying predicted
components, and nmiss = 0 is assigned to them. Note that the term wk|k−1 (defined by

Equation (26)) in
〈

Υ1
k [wk|k−1, Zk], pk|k−1

〉
and

〈
Υ0

k [wk|k−1, Zk], pk|k−1

〉
of Equation (39) contains all

weights {wi
k|k−1,β}

Jk|k−1

i=1
with both β = 0 and β = 1; thus, we omit explicit reference to the tag β here.

For the components in vk|k−1(x, 1), they contain all confirmed Gaussian components with high
weights that are closely related to true targets [12]. When missed detections occur, the spooky effect
mainly affects the weights of these components. To alleviate this problem, the proposed update process
is implemented by introducing a weight redistribution scheme. First, we need to identify whether
a component has the corresponding measurement in Zk. A close inspection of Equation (23) reveals that
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each component in vk|k−1(x, 1) gives rise to (1 + |Zk|) terms in the updated mixture. Given a confirmed
component characterized by {wi

k|k−1,1, mi
k|k−1,1, Pi

k|k−1,1}, i ∈ {1, 2, . . . , r}, and letting m = 1, . . . , mk
denote the index of a measurement in Zk, we define the summation:

Wi
sum =

mk

∑
m=1

wi
k,1(zk,m) (40)

where wi
k,1(zk,m) represents the updated weight of the i-th component using measurement zk,m ∈ Zk.

According to the updating principle of the GM-CPHD filter [12,16], a target-originated measurement
will generate a significant weight for the corresponding Gaussian component representing the target.
By contrast, clutter tends to generate zero to the updated weights of all components. Due to the
unknown relations between targets and measurements in the CPHD filter, a principled threshold
rule is exploited here, i.e., the component whose Wsum is greater than a threshold Tdet is considered
as a detected component and otherwise is deemed as an undetected component. Note that Tdet
is an empirical parameter for the practical application of our method. Considering the fact that
0 ≤ Wi

sum ≤ 1 holds in general and there exist measurement error and clutter, the smaller the Tdet,
the more detected components tend to be selected. Accordingly, some of these components tend to
have negligible updated weights. Therefore, it is preferable to select the components that make certain
contributions to the underlying targets with respect to the given measurements, and such components
are more likely to be the detected components. To accomplish this, the range of this value is suggested
to be 0.1–0.5, where a relative large value can be used for the tracking scenarios with high measurement
accuracy, and vice versa.

Based on the results above, a weight redistribution method is proposed to compensate the
updated weights of the undetected components. The pseudo-code of the proposed update process for
vk|k−1(x, 1) is presented in Algorithm 1, where the notation zk,0 corresponds to the missed detection of
a component. In fact, when missed detections occur, the true weight of an undetected target cannot
be obtained in the CPHD recursion. As pointed out by [18], the missed detection update part of the
PHD corresponding to detected components arises from the PHD of the undetected components.
Thus, the basic idea behind our method is to determine the total PHD mass Wtr originating from
the undetected components and then redistribute them back to the PHD regions of the undetected
components (the updated components in Gmiss−up of Algorithm 1). Considering that the existence
of detection uncertainty in multi-target environments may lead to missed detections or consecutive
missed detections of multiple targets, in such cases, it is difficult to decide how much the PHD
mass should be assigned to each undetected target. On the other hand, it is reasonable to consider
the information in multiple frames because the deserved PHD of a target with consecutive missed
detections should decrease as the increase of the number of consecutive missed detections.
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Algorithm 1. Pseudo-code for updating the confirmed Gaussian components (at time k > 1)

Given {wi
k|k−1,1, mi

k|k−1,1, Pi
k|k−1,1, ni

miss}
r

i=1
, Zk, the threshold Tdet and the attenuation function

αP(n).
Step 0. Set Gup = {}, Gmiss−up = {} and Wtr = 0.
Step 1. Update computation for detected components and undetected components.

for i = 1, . . . , r
for m = 1, . . . , mk

Compute wi
k,1(zk,m) using (31).

end
Compute Wi

sum using (40).
if Wi

sum ≥ Tdet
Compute mi

k,1(zk,m) and Pi
k,1 using (32)–(33).

m∗ = arg max
m=1,...,mk

(
wi

k,1(zk,m)
)

.

Set βi,m =

{
1 m = m∗

0 ∀m = 1, . . . , mk, m 6= m∗
.

Assign ni,m
miss = 0 for m = 1, . . . , mk.

Gup = Gup ∪ {wi
k,1(zk,m∗), mi

k,1(zk,m∗), Pi
k,1, ni,m∗

miss}
∪{wi

k,0(zk,t), mi
k,0(zk,t), Pi

k,0, ni,t
miss}

mk−1

t=1

.

Wtr = Wtr + Φmisswi
k|k−1,1.

else
ni

miss = ni
miss + 1.

wi
k,1(zk,0) = Φmisswi

k|k−1; mi
k,1(zk,0) = mi

k|k−1; Pi
k,1 = Pi

k|k−1.

Gmiss−up = Gmiss−up ∪
{

wi
k,1(zk,0), mi

k,1(zk,0), Pi
k,1, ni

miss

}
.

end
end

Step 2. Modify the updated weights of the Gaussian components in Gmiss−up.

• Compute αP(nj′
miss) using (41) for all j′ = 1, . . . , d (d is the number of components in

Gmiss−up).

• Normalize all αP(nj′
miss) by α̃P(nj′

miss) =
αP(nj′

miss)
d
∑

j′=1
αP(nj′

miss)

.

for j′ = 1, . . . , d
Compensate the weights of the undetected component by:

wj′

k,1(zk,0) = wj′

k,1(zk,0) + α̃P(nj′
miss)Wtr

end
Output: Gup = Gup ∪Gmiss−up.

For this purpose, we exploit an N-step attenuation function, which can provide different
proportion coefficients for the nmiss of different targets and is formulated as:

αP(nmiss) =


1

exp ((nmiss − NW)/λT) + 1
nmiss ≤ NW

0 nmiss > NW

(41)

where NW is the size of the half-attenuation window, λ is a scaling factor that can be used to adjust the
attenuation rate and T is the sampling period of sensor. Subsequently, the proportion coefficients of
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all undetected targets at each time step are normalized to decide the compensation proportion of the
underlying weight from Wtr (Step 2 of Algorithm 1).

In view of the overall behavior of the spooky effect [17], the proposed method in Algorithm 1
can help to prevent the detected components from gaining extra weights that originate from the PHD
of the undetected targets. Accordingly, the updated weights of the undetected targets are relatively
concentrated in the predicted vicinity of the undetected targets, which are compensated according to
the missed detection information nmiss in multiple frames. Thus, the PHD mass interaction via missed
detections in the CPHD filter is reduced effectively. More importantly, following the argument in [18],
the proposed method has no effect on the cardinality estimation because the global PHD mass remains
unchanged in the weight redistribution scheme.

By combining the vk(x, 0) resulting from (38) and the vk(x, 1) (parameterized by Gup) resulting
from Algorithm 1, the finally updated posterior intensity vk(x) can be written as:

vk(x) = vk(x, 1) + vk(x, 0) =
1

∑
β=0

Jk

∑
j=1

wj
k,βN (x; mj

k,β, Pj
k,β) (42)

where Jk is the number of updated Gaussian components.

Remark 1. When targets really disappear, the proposed method in Algorithm 1 will regard the related components
as undetected components and perform compensation to their weights. Consequentially, the results can help
the filter to reserve the target information, but may lead to a slower response to target disappearance. This is
acceptable because the situation of missed detections and target disappearances are difficult to distinguish within
a few time steps. For practical MTT problems, there always exists a trade-off between alleviating performance
degradation caused by missed detection and providing an excellent performance for track continuity [3,24],
and it is also not advisable to declare target death prematurely. Empirically, considering the inherent inertia of
the CPHD filter in response to cardinality changes [12], 2 ≤ NW ≤ 4 is suggested for the purpose of reducing
the spooky effect and preventing the adverse influence on the response speed to target disappearance. Since our
weight redistribution scheme works only within the half-attenuation window for a given undetected component,
while the dynamic reweighting method [18] tends to persistently assign extra weight to such a component as
long as the component exists, our method will possess certain advantages upon target disappearance, which is
demonstrated by the simulations presented subsequently in this paper.

3.2. Implementation Issues

Mixture component pruning: To keep a reasonable number of mixture components in the
GM-CPHD recursion, some heuristic pruning and merging procedures are necessary, where the
tag β and nmiss of the GM components should be considered. Based on the basic method proposed
in [11], a modified pruning and merging procedure is given in Algorithm 2 to accommodate the
proposed filter. In Algorithm 2, the notation βj is used to represent the tag β associated with the
component whose index is j.

State extraction: The joint estimation of the time-varying number of targets and their individual
states in the GM-CPHD filter involves first estimating the target number Nk by a maximum a posterior
(MAP) estimator [12] and then selecting the corresponding number of Gaussian components with
the largest weights to report their means as the estimated multi-target state. When the estimated
multi-target state X̂k =

{
m1

k , m2
k , . . . , mNk

k

}
is obtained, the tag β = 1 and nmiss = 0 need to be assigned

to the confirmed components whose means are first reported as state estimates.
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Algorithm 2. Pseudo-code for the pruning and merging method

Given {wj
k,βj , mj

k,βj , Pj
k,βj , nj

k,miss}
Jk

i=1
, a truncation threshold Ttrun, a merging threshold Umerg and

a maximum allowable number of Gaussian terms Jmax.
Step 0. Set l = 0 and I = {i = 1, . . . , Jk|wi

k,βi > Ttrun}.

Step 1. repeat
l = l + 1.
j = argmax

i∈I
wi

k,βi .

L = {i ∈ I
∣∣∣∣(mi

k,βi −mj
k,βj )

T
(Pj

k,βj )
−1

(mi
k,βi −mj

k,βj ) ≤ Umerg}.

β̃l = βj, ñl
k,miss = nj

k,miss.
w̃l

k,β̃l = ∑
i∈L

wi
k,βi , m̃l

k,β̃l = 1
w̃l

k,β̃l
∑

i∈L
wi

k,βi mi
k,βi .

Pl
k,β̃l = 1

w̃l
k,β̃l

∑
i∈L

wi
k,βi

(
Pi

k,βi + (m̃l
k,β̃l −mi

k,βi )(m̃l
k,β̃l −mi

k,βi )
T)

.

I = I\L.
Until I = ∅.

• If l > Jmax, select the Gaussian terms {w̃i
k,β̃i , m̃i

k,β̃i , P̃
i
k,β̃i , ñi

k,miss}
Jmax

i=1
with the largest

weights and take l = Jmax.

Output: {w̃i
k,β̃i , m̃i

k,β̃i , P̃
i
k,β̃i , ñi

k,miss}
l

i=1
.

3.3. Gating Strategy

In theory, the GM-CPHD filter has a computational complexity of order O(nk |Zk|3) at each
time step [13,23]. This can be very computationally demanding when a large number of clutter
measurements is generated in the tracking scenarios because of the complicated backgrounds and
the influence of noise. It has been demonstrated that the elliptical gating method [22] is effective to
simplify the filtering update calculations via removing the potential clutter measurements, which can
be formulated as:

zk,m

 ∈ Z̃k if ∃(m, j)
∣∣∣∣[zk,m − g(mj

k|k−1)
]T

S−1
k|k−1

[
zk,m − g(mj

k|k−1)
]T
≤ Tg

/∈ Z̃k otherwise
(43)

where Z̃k is the set of the valid measurements and Tg is the gate threshold. The value of Tg depends
on a given gate probability Pg and the dimension of the measurement nz (see [22] for more details).
The validation region is typically an ellipsoid whose center point is the predicted measurement of
each component. On the basis of Equation (43), an adaptive gating method that directly utilizes
the predicted weights of the Gaussian components to increase the gate thresholds was proposed
in [23], where for a specified component indexed by j, the adaptive gate threshold is given by
T′g = Tg(1 + wj

k|k−1). It is clear that the resulting gate thresholds are always larger than those of
the elliptical gate, and some of them also tend to be excessively enlarged for the components with
significant weights. This effect is not preferable owing to the drawback that more clutter measurements
will be included and hence goes against the optimum solution (in the minimal volume sense for a given
in-gate probability of target-originated measurements [25]). Based on the proposed N-step attenuation
function, the following heuristic gating strategy is proposed to adjust the gate threshold:
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T̂g =


Tg

αP(nj
miss)

βj = 1, nj
miss 6= 0, nj

miss ≤ NW

Tg otherwise

(44)

where the influence of consecutive missed detection is considered for the confirmed GM components.
The basic principle behind the proposed gating method is that the undetected targets in the previous
time step will have a larger statistical error in their predicted measurements than those of the
detected targets to some degree [24]. Therefore, we allow a large gate size, which can be adaptive in
accordance with the degree of missed detection, for the confirmed component with missed detection,
such that it can be more conservative in the region where the corresponding measurement may appear.
Although the proposed gating strategy seems to be relatively conservative as compared with the
adaptive gating method, it is expected to offer comparable robustness in the presence of detection
uncertainty and clutter with a reasonable Tg.

4. Simulation

To evaluate the performance of the proposed GM-CPHD filter, simulations are performed on
two-dimensional scenarios generated according to [12], where the same target motion model and
observation model are adopted, as well as the corresponding noise models. Considering that the
number of targets in the scene has a significant effect on the spooky effect, two multi-target scenarios
with a maximum of five targets and twelve targets, respectively, are designed over the surveillance
region [−1000, 1000] m× [−1000, 1000] m. Due to the existence of target births and deaths, the number
of targets in both scenarios is time varying. The probability of target survival is pS,k = 0.99. As done
in [12], the target birth model follows a Poisson RFS, whose intensity is a priori known. Clutter is
uniformly distributed in the field of view, which is modeled as a Poisson RFS with the average
clutter intensity λc = 0.25× 10−5 m−2 (the average number of clutters is 10 at each scan). Figures 1
and 2 show the true target tracks in Scenarios 1 and 2, respectively, along with the start and stop
positions of each track. Note that there are two targets whose tracks cross at Time Step 50 in Scenario 1.
The optimal sub-pattern assignment (OSPA) distance [26] is used to measure the performance of
different multi-target filters. According to the analysis presented in [26], the metric values are generated
using the OSPA parameters p = 2 and c = 100.
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Figure 1. True target tracks of Scenario 1 in the xy-plane; the start/end points for each track are denoted
by •/�, respectively.
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Figure 2. True target tracks of Scenario 2 in the xy-plane; the start/end points for each track are denoted
by •/�, respectively.

4.1. Evaluation of Different CPHD Filters

In this part, we compare the performance of the proposed GM-CPHD filter without gating,
the P-GM-CPHD filter, with those of the standard GM-CPHD filter [12] and the dynamic reweighting
GM-CPHD filter (DR-GM-CPHD) [18] via Monte Carlo (MC) simulations. Assuming that the targets
are measured by a sensor with sampling period T = 1 s, the parameters Ttrun = 1× 10−5, Jmax = 100
and Umerg = 4 are used in all of these filters [12]. In addition, the detection threshold Tdet = 0.2 is
used in our method, and the sizes of the time fading window and scaling factor are NW = 3 and
λ = 0.8, respectively.

To verify the performance of the P-GM-CPHD filter, 500 Monte Carlo (MC) runs are performed
on the fixed target tracks presented in Scenarios 1 and 2, but with independently generated clutter
and measurements for each trial. For comparison, the corresponding simulations are also performed
using the standard GM-CPHD filter and DR-GM-CPHD filter. Figure 3 gives the statistical results of
the OSPA distance for different filters, where the detection probability pD,k = 0.90 and clutter intensity
λc = 0.25× 10−5 m−2 are used during these simulations. It can be seen that the P-GM-CPHD filter
outperforms the GM-CPHD filter and DR-GM-CPHD filter on the overall miss distance. The lower
OSPA distance indicates high estimation accuracy in terms of both cardinality and multi-target state.
The improved estimation performance is mainly attributed to the effective inhibition of the spooky
effect, which is unfavorable for detecting new targets (new targets appear at Time Steps 1, 20 and
30 in Scenario 1 and at Time Steps 1, 10, 20 and 30 in Scenario 2) and maintaining the tracks of the
existing targets. A closer examination of the results in Figure 3 reveals that the proposed weight
redistribution scheme only has a slight influence on the filter with respect to the response speed to
target disappearance (targets disappear at Time Step 70 in Scenario 1, and at Time Steps 70, 80 and
90 in Scenario 2), and the resulting OSPA distance around the time steps of target disappearance is
very close to that of the standard GM-CPHD filter. By contrast, the dynamic reweighting method
in [18] performs worse than our method and the GM-CPHD filter. As said before, the reason is that the
dynamic reweighting method always assigns the excess weights to the components associated with the
disappeared targets at each time step unless such components are removed by the pruning procedure.
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Figure 3. Optimal sub-pattern assignment (OSPA) distance versus time for the three filters: (a) the results
obtained from Scenario 1; (b) the results obtained from Scenario 2. P, proposed; DR, dynamic reweighting.

In addition, we also investigate the performance of the filters under consideration by increasing
the clutter intensity to λc; the resulting time-averaged OSPA distances against clutter intensities are
shown in Figure 4. As expected, the OSPA distance increases with higher clutter intensities. Moreover,
the results show that the DR-GM-CPHD filter exhibits unreliability when dealing with the scenarios
where there exist heavy clutter and a large number of targets, while the P-GM-CPHD filter still yields
the best performance in terms of estimation accuracy and robustness. This means that our method has
high reliability for multi-target tracking in the presence of clutter and detection uncertainty.
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Figure 4. OSPA distance versus varying clutter intensity for the three filters (pD,k = 0.90): (a) the results
obtained from Scenario 1; (b) the results obtained from Scenario 2.

To investigate the influence of missed detection, the tracking performances of the three filters are
examined against different detection probabilities under Scenarios 1 and 2 via 500 MC simulations.
The resulting time-averaged OSPA distances versus various probabilities of detection under the
condition of fixed λc are shown in Figure 5. Generally, the low probability of detection leads
to an increase in OSPA distance. However, it can be seen from Figure 5 that the performance
improvement by using the DR-GM-CPHD filter is limited for most cases, and the filter even
causes performance degradation under Scenario 2 as compared with the standard GM-CPHD filter.
By contrast, the superiority of the P-GM-CPHD filter is remarkable, which exhibits the best reliability
among these methods. Thus, it can be said that the proposed method is more effective in dealing with
the spooky effect.
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Figure 5. Average OSPA distance versus varying detection probability for the three filters
(λc = 0.25× 10−5 m−2): (a) the results obtained from Scenario 1; (b) the results obtained from Scenario 2.
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4.2. Evaluation of Different Gating Methods

To compare the performance of the elliptical gating method [22], the adaptive gating method [23]
and the proposed gating method for the GM-CPHD filter, a comprehensive evaluation is performed
using the P-GM-CPHD filter, but with different gating methods for varying clutter intensities and
detection probabilities. The measurement selection error, defined as the difference between the number
of the true measurements, that of the selected measurements at each time step and the time-averaged
OSPA distance are taken as the metrics. The time-averaged OSPA distance and measurement selection
error versus the clutter intensity are shown in Figure 6. The time-averaged OSPA distance and
measurement selection error versus the detection probability are shown in Figure 7. Note that all of
these results are obtained by using Scenario 1, and the basic gate probability is set to Pg = 1− 10−4 [22]
for the implementation of the three gating methods.

Sensors 2016, 16, 1964  16 of 19 

 

4.2. Evaluation of Different Gating Methods 

To compare the performance of the elliptical gating method [22], the adaptive gating  
method [23] and the proposed gating method for the GM-CPHD filter, a comprehensive evaluation 
is performed using the P-GM-CPHD filter, but with different gating methods for varying clutter 
intensities and detection probabilities. The measurement selection error, defined as the difference 
between the number of the true measurements, that of the selected measurements at each time step 
and the time-averaged OSPA distance are taken as the metrics. The time-averaged OSPA distance 
and measurement selection error versus the clutter intensity are shown in Figure 6. The time-
averaged OSPA distance and measurement selection error versus the detection probability are shown 
in Figure 7. Note that all of these results are obtained by using Scenario 1, and the basic gate 
probability is set to 

g
  41 10P  [22] for the implementation of the three gating methods. 

 

Figure 6. Tracking performance versus varying clutter intensity ( k , 0.90Dp ): (a) time averaged OSPA 

distance versus varying clutter intensity; (b) measurement selection error versus varying clutter intensity. 

 

Figure 7. Tracking performance versus varying detection probability ( .    5 20 25 10 mc ): (a) time 

averaged OSPA distance versus varying detection probability; (b) measurement selection error versus 
varying detection probability. 

0.5 0.75 1 1.25 1.5
20

25

30

35

Clutter intensity 

 T
im

e 
av

er
ag

ed
 O

SP
A

 (m
) 

 

 

Elliptical
Adaptive
Proposed

0.5 0.75 1 1.25 1.5
0

1

2

3

4

5

Clutter intensity 

M
ea

su
re

m
en

t s
el

ec
tio

n 
er

ro
r (a)

(b)
10

-5

10
-5

0.75 0.8 0.85 0.9 0.95
15

20

25

30

35

40

45

Detection probability 

 T
im

e 
av

er
ag

ed
 O

SP
A

 (m
) 

 

 

Elliptical
Adaptive
Proposed

0.75 0.8 0.85 0.9 0.95
0

2

4

6

8

Detection probability

M
ea

su
re

m
en

t s
el

ec
tio

n 
er

ro
r

(b)

(a)

Figure 6. Tracking performance versus varying clutter intensity (pD,k = 0.90): (a) time averaged OSPA
distance versus varying clutter intensity; (b) measurement selection error versus varying clutter intensity.
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Figure 7. Tracking performance versus varying detection probability (λc = 0.25× 10−5 m−2): (a) time
averaged OSPA distance versus varying detection probability; (b) measurement selection error versus
varying detection probability.
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It is shown that the high clutter rates and low probability of detections will cause performance
degradation, and this phenomenon becomes increasingly evident with the increase of detection
uncertainty. The results in Figures 6 and 7 demonstrate that the proposed gating method gives a better
performance, which is very similar to the adaptive gating method. It is known that the gate sizes
of the latter are always larger than the standard elliptical gating method and our method to ensure
the inclusion of true target-originated measurements. Accordingly, the improper enlargement of
the gate size will allow more measurements to be selected and, hence, result in large measurement
selection error. This in turn limits the improved performance in computational efficiency. By contrast,
the proposed gating strategy makes it possible to achieve a favorable result between the ability of
selecting true measurements and that of shielding clutter measurements without deteriorating the
filter performance. In addition, to present an intuitive indication of the improvement in computational
efficiency, the average processing time (corresponding to one iteration in MATLAB implementation) of
the P-GM-CPHD filter and that of the proposed gating P-GM-CPHD filter are given in Table 1.

Table 1. Average processing times of the proposed filters (s).

Average Clutter Intensity Processing Time (Gating) Processing Time (No Gating)

0.75× 10−5 m−2 2.30 3.18
1.00× 10−5 m−2 2.65 4.87
1.25× 10−5 m−2 3.22 8.35

5. Conclusions

This paper proposed an improved GM-CPHD filter, which aims at addressing the spooky effect in
the original filter for MTT. More specifically, we proposed a weight redistribution scheme for the filter,
which provides an ability to keep the concentration of PHD mass for the undetected targets based
on the information in multiple frames. Besides, by exploiting the information of missed detections
recorded during the filtering process, an efficient gating strategy that can adaptively enlarge the gate
sizes was also proposed to alleviate the computational burden of the proposed filter in cluttered
scenarios. Simulations verified that the proposed filter can achieve significant improvements in
estimation accuracy and robustness to detection uncertainty, thereby implying an enhanced tracking
performance. Moreover, the proposed gating method also showed some advantages over the existing
solutions. As future work, extending the proposed filter to a multiple passive sensors system will be
an important topic.
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