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Abstract: Elevated concentration of homocysteine (Hcy) in the blood plasma, hyperhomocysteinemia
(HHcy), has been implicated in various disorders, including cardiovascular and neurodegenerative
diseases. Accumulating evidence indicates that pathophysiology of these diseases is linked with
mitochondrial dysfunction. In this review, we discuss the current knowledge concerning the effects
of HHcy on mitochondrial homeostasis, including energy metabolism, mitochondrial apoptotic
pathway, and mitochondrial dynamics. The recent studies suggest that the interaction between
Hcy and mitochondria is complex, and reactive oxygen species (ROS) are possible mediators of
Hcy effects. We focus on mechanisms contributing to HHcy-associated oxidative stress, such as
sources of ROS generation and alterations in antioxidant defense resulting from altered gene
expression and post-translational modifications of proteins. Moreover, we discuss some recent
findings suggesting that HHcy may have beneficial effects on mitochondrial ROS homeostasis and
antioxidant defense. A better understanding of complex mechanisms through which Hcy affects
mitochondrial functions could contribute to the development of more specific therapeutic strategies
targeted at HHcy-associated disorders.

Keywords: homocysteine; hyperhomocysteinemia; mitochondria; heart; brain; oxidative stress; ROS

1. Introduction

Homocysteine (Hcy) is a sulfur-containing amino acid (Figure 1) formed during metabolism
of methionine, an essential amino acid derived from dietary proteins. The metabolic pathway
involved in Hcy formation is important due to formation of S-adenosylmethionine (SAM), a source of
methyl group for methylation reactions, such as DNA methylation or formation of catecholamines.
S-adenosylhomocysteine (SAH), which is formed from SAM after transfer of methyl group to various
substrates, is hydrolyzed by SAH hydrolase to Hcy and adenosine. Released Hcy can be remethylated
to methionine via folate and vitamin B12-dependent reaction and/or catabolized to amino acid cysteine
by the vitamin B6-dependent pathway. Deficiencies in vitamins and/or enzymes involved in Hcy
metabolism as well as some pathological conditions result in elevated blood plasma concentrations
of Hcy, called hyperhomocysteinemia (HHcy). Based on fasting Hcy concentrations, HHcy may
be classified as mild (15–30 µmol/L), intermediate (30–100 µmol/L), and severe (>100 µmol/L) [1].
Severe HHcy occurs as a result of genetically determined deficiencies of enzymes involved in Hcy,
B12, and folate metabolism and is manifested by mental retardation, osteoporosis, vascular damage,
and other complications [2]. Although severe HHcy is rare, mild or intermediate elevations of
Hcy are common in the general population, and their major causes seem to be less severe genetic
mutations and variations and deficiencies in folate, vitamin B6, and vitamin B12. Mild/intermediate
HHcy was shown to be an independent risk factor for many disorders, including neurodegenerative
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and cardiovascular diseases [3,4]. Elevated plasma levels of Hcy have been reported in patients with
Alzheimer’s disease; senile, vascular, and other dementias [5]; Parkinson’s disease [6]; cardiovascular
disease (CVD) [7]; and heart failure [8,9] and might be a casual factor for disease. Despite large evidence
for the involvement of Hcy in these and other diseases, the related pathomechanisms is still not well
characterized and are thought to be complex and multifactorial. Numerous experimental studies
have shown that Hcy can induce cellular and molecular oxidative injury through reactive oxygen
species (ROS) [10–14]. Several mechanisms have been suggested for Hcy-induced oxidative stress,
including (i) direct ROS formation via autooxidation in the presence of transition metals, (ii) activation
of oxidant systems, and (iii) inhibition of antioxidant systems [15–17]. Impairment of epigenetic control
mechanisms of gene expression, such as DNA methylation, histone modification, and non-coding
RNA, is another possible mechanism of Hcy toxicity [18]. Beyond this, Hcy can change structure
and function of proteins by binding to their lysine or cysteine residues; these post-translational
modifications (PTMs) are known as N- and S-homocysteinylation, respectively. These mechanisms
of Hcy-mediated injury are not mutually exclusive, since altered expression and PTMs of proteins
involved in prooxidant/antioxidant pathways can lead to increased cellular oxidative stress and,
oppositely, free radicals can induce alterations in gene expression and oxidative PTMs of proteins.
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Mitochondria are essential for maintaining cellular homeostasis and function. They play important
roles in many cellular processes, including energy production by oxidative phosphorylation,
biosynthetic and catabolic pathways, calcium homeostasis, redox homeostasis, and regulation of
cell survival and death [19]. Mitochondria are highly dynamic organelles that undergo constant
structural and functional remodeling. Dynamic processes such as fusion, fission, movement within
the cell, and targeted degradation via mitophagy are essential for maintaining mitochondrial quality
and normal cell function [20]. Moreover, regulation of cell function is dependent on communication
between mitochondria and other cellular structures, such as the endoplasmic reticulum (ER), plasma
membrane, and nucleus [21].

Processes in the brain and heart are critically dependent on mitochondrial function, and a large
body of evidence suggests that mitochondrial disorders play an important role in the pathogenesis of
the above-mentioned neurodegenerative and cardiovascular diseases [22]. In this review, we discuss the
role of hyperhomocysteinemia in mitochondrial dysfunction and focus on ROS as possible mediators
of altered cellular functions.

2. Homocysteine Transport

Studies on human aortic endothelial cells have shown that Hcy transport across the plasma
membrane is mediated by several amino acid transport systems from the solute carrier (SLC) superfamily,
including sodium-dependent systems aspartate and glutamate (XAG), alanine–serine–cysteine (ASC)
and alanine (A), and sodium-independent large neutral branched-chain or aromatic amino acid
system L [23,24]. Until now no mitochondrial transporter for HCy in mammalian cells has been
identified. Studies on yeast and plant mitochondria have shown that glutamate carriers Ymc2p
and BOU can transport L-homocysteine sulfinate but to a much lesser extent than glutamate [25].
Inner mitochondrial membrane contains the S-adenosylmethionine carrier (SAMC), coded by the
SLC25A26 gene. SAMC imports S-adenosylmethionine (SAM) into the mitochondrial matrix, where it
is required for methylation reactions. S-adenosylhomocysteine (SAH), produced from SAM after
removal of a methyl group, is transported from the matrix to the cytosol by SAMC in exchange for
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SAM [26]. Studies on cervical cancer cells CaSki have shown that overexpression of SLC25A26 is
associated with accumulation of cytosolic Hcy, increased ROS level, and impaired mitochondrial
oxidative phosphorylation [27]. These results suggest that SAMC may play a role in the accumulation
of Hcy in mitochondria.

3. Homocysteine and Mitochondrial Energy Metabolism

Mitochondria play an essential role in energy production via the electron transport chain (ETC)
coupled with oxidative phosphorylation (OXPHOS), the tricarboxylic acid cycle (TCA), and fatty acid
β-oxidation. The mitochondrial ETC in mammals is located in the inner mitochondrial membrane and
consist of five complexes. Complexes I–IV function as electron carriers. The series of redox reactions
provide free energy, which drives pumping of protons into the intermembrane space creating an
H+ electrochemical gradient–membrane potential (Ψm) across the inner mitochondrial membrane.
In turn, this membrane potential is used as a source of energy to synthesize ATP by complex V
(ATP synthase). Moreover, membrane potential is also the driving force for mitochondrial Ca2+ uptake,
which is in physiological conditions essential for regulation of mitochondrial metabolism [28]. However,
excessive Ca2+ accumulation by mitochondria stimulates the generation of reactive oxygen species
(ROS) and leads to the opening of the mitochondrial permeability transition pore (mPTP), which is
closed under physiological conditions. Opening of the mPTP is associated with an abrupt increase in
the permeability of the inner membrane, membrane depolarization, inhibition of the ETC and ATP
synthesis, matrix swelling, and activation of cell death pathways [29]. Alterations in the ETC and
OXPHOS and related disturbances in Ca2+ homeostasis and ROS production are closely associated with
pathological disorders, such as ischemia–reperfusion injury, myocardial infarction, heart failure [30]
and neurodegenerative diseases, Parkinson’s disease [31], Alzheimer’s disease [32], and stroke [33].

3.1. Hcy and Electron Transport Chain

A large body of evidence indicates that HHcy results in decreased mitochondrial respiration
associated with reduced activities of ETC complexes and diminished ATP production. One of the first
finding was in rat kidney mitochondria, where Hcy inhibited respiration and impaired membrane
potential generation, ATP production, and Ca2+ handling [34]. In the heart, the effect of Hcy on
the function of ETC complexes was evaluated in both HCy-treated tissue slices and animal models
of HHcy [35–37]. Decreased activities of ETC complexes have been observed, notably of complex
II [36,37], complex III [36], and complex IV [35–37]. It is well-documented that HCy and its metabolites
affect activities of ETC complexes also in brain. Homocysteic acid (HCA) is an oxidized metabolite of
Hcy, and administration of Hcy is associated with elevated plasma levels of HCA [38]. Elevated HCA
levels were detected, e.g., in hippocampus and cortex of a mice model of Alzheimer’s disease [39].
Seizures induced by bilateral intracerebroventricular infusion of HAC resulted in the inhibition of
complex I activity in the cerebral cortex of immature rats [40]. These authors later demonstrated
that inhibition of complex I activity persists during the long periods of survival after seizures [41].
The inhibition of complex I was selective, since the activities of complex II and complex IV were
unaffected. Recent studies on animal models of chronic HHcy showed inhibition of ETC complexes I,
IV, and V in hippocampus [42,43], complex IV in amygdala [44], and complexes IV and V in cerebral
cortex [42]. Complex II activity increased while complex IV activity decreased in amygdala of rats after
chronic mild HHcy [45]. Studies showing ETC complex I inhibition, motor abnormalities, reduction
of striatal dopamine level and degeneration of midbrain dopaminergic neurons in rats after infusion
of Hcy into substantia nigra [46], and chronic Hcy treatment of mice [47] suggest involvement of
Hcy-related dysfunction of ETC in Parkinson’s disease. There is also evidence that Hcy treatment of
the rat ischemic brain inhibits activities of complexes I–III [48].
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3.2. Hcy and Tricarboxylic Acid Cycle

Much less is known regarding the effect of HHcy on TCA, the final common pathway for the
oxidation of major nutrients. Activities of citrate synthase and aconitase were measured in rat cortex
following seizures induced by homocysteic acid [40,41]. While citrate synthase, which catalyzes
the initial reaction of TCA cycle, remained unaffected, aconitase, which is highly susceptible to
ROS-induced damage, was inhibited. Decreased activity and reduced protein levels of aconitase
and the UQCRC2 component of complex III was demonstrated in Hcy-treated neural stem cells [49].
Overexpression of these proteins by cell transfection with pcDNA-aconitase or pcDNA-UQCRC2
partly restored cell viability reduced by Hcy treatment. Succinate dehydrogenase (SDH), which is the
only TCA enzyme bound to the inner mitochondrial membrane, was studied in cardiac mitochondria.
While SDH activity was shown to be inhibited in heart slices incubated for 1 h with Hcy [37], activity
in rats chronically treated with Hcy increased [35]. Upregulation of isocitrate dehydrogenase (IDH),
the key regulatory enzyme of TCA, was shown in hearts of rats with mild HHcy [36], indicating
adaptive response to slight increase (~13 µmol/L) in Hcy.

Overall, these studies suggest that HHcy deteriorates mitochondrial energy metabolism by
decreasing activities and protein contents of ETC components. However, data on the role of individual
components of ETC in Hcy-induced dysfunction are conflicting, and very little is known about effects
of HHcy on other mitochondrial components of energy metabolism.

4. Homocysteine and Mitochondrial Oxidative Stress

4.1. Hcy and Mitochondrial ROS Generation

Using chemiluminescence and fluorescence detection methods the increased mitochondrial ROS
generation at elevated Hcy was shown in isolated myocardial mitochondria [35,50], cultured cardiac [51]
and neural [49] cells, and heart slices [37]. Significant increases in mitochondrial ROS generation
were also observed in brain cortex and hippocampus of rats chronically treated with Hcy [40,42,52].
However, it is worth mentioning that in several studies, the opposite effect of HHcy on heart or brain
was observed. Studies on isolated mitochondria showed that Hcy increases ROS production in kidney
while ROS production in heart and brain was decreased [53]. Similarly, acute treatment of neuron cells
with high concentration of Hcy, which inhibited mitochondrial respiration, reduced the ROS level [54].
Moreover, ROS production and/or oxidative damage was unchanged in brain [45] and heart [36] of
rats with chronic mild HHcy. As mentioned earlier, there are several potential mechanisms explaining
how Hcy can modulate ROS production, including auto-oxidation of Hcy and altered gene expression
and/or post-translational modifications of prooxidant/antioxidant proteins. A number of mechanisms
through which Hcy can affect ROS levels and their different significance under distinct conditions may
explain these controversial findings.

In the presence of transition metal catalysts, Hcy can generate superoxide radicals (•O2
–) and

H2O2 through slow auto-oxidation [55]. Generation of H2O2 by auto-oxidation of Hcy in the
presence of copper has been implicated in injury to cultured endothelial cells and development of
atherosclerosis [56]. Although the auto-oxidation of Hcy has been proposed as the mechanism of
Hcy-induced ROS generation and mitochondrial dysfunction in the brain [57], direct evidence is
lacking. In cardiac mitochondria, generation of superoxide radicals and hydrogen peroxide was induced
immediately after initiation of mitochondrial respiration with succinic acid as a substrate [35,50].
This finding suggests that Hcy induces increases in superoxide leak from ETC. Under physiological
conditions, leak of superoxide is low and it can activate redox-sensitive signaling pathways, resulting
in activation of the antioxidant defense system and low or no oxidative stress. However, an imbalance
in ETC can increase mitochondrial ROS concentrations and oxidative stress near the sites of their
generation, thus strengthening ETC dysfunction and leading to a vicious cycle of ROS generation.
One of the likely mechanisms underlying alterations in activities of ETC complexes and increased ROS
leakage under HHcy is protein post-translational modification. Hcy thiolactone, a reactive metabolite
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of Hcy, can covalently bind to ε-amino group of lysine residues in proteins, and this modification,
known as N-homocysteinylation, causes structural and functional changes of proteins [58,59]. Protein
N-homocysteinylation was mainly investigated in plasma proteins, but several studies suggest that
it contributes to vascular injury [4], impairs neural cell functions [60], increases neurotoxicity of
amyloid β-peptide [61], and plays a role in neurodegeneration [62]. To date, a very limited number
of studies has attempted to address the issue of N-homocysteinylation of mitochondrial proteins.
Cytochrome c is a heme-containing protein bound to the outer leaflet of the inner mitochondrial
membrane where it transfers electrons from ETC complex III to complex IV. Four lysine residues
of cytochrome c were shown to be susceptible to N-homocysteinylation, and this modification can
affect the redox state of protein [63]. Recent spectroscopic studies have shown that homocysteinylated
cytochrome c undergoes conformational alterations leading to activation of peroxidase-like activity
of this electron carrier [64]. Increased N-homocysteinylation of cytochrome c was observed during
cerebral ischemia–reperfusion injury, and this modification seems to play a role in autophagy [65].
Data on N-homocysteinylation of other ETC components are lacking. In contrast to Hcy thiolactone,
Hcy itself binds to cysteine residues in proteins, forming stable covalent disulfide bonds. This process,
known as S-homocysteinylation, can also potentially alter the structure and function of proteins [66],
but its role in mitochondrial injury is unknown. One study that aimed to identify proteins which could
be potential targets for S-homocysteinylation due to their structural and physicochemical properties
did not reveal any mitochondrial protein [67].

Overall, these findings suggest a complex relationship between HHcy and ROS formation. Current
data indicate a crucial role of ETC in mitochondrial ROS; however, it remains unclear which factors
determine whether HHcy results in elevated or diminished ROS formation.

4.2. Hcy and Antioxidant Enzymes

Several studies have indicated that oxidative stress at HHcy is linked to an altered antioxidant
defense system. As described above, ROS that escape from the ETC are mostly eliminated by
antioxidants; however, attenuated antioxidant defense is associated with increased levels of ROS
and oxidative stress [68]. The key enzymes that comprise the antioxidant defense system include
superoxide dismutases (SODs), catalase, and glutathione peroxidase (GPx). Mitochondrial SOD
(MnSOD or SOD2) dismutates superoxide radicals generated in the ETC to H2O2 and O2. Hydrogen
peroxide is removed by two types of enzymes, namely glutathione peroxidase (GPx) and catalase,
which are less abundant in the brain and heart. Interestingly, chronic HHcy in mice was associated with
elevated activity of cytosolic Cu/ZnSOD and catalase in the nucleus caudatus putamen and substantia
nigra [47]. Similarly, chronic mild HHcy in rats increased activities of SOD, catalase, and GPx in the
amygdala and prefrontal cortex [45]. Increases in antioxidant defense in these tissues was associated
with upregulation of Nrf2 (see below) and elimination of ROS production as detected by unchanged
2′,7′-dihydrodichlorofluorescein (DCFH) oxidation. MnSOD activity was shown to be unchanged
in the cortex and hippocampus of rats chronically treated with Hcy [42]. In contrast, an imbalance
in antioxidant enzymes was observed in the heart. While activity and/or content of MnSOD and
catalase were decreased in Hcy-treated groups [35,37], GPx activity was elevated [37]. Moreover,
the total antioxidant power was significantly attenuated in H9C2 cardiac cells treated with Hcy [69].
Homocysteine-induced decreases in antioxidant defense were documented in vascular injury [4,70–73].
Studies on aorta have shown decreased expression of thioredoxin (Trx) and peroxiredoxin (Prx) [74].
In mammalian cells, Trx and Prx are present in the cytosol and different organelles, including
mitochondria. They are antioxidants and efficient reductants of protein disulfide bonds, playing a
critical role in the control of protein function through their redox state and protein repair [75].

Expression of enzyme antioxidants is regulated by the Keap1-Nrf2 signaling pathway, which is
recognized as the major regulator of cellular redox homeostasis. Under increased ROS generation,
Nrf2 escapes from Keap1-mediated degradation and translocates to the nucleus where it activates
transcription of genes encoding antioxidant and detoxification enzymes [76]. Recent studies showed
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that Nrf2 signaling also plays a role in mitochondrial homeostasis, and Nrf2 function is impaired in
mitochondrial disorders [76,77]. Hcy-induced decreases in Nrf2 expression in parallel with reduced
expression/activity of antioxidant enzymes and increased ROS production were documented in several
studies [52,73,78]. Surprisingly, a recent study has demonstrated that the Nrf2–GPx axis is activated
by acute Hcy treatment, while chronic HHcy results in great decline in Nrf2 and GPx7 protein
levels [79]. The authors have shown that Hcy activates Nrf2 through oxidation of its inhibitory protein
Keap1, while inhibition of Nrf2 pathway under chronic HHcy may result from altered methylation of
DNA [79]. Activation of the Nrf2-regulated cascade was confirmed by recent studies on retinal cells.
Acute exposure of cultured Müller glial cells to Hcy led to upregulation of Nrf2; increased expression of
antioxidant genes, including catalase, Sod2, and Gpx1; and concomitant decreases in ROS and oxidative
stress [80]. Further studies from this group have shown that unlike the wild type Müller cells, cells with
the deleted Nrf2 gene have significantly reduced basal mitochondrial respiration after exposure to
HHcy [81]. Müller cells are the major glial cells in retina, serving as support cells for adjacent neurons.
Since HHcy is implicated in the pathogenesis of retinal degenerative diseases, including glaucoma,
these data suggest that at least during early stages of HHcy, the protective response is mediated by the
Nrf2-regulated antioxidant pathway and mitochondrial energy metabolism.

Similarly, current data on the role of HHcy in antioxidant defense are controversial. As suggested,
diverse mechanisms through which Hcy can modulate the Keap1-Nrf2 pathway under different
conditions may result in activation or inhibition of antioxidant enzymes.

4.3. Hcy and Hydrogen Sulfide

Catabolism of Hcy via amino acid cysteine is associated with the formation of the small gaseous
molecule hydrogen sulfide (H2S). H2S is a bioactive compound controlling various physiological
functions in cardiovascular and cerebrovascular systems [16,82]. It exerts its beneficial effects via
vascular smooth muscle cell relaxation, upregulation of antioxidant defense, inhibition of ROS
generation, preservation of mitochondrial function, and inhibition of apoptosis [16,83]. Under HHcy,
the bioavailability of H2S is disturbed; however, controversy exist as to whether the H2S level
decreases or increases [16,35,84,85]. It has been suggested that a change in the ratio of H2S to
Hcy is a more valuable parameter than the absolute concentration changes of H2S and Hcy
levels [85]. Few studies have examined the effect of H2S supplementation on mitochondrial functions
in HHcy. Protective effects of exogenous H2S on Hcy-induced mitochondrial dysfunction were
demonstrated in brain. In mitochondria from cortex and hippocampus of hyperhomocysteinic rats,
H2S supplementation improved mitochondrial respiratory rate, restored Ψm and prevented apoptosis,
restored activities of antioxidant enzymes, decreased mitochondrial ROS formation, and attenuated
oxidative damage [42,52,57]. Activation of antioxidant enzymes by H2S was mediated via normalization
of the Keap1-Nrf2 signaling pathway [52]. Protective effect of H2S against Hcy-induced mitochondrial
dysfunction and oxidative damage and restoration of MnSOD activity was also demonstrated in
cultured brain endothelial cells and heart of hyperhomocysteinic rats [35,86]. Due to the beneficial
effects of H2S on mitochondrial and cellular functions, H2S-releasing compounds are emerging as
potential therapeutics for HHcy-associated diseases. The possibilities of H2S-releasing therapeutics as
well as Hcy-lowering strategies are discussed elsewhere [85].

4.4. Hcy and ROS Producing Enzymes

Studies on vascular tissue have also shown that besides suppressing antioxidant defense,
Hcy can alter activities of ROS-producing enzymes, such as NADPH oxidase (Nox) and nitric oxide
synthase [70,74,86,87], increasing mitochondrial NO and ROS generation [74,86]. Under physiologic
conditions, when produced at low levels, NO plays important roles in redox signaling, regulation of
mitochondrial function, and cytoprotection [88]. However, when NO and •O2

− are produced in excess,
they react to form peroxynitrite (ONOO−), a powerful oxidant that oxidizes aromatic and sulfhydryl
group-containing compounds and plays a crucial role in endothelial and vascular dysfunction [89].
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On the other hand, overproduction of NO alone was shown to play a beneficial role in HHcy. Increased
NO production due to overexpression of inducible NO synthase (iNOS) prevented endothelial cell
injury induced by Hcy via S-nitrosylation of Hcy to form S-nitrosohomocysteine (S-NOHcy), which is
unable to induce ROS generation and oxidative damage [90]. These findings may at least partly explain
the conflicting role of iNOS in CVD [91,92].

4.5. Hcy and Expression of Proteins Involved in Energy Metabolism

It is evident from these studies that at least in some tissues, the alterations in antioxidant
and prooxidant enzymes may contribute to Hcy-mediated oxidative stress and mitochondrial
dysfunction. Some of these studies [37,74,79] also suggest that loss of activity of antioxidant enzymes
induced by Hcy may result from altered enzyme content due to altered expression of their genes.
S-adenosylhomocysteine (SAH), a precursor of Hcy, is a potent inhibitor of transmethylation reactions
dependent on S-adenosylmethionine (SAM) due to reduced SAM/SAH ratio. It has been shown
that HHcy is associated with a parallel increase in SAH and a decrease in methylation capacity
resulting in hypomethylation of DNA [15,93]. Hcy-mediated hypomethylation of DNA and histone
modifications impair epigenetic control of gene expression and may contribute to pathogenesis of
various HHcy-related human diseases [18]. Recent comprehensive data mining analyses in human
and mouse tissues revealed that 15 nuclear-encoded genes for ETC complex proteins are suppressed in
HHcy [94]. Among the identified genes, eleven were of ETC complex I, one of complex IV and two
of complex V. Since 4 of the 11 Hcy-suppressed genes of complex I encode core subunits, which are
indispensable for activity, the authors suggest that dysfunction of complex I due to alterations in gene
expression may play a primary role in Hcy-induced pathogenicity. This study has also shown that
heart and brain are among the tissues which are highly responsive to HHcy.

4.6. Hcy and Mitochondrial Oxidative Damage

As has been mentioned earlier, imbalance among ETC complexes may result in the increased
leakage of ROS and oxidative damage. Substantial evidence for HHcy-associated mitochondrial
oxidative damage has been obtained in a variety of tissues in different experimental settings.
Mitochondrial DNA (mtDNA) is a double stranded, circular DNA encoding only 13 of all mitochondrial
proteins, which are the subunits of ETC complexes I, III, IV, and V. Unlike nuclear DNA, mtDNA is not
protected by histone proteins and has less effective repair systems and therefore is more susceptible
to oxidative damage and mutations. Numerous diseases have been related to mtDNA mutations,
including neurodegenerative diseases, CVD, and aging [95]. Few studies have examined the effects
of HHcy on mtDNA. Intermediate HHcy, caused by 4-week folate deprivation, resulted in reduced
mtDNA content; the increase of 8-oxodG, a marker of DNA oxidative damage; and an increase in the
frequency of mtDNA deletions in various rat tissues, including brain, heart, and liver [96]. Interestingly,
in the liver tissue the increases in expression of mRNA for nuclear-encoded and mitochondrial-encoded
subunits of complex IV and cytochrome c were observed. This suggests that an adaptive mechanism
is activated in some tissues to compensate mtDNA damage. Methionine restriction, associated with
a decrease in Hcy, resulted in decreases in mitochondrial ROS production and oxidative damage to
mtDNA detected by 8-oxodG [97].

Due to their abundance in cells, proteins are likely to be primary targets of ROS. Protein
modifications, such as sulfhydryl group oxidation, tyrosine nitration, and carbonyl formation,
have been described in heart [37], brain [41], and vascular tissues [98] under HHcy. Generally,
oxidative modifications of proteins result in structural changes and a loss of function. Despite strong
evidence that oxidative damage to mitochondrial proteins is involved in HHcy-induced pathogenesis,
oxidatively-modified proteins were not yet identified.
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5. Homocysteine and Mitochondrial Apoptotic Pathway

ROS and mitochondrial damage promote the intrinsic, also called mitochondrial, apoptotic
pathway. Decreases in membrane potential and ATP content and increased mitochondrial membrane
permeability allow for translocation of pro-apoptic factors, such as cytochrome c, apoptosis inducing
factor (AIF), and Smac/DIABLO, from mitochondria to cytosol, leading to the activation of the caspase
signaling pathway and apoptosis. The mitochondrial apoptotic pathway is regulated by the ratio of
pro-apoptotic and anti-apoptotic proteins of the B-cell lymphoma protein 2 (Bcl-2) family. Pore forming
pro-apoptotic Bcl-2 proteins, Bak and Bax, can induce permeabilization of the outer mitochondrial
membrane, depolarization of the inner membrane, and release of pro-apoptic factors. In viable healthy
cells, the pore forming pro-apoptotic proteins are neutralized by anti-apoptic proteins of the Bcl-2
family, such as Bcl-2 or Bcl-xl. In response to multiple types of cellular stress, pro-apoptic proteins of
the Bcl-2 family, also termed BH3 domain-only proteins, such as PUMA, Bad, or Noxa, are activated at
different levels (e.g., transcription or post-translation modifications). The activation results in binding
of BH3 domain-only proteins to anti-apoptotic proteins followed by Bax and/or Bak activation and
consequent initiation of mitochondrial apoptosis [99].

5.1. Hcy and Pro-Apoptic and Anti-Apoptic Proteins

Results from isolated H9c2 cardiomyocytes revealed that the effect of Hcy on cell viability
is concentration-dependent [100]. The lower concentration of Hcy (0.1 mmol/L) resulted in an
increase in Ψm and ATP concentration. The intermediate concentration of 1.1 mmol/L Hcy caused
morphological alterations of mitochondria with slight decreases in Ψm and ATP content. In cells
incubated with 2.7 mmol/L Hcy, further decreases in ∆Ψm and ATP content occurred, leading to
apoptosis and necrosis. Recent studies on H9c2 cells by other authors have confirmed these findings,
showing that HHcy results in up-regulation of Bad and Bax and down-regulation of Bcl-2 [51,69].
Several experimental studies have shown that also in neuronal and vascular cells, HHcy induces
apoptosis via disturbed mitochondrial homeostasis and oxidative stress [57]. Decreased mitochondrial
membrane potential, upregulation of pro-apoptotic and downregulation of anti-apoptotic proteins,
release of cytochrome c, or activation of caspase-9 and its downstream caspase-3 was shown in
different cell lines, including hippocampal neuronal cells [78,101,102], cerebellar granule cells [103],
neuroblastoma cells [57,104,105], brain endothelial cells [86,106], human umbilical vein endothelial
cells (HUVECs) [69,72,73,107–109], heart microvascular endothelial cells [110], aortic endothelial
cells [111], as well as in animal models [112,113]. Studies on hippocampal neuronal cells [101] suggest
that DNA damage and activation of poly-ADP-ribose polymerase (PARP), involved in DNA repair,
are the early events in the Hcy-induced neurotoxicity required for the subsequent mitochondrial
ROS generation and decline in inner mitochondrial membrane potential. Hcy-induced neuronal
cell death is thought to be mediated via the activation of glutamate N-methyl-D-aspartate receptors
(NMDARs) [114,115]. Earlier studies on cerebellar granule cells showed that mitochondrial alterations
play a similar role in acute HHcy and glutamate-induced neurotoxicity, but HHcy toxicity is less
dependent on calcium imbalance [103]. Later studies confirmed that Hcy-mediated cell death is different
from glutamate NMDAR-induced excitotoxic cell death and showed that it involves a sustained
low-level increase in intracellular Ca2+ and subsequent activation of the extracellular signal-regulated
kinase-mitogen-activated protein (ERK-MAP) kinase pathway [116–118]. NMDR-mediated Ca2+

accumulation was also shown in Hcy-treated brain endothelial cells, and disturbed Ca2+ homeostasis
seems to play a role in decreased mitochondrial membrane potential and mitochondrial dysfunction [86].
Studies on hippocampal neurons suggest that Hcy-induced excessive Ca2+ influx activates calcineurin,
calcium/calmodulin-dependent protein phosphatase. Calcineurin dephosphorylates pro-apoptic Bad
to stimulate its translocation from cytosol to mitochondria and induction of apoptosis [102]. Of note,
studies on vascular cells (HUVECs) suggest that besides activating the mitochondrial apoptotic
pathway, Hcy can stimulate cell death by inhibiting the PI3K/Akt/eNOS signaling pathway, which is
involved in prevention of apoptosis [73,119].
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A key role in the control of apoptosis is played by the p53 protein. After activation by a variety of
stress factors, p53 controls both intrinsic and extrinsic apoptic pathways at multiple steps, including
expression of pro- and anti-apoptic proteins [120]. In HUVECs, Hcy-induced upregulation of p53
resulted in increased expression of proapoptic Noxa protein and apoptosis [90]. Noxa is a proapoptic
BH3 domain-only protein, a member of the Bcl-2 family, which promotes permeabilization of the outer
mitochondrial membrane, the commitment step to cell death via the intrinsic apoptic pathway. Besides
the BH3 domain, the Noxa protein also has a mitochondrial targeting domain (MTD). The BH3 domain
is responsible for inducing apoptosis; however, recent studies have shown that MTD of Noxa can cause
necrotic cell death by opening mPTP through voltage-dependent anion channels (VDACs) of the outer
mitochondrial membrane [121]. Moreover, MTD was shown to cause endoplasmic reticulum (ER)
damage, indicating the role of endoplasmic reticulum (ER) stress in Noxa-induced cell death [122].

5.2. Hcy and Mitochondria-ER Crosstalk

ER and mitochondria are joined together with a specialized set of redox-sensitive proteins at
specific domains, termed mitochondria-associated membranes (MAMs) [123,124]. Mitochondria–ER
contacts play important roles in various functions, such as Ca2+ handling, redox signaling, apoptosis,
ER stress, and regulation of mitochondrial morphology. ER stress is an important factor in mitochondrial
dysfunction. ER is the major intracellular source of calcium, and excessive Ca2+ release from ER,
induced, e.g., by mitochondrial ROS, causes Ca2+ overload in mitochondria and triggers apoptosis.
The RNA-dependent protein kinase (PKR)-like ER kinase (PERK) is an ER-transmembrane protein
and a key sensor of ER stress. Sustained activation of PERK caused by severe or persistent ER stress
results in upregulation of a pro-apoptic transcription factor C/EBP homologous protein (CHOP),
and activation of nuclear factor kappaB (NF-κB), triggering the apoptotic pathway [125]. Involvement
of mitochondria–ER crosstalk in Hcy-induced apoptosis was shown in HUVECs [21,87]. Prolonged
treatment of HUVECs with Hcy increased expression of Nox4, which is expressed primarily in
mitochondria, activated PERK, upregulated CHOP, activated NF-κB, and induced apoptosis. Inhibition
of Nox4 resulted in decreased formation of ROS and alleviated apoptosis and ER stress. Moreover,
inhibition of the PERK pathway partly alleviated Hcy-induced apoptosis. The 78-kDa glucose-regulated
protein GRP78, also known as BiP, is the major ER chaperone, which plays a critical role in cell
survival and death. Grp78 is activated after ER stress as part of unfolded protein response (UPR),
which is regulated by several signaling pathway, including PERK [126,127]. Several studies on
myocardial, brain, and endothelial tissues or cells have shown that HHcy is associated with upregulated
expression of Grp78 and other proteins involved in mitochondria–ER crosstalk and apoptosis, such as
CHOP, caspase 12, p53 up-regulated modulator of apoptosis (PUMA), 60 kDa heat shock protein,
and VDAC [35,36,70,87,105,128,129]. As mentioned earlier, mitochondria–ER crosstalk can modulate
mitochondrial morphology. Swollen mitochondria with fractured and dissolved cristae and a dilated
ER membrane network were observed in methionine overload-induced HHcy in rats as well as in
H9C2 cardiac cells treated with Hcy [128]. Similar alterations in the ultrastructure of mitochondria and
ER occurred in cells treated with thapsigargin or tunicamycin, inducers of ER stress, indicating the role
of Hcy-induced ER stress in mitochondrial damage. Interestingly, H2S supplementation decreased
expression of ER stress-related proteins and attenuated Hcy-induced ER stress [128].

5.3. Hcy, Inflammation and Apoptosis

Inflammation plays an important role in vascular disease and hypertension. Studies of Tyagi’s
group have shown that HHcy promotes vascular inflammation via activation of Toll-like receptor 4
(TLR-4), leading to initiation of mitochondrial apoptotic cell death. Mutations of TLR-4 attenuated
chronic vascular inflammation and mitochondrial dysfunction in hyperhomocysteinic mice [113,130].
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6. Homocysteine and Mitochondrial Dynamics

Mitochondrial dynamics is an important mechanism of regulation of mitochondrial morphology
and function. This term encompasses mitochondrial fusion, fission, transportation, and selective
degradation—mitophagy [20,131]. In mammalian cells, mitochondrial fusion is controlled by mitofusins
1 and 2 (Mfn 1 and Mfn2, respectively) located in the outer mitochondrial membrane, and optic atrophy
1 (Opa1) protein, which regulates fusion of inner membranes. Mitochondrial fission is mediated
by cytosolic GTPase dynamin-related protein (DRP1), which binds to outer membrane receptors,
like Fis 1, to constrict both outer and inner membranes and divide the mitochondrion into two daughter
organelles [20,131]. By fission, a daughter mitochondrion, which may contain deleterious or damaged
components, is removed via mitophagy. In mouse brain endothelial cells, Hcy upregulated DRP1,
Mfn2, and autophagy marker LC-3 [106]. Studies on retinal ganglion neurons show Hcy-induced
disbalance of mitochondrial fusion and fission. Using cystathione-β-synthase-deficient mice as a
model of moderate HHcy, increased expression of Opa 1 and Fis 1 proteins in retinal ganglion neurons
was demonstrated [132]. The alterations in Opa 1 and Fis 1 levels were associated with increased
mitochondrial fission as suggested by the increased number of small mitochondria [132]. HHcy-induced
mitophagy was demonstrated in cardiac mitochondria [133]. NMDA receptor 1 is present not only
in mammalian neurons but also in cardiomyocytes and endothelial cells, and as mentioned earlier,
has affinity to Hcy. Studies on mice with cardiac-specific deletion of this receptor suggest that
Hcy activates mitochondrial matrix metalloproteinase-9 (mtMMP-9) and induces translocation of
connexin-43 (Cxn-43) to the mitochondria, resulting in mitophagy [133].

7. Conclusions

Mitochondria fulfill many essential cellular functions, and mitochondrial disorders are associated
with development of various neurological and cardiovascular diseases. The evidence summarized
in the present review indicates that homocysteine, a widely accepted risk factor for these diseases,
affects normal mitochondrial structure and function, including energy production, mitochondrial
dynamics, and cell survival and death (Figure 2). Currently available data provide evidence that
ROS are important mediators of Hcy injury. However, detailed molecular links between Hcy-induced
oxidative stress and mitochondrial dysfunction are not fully understood, and several questions remain
unanswered. Although ETC appears to be a major source of ROS under HHcy, individual ROS
target-modified biomolecules were not yet identified. Several studies reviewed in this article suggest
that HHcy might be not only detrimental but also beneficial for mitochondrial ROS homeostasis
and cell viability. The reason for this discrepancy might be related to multiple pathways through
which Hcy can modify cell functions and their diverse impact in different conditions and/or tissues.
Future research should define conditions at which HHcy stimulates protective mechanisms, activates
gene expression, ameliorates antioxidant defense, and reduces mitochondrial oxidative stress. Better
knowledge about the mechanisms that mediate effects of Hcy on mitochondria might be helpful for
the development of more specific therapeutic strategies for neurological and cardiovascular diseases.
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Abbreviations

CVD cardiovascular disease
DCFH 2′,7′-dihydrodichlorofluorescein
DRP1 dynamin-related protein
ER endoplasmic reticulum
ETC electron transport chain
GPx glutathione peroxidase
Hcy homocysteine
HHcy hyperhomocysteinemia
HUVECs human umbilical vein endothelial cells
MAMs mitochondria-associated membranes
mtDNA mitochondrial DNA
mPTP mitochondrial permeability transition pore
MTD mitochondrial targeting domain
NMDAR N-methyl-D-aspartate receptor
NOS NO synthase
OXPHOS oxidative phosphorylation
PTMs post-translational modifications
ROS reactive oxygen species
SAH S-adenosylhomocysteine
SAM S-adenosylmethionine
SOD superoxide dismutase
TCA tricarboxylic acid cycle
VDAC voltage-dependent anion channel
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I activity during long periods of survival after seizures induced in immature rats by homocysteic acid.
Neurochem. Int. 2010, 56, 394–403. [CrossRef]

42. Kumar, M.; Sandhir, R. Hydrogen sulfide attenuates hyperhomocysteinemia-induced mitochondrial
dysfunctions in brain. Mitochondrion 2020, 50, 158–169. [CrossRef] [PubMed]

43. Wyse, A.T.S.; Sanches, E.; Dos Santos, T.; Siebert, C.; Kolling, J.; Netto, C. Chronic mild hyperhomocysteinemia
induces anxiety-like symptoms, aversive memory deficits and hippocampus atrophy in adult rats:
New insights into physiopathological mechanisms. Brain Res. 2020, 1728, 146592. [CrossRef]

44. Kolling, J.; Scherer, E.B.S.; Siebert, C.; Longoni, A.; Loureiro, S.; Weis, S.N.; Pettenuzzo, L.; Wyse, A.T.S.
Severe hyperhomocysteinemia decreases respiratory enzyme and Na+-K+ ATPase activities, and leads to
mitochondrial alterations in rat amygdala. Neurotox. Res. 2015, 29, 408–418. [CrossRef]

45. Dos Santos, T.M.; Siebert, C.; De Oliveira, M.F.; Manfredini, V.; Wyse, A.T.S. Chronic mild Hyperhomocysteinemia
impairs energy metabolism, promotes DNA damage and induces a Nrf2 response to oxidative stress in rats
brain. Cell. Mol. Neurobiol. 2019, 39, 687–700. [CrossRef]

46. Bhattacharjee, N.; Borah, A. Oxidative stress and mitochondrial dysfunction are the underlying events of
dopaminergic neurodegeneration in homocysteine rat model of Parkinson’s disease. Neurochem. Int. 2016,
101, 48–55. [CrossRef] [PubMed]

47. Bhattacharjee, N.; Paul, R.; Giri, A.; Borah, A. Chronic exposure of homocysteine in mice contributes to
dopamine loss by enhancing oxidative stress in nigrostriatum and produces behavioral phenotypes of
Parkinson’s disease. Biochem. Biophys. Rep. 2016, 6, 47–53. [CrossRef] [PubMed]

48. Chen, S.; Dong, Z.; Zhao, Y.; Sai, N.; Wang, X.; Liu, H.; Huang, G.; Zhang, X. Homocysteine induces
mitochondrial dysfunction involving the crosstalk between oxidative stress and mitochondrial pSTAT3 in rat
ischemic brain. Sci. Rep. 2017, 7, 6932. [CrossRef]

49. Zhang, X.-M.; Zhao, Y.-Q.; Yan, H.; Liu, H.; Huang, G. Inhibitory effect of homocysteine on rat neural stem
cell growth in vitro is associated with reduced protein levels and enzymatic activities of aconitase and
respiratory complex III. J. Bioenerg. Biomembr. 2017, 49, 131–138. [CrossRef]

50. Chang, L.; Xu, J.; Yu, F.; Zhao, J.; Tang, X.; Tang, C. Taurine protected myocardial mitochondria injury induced
by hyperhomocysteinemia in rats. Amino Acids 2004, 27, 37–48. [CrossRef]

51. Fan, C.D.; Sun, J.Y.; Fu, X.T.; Hou, Y.J.; Li, Y.; Yang, M.F.; Sun, B.L.; Fu, X.Y. Astaxanthin attenuates
homocysteine-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and
oxidative damage. Front. Physiol. 2017, 8, 1041. [CrossRef]

52. Kumar, M.; Sandhir, R. Neuroprotective efect of hydrogen sulfide in hyperhomocysteinemia is mediated
through antioxidant action involving Nrf2. NeuroMolec. Med. 2018, 20, 475–490. [CrossRef] [PubMed]

http://dx.doi.org/10.3389/fnins.2016.00538
http://www.ncbi.nlm.nih.gov/pubmed/3670284
http://dx.doi.org/10.1007/s00726-007-0011-8
http://dx.doi.org/10.1007/s11010-015-2588-7
http://www.ncbi.nlm.nih.gov/pubmed/26472730
http://dx.doi.org/10.1016/j.nutres.2017.01.007
http://dx.doi.org/10.1371/journal.pone.0008593
http://dx.doi.org/10.1016/j.expneurol.2006.12.010
http://dx.doi.org/10.1016/j.neuint.2009.11.011
http://dx.doi.org/10.1016/j.mito.2019.11.004
http://www.ncbi.nlm.nih.gov/pubmed/31751655
http://dx.doi.org/10.1016/j.brainres.2019.146592
http://dx.doi.org/10.1007/s12640-015-9587-z
http://dx.doi.org/10.1007/s10571-019-00674-8
http://dx.doi.org/10.1016/j.neuint.2016.10.001
http://www.ncbi.nlm.nih.gov/pubmed/27732886
http://dx.doi.org/10.1016/j.bbrep.2016.02.013
http://www.ncbi.nlm.nih.gov/pubmed/28955861
http://dx.doi.org/10.1038/s41598-017-07112-z
http://dx.doi.org/10.1007/s10863-016-9688-2
http://dx.doi.org/10.1007/s00726-004-0096-2
http://dx.doi.org/10.3389/fphys.2017.01041
http://dx.doi.org/10.1007/s12017-018-8505-y
http://www.ncbi.nlm.nih.gov/pubmed/30105650


Int. J. Mol. Sci. 2020, 21, 7698 15 of 19

53. Gomez, J.; Sanchez-Roman, I.; Gómez, A.; Sanchez, C.; Suarez, H.; Lopez-Torres, M.; Barja, G. Methionine and
homocysteine modulate the rate of ROS generation of isolated mitochondria in vitro. J. Bioenerg. Biomembr.
2011, 43, 377–386. [CrossRef]

54. Zhang, T.; Huang, D.; Hou, J.; Li, J.; Zhang, Y.; Tian, M.; Li, Z.; Tie, T.; Cheng, Y.; Su, X.; et al. High-concentration
homocysteine inhibits mitochondrial respiration function and production of reactive oxygen species in
neuron cells. J. Stroke Cerebrovasc. Dis. 2020, 29, 105109. [CrossRef] [PubMed]

55. Hogg, N. The effect of cist(e)ine on the auto-oxidation of homocysteine. Free Radic. Biol. Med. 1999, 27, 28–33.
[CrossRef]

56. Starkebaum, G.; Harlan, J.M. Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation
from homocysteine. J. Clin. Investig. 1986, 77, 1370–1376. [CrossRef]

57. Kumar, M.; Ray, R.S.; Sandhir, R. Hydrogen sulfide attenuates homocysteine-induced neurotoxicity by
preventing mitochondrial dysfunctions and oxidative damage: In vitro and in vivo studies. Neurochem. Int.
2018, 120, 87–98. [CrossRef] [PubMed]

58. Jakubowski, H. Protein homocysteinylation: Possible mechanism underlying pathological consequences of
elevated homocysteine levels. FASEB J. 1999, 13, 2277–2283. [CrossRef]

59. Sharma, G.S.; Kumar, T.; Singh, L.R. N-Homocysteinylation induces different structural and functional
consequences on acidic and basic proteins. PLoS ONE 2014, 9, e116386. [CrossRef] [PubMed]

60. Akchiche, N.; Bossenmeyer-Pourié, C.; Kerek, R.; Martin, N.; Pourié, G.; Koziel, V.; Helle, D.;
Alberto, J.M.; Ortiou, S.; Camadro, J.; et al. Homocysteinylation of neuronal proteins contributes to
folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal
neuronal cells. FASEB J. 2012, 26, 3980–3992. [CrossRef] [PubMed]

61. Khodadadi, S.; Riazi, G.H.; Ahmadian, S.; Hoveizi, E.; Karima, O.S.; Aryapour, H. Effect of N-homocysteinylation
on physicochemical and cytotoxic properties of amyloid β-peptide. FEBS Lett. 2011, 586, 127–131. [CrossRef]

62. Sharma, G.S.; Kumar, T.; Dar, T.A.; Singh, L.R. Protein N-homocysteinylation: From cellular toxicity to
neurodegeneration. Biochim. Biophys. Acta. 2015, 1850, 2239–2245. [CrossRef]

63. Perła-Kaján, J.; Marczak, Ł.; Kaján, L.; Skowronek, P.; Twardowski, T.; Jakubowski, H. Modification by
homocysteine thiolactone affects redox status of cytochromec. Biochemistry 2007, 46, 6225–6231. [CrossRef]

64. Sharma, G.S.; Singh, L.R. Conformational status of cytochrome c upon N-homocysteinylation: Implications
to cytochrome c release. Arch. Biochem. Biophys. 2017, 614, 23–27. [CrossRef] [PubMed]

65. Tyagi, N.; Qipshidze, N.; Munjal, C.; Vacek, J.C.; Metreveli, N.; Givvimani, S.; Tyagi, S.C. Tetrahydrocurcumin
ameliorates homocysteinylated cytochrome-c mediated autophagy in hyperhomocysteinemia mice after
cerebral ischemia. J. Mol. Neurosci. 2012, 47, 128–138. [CrossRef]

66. Silla, Y.; Varshney, S.; Ray, A.; Basak, T.; Zinellu, A.; Sabareesh, V.; Carru, C.; Sengupta, S. Hydrolysis of
homocysteine thiolactone results in the formation of protein-Cys-S-S-homocysteinylation. Proteins 2019, 87,
625–634. [CrossRef]

67. Silla, Y.; Sundaramoorthy, E.; Talwar, P.; Sengupta, S. S-linked protein homocysteinylation: Identifying
targets based on structural, physicochemical and protein–protein interactions of homocysteinylated proteins.
Amino Acids 2013, 44, 1307–1316. [CrossRef] [PubMed]

68. Tan, B.L.; Norhaizan, M.E.; Liew, W.-P.-P.; Rahman, H.S. Antioxidant and oxidative stress: a mutual interplay
in age-related diseases. Front. Pharmacol. 2018, 9, 1162. [CrossRef] [PubMed]

69. Aminzadeh, A.; Mehrzadi, S. Cardioprotective effect of levosimendan against homocysteine-induced
mitochondrial stress and apoptotic cell death in H9C2. Biochem. Biophys. Res. Commun. 2018, 507, 395–399.
[CrossRef] [PubMed]

70. Wu, S.; Gao, X.; Yang, S.; Meng, M.; Yang, X.; Ge, B. The role of endoplasmic reticulum stress in endothelial
dysfunction induced by homocysteine thiolactone. Fundam. Clin. Pharmacol. 2015, 29, 252–259. [CrossRef]
[PubMed]

71. Aminzadeh, A.; Mehrzadi, S. Melatonin attenuates homocysteine-induced injury in human umbilical vein
endothelial cells. Fundam. Clin. Pharmacol. 2018, 32, 261–269. [CrossRef]

72. Fan, X.; Wang, E.; He, J.; Zhang, L.; Zeng, X.; Gui, Y.; Sun, Q.; Song, Y.; Yuan, H. Ligustrazine protects
homocysteine-induced apoptosis in human umbilical vein endothelial cells by modulating mitochondrial
dysfunction. J. Cardiovasc. Transl. Res. 2019, 12, 591–599. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10863-011-9368-1
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105109
http://www.ncbi.nlm.nih.gov/pubmed/32912537
http://dx.doi.org/10.1016/S0891-5849(99)00029-5
http://dx.doi.org/10.1172/JCI112442
http://dx.doi.org/10.1016/j.neuint.2018.07.010
http://www.ncbi.nlm.nih.gov/pubmed/30055195
http://dx.doi.org/10.1096/fasebj.13.15.2277
http://dx.doi.org/10.1371/journal.pone.0116386
http://www.ncbi.nlm.nih.gov/pubmed/25551634
http://dx.doi.org/10.1096/fj.12-205757
http://www.ncbi.nlm.nih.gov/pubmed/22713523
http://dx.doi.org/10.1016/j.febslet.2011.12.018
http://dx.doi.org/10.1016/j.bbagen.2015.08.013
http://dx.doi.org/10.1021/bi602463m
http://dx.doi.org/10.1016/j.abb.2016.12.006
http://www.ncbi.nlm.nih.gov/pubmed/28003096
http://dx.doi.org/10.1007/s12031-011-9695-z
http://dx.doi.org/10.1002/prot.25681
http://dx.doi.org/10.1007/s00726-013-1465-5
http://www.ncbi.nlm.nih.gov/pubmed/23400378
http://dx.doi.org/10.3389/fphar.2018.01162
http://www.ncbi.nlm.nih.gov/pubmed/30405405
http://dx.doi.org/10.1016/j.bbrc.2018.11.049
http://www.ncbi.nlm.nih.gov/pubmed/30446219
http://dx.doi.org/10.1111/fcp.12101
http://www.ncbi.nlm.nih.gov/pubmed/25623775
http://dx.doi.org/10.1111/fcp.12355
http://dx.doi.org/10.1007/s12265-019-09900-6
http://www.ncbi.nlm.nih.gov/pubmed/31359360


Int. J. Mol. Sci. 2020, 21, 7698 16 of 19

73. Wu, B.; Yue, H.; Zhou, G.H.; Zhu, Y.Y.; Wu, T.H.; Wen, J.F.; Cho, K.W.; Jin, S.N. Protective effects of
oxymatrine on homocysteine-induced endothelial injury: Involvement of mitochondria-dependent apoptosis
and Akt-eNOS-NO signaling pathways. Eur. J. Pharmacol. 2019, 864, 172717. [CrossRef]

74. Tyagi, N.; Qipshidze, N.; Sen, U.; Rodriguez, W.; Ovechkin, A.; Tyagi, S.C. Cystathionine beta synthase gene
dose dependent vascular remodeling in murine model of hyperhomocysteinemia. Int. J. Physiol. Pathophysiol.
Pharmacol. 2011, 3, 210–222.

75. Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free. Radic. Biol. Med. 2014, 66, 75–87. [CrossRef]
[PubMed]

76. Holmström, K.M.; Kostov, R.V.; Dinkova-Kostova, A.T. The multifaceted role of Nrf2 in mitochondrial
function. Curr. Op. Toxicol. 2016, 1, 80–91. [CrossRef] [PubMed]

77. Kaidery, N.A.; Ahuja, M.; Thomas, B. Crosstalk between Nrf2 signaling and mitochondrial function in
Parkinson’s disease. Mol. Cell. Neurosci. 2019, 101, 103413. [CrossRef] [PubMed]

78. Tan, M.; Ouyang, Y.; Jin, M.; Chen, M.; Liu, P.; Chao, X.; Chen, Z.; Chen, X.; Ramassamy, C.; Gao, Y.; et al.
Downregulation of Nrf2/HO-1 pathway and activation of JNK/c-Jun pathway are involved in homocysteic
acid-induced cytotoxicity in HT-22 cells. Toxicol. Lett. 2013, 223, 1–8. [CrossRef]

79. Wu, X.; Zhang, L.; Miao, Y.; Yang, J.; Wang, X.; Wang, C.-C.; Feng, J.; Wang, L. Homocysteine causes vascular
endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis. Redox Biol. 2019, 20, 46–59.
[CrossRef]

80. Navneet, S.; Cui, X.; Zhao, J.; Zhao, J.; Kaidery, N.A.; Thomas, B.; Bollinger, K.E.; Yoon, Y.; Smith, S.B. Excess
homocysteine upregulates the NRF2-antioxidant pathway in retinal Müller glial cells. Exp. Eye Res. 2019,
178, 228–237. [CrossRef]

81. Navneet, S.; Zhao, J.; Wang, J.; Mysona, B.; Barwick, S.; Kaidery, N.A.; Saul, A.; Kaddour-Djebbar, I.;
Bollag, W.B.; Thomas, B.; et al. Hyperhomocysteinemia-induced death of retinal ganglion cells: The role of
Müller glial cells and NRF2. Redox Biol. 2019, 24, 101199. [CrossRef]

82. Stein, A.; Bailey, S.M. Redox biology of hydrogen sulfide: Implications for physiology, pathophysiology,
and pharmacology. Redox Biol. 2013, 1, 32–39. [CrossRef] [PubMed]

83. Wen, Y.-D.; Wang, H.; Kho, S.-H.; Rinkiko, S.; Sheng, X.; Shen, H.-M.; Zhu, Y.Z. Hydrogen sulfide protects
HUVECs against hydrogen peroxide induced mitochondrial dysfunction and oxidative stress. PLoS ONE
2013, 8, e53147. [CrossRef] [PubMed]

84. Guo, W.; Kan, J.-T.; Cheng, Z.-Y.; Chen, J.-F.; Shen, Y.-Q.; Xu, J.; Wu, D.; Zhu, Y.-Z. Hydrogen sulfide as an
endogenous modulator in mitochondria and mitochondria dysfunction. Oxidative Med. Cell. Longev. 2012,
2012, 878052. [CrossRef] [PubMed]

85. Yang, Q.; He, G.-W. Imbalance of homocysteine and H2S: Significance, mechanisms, and therapeutic promise
in vascular injury. Oxidative Med. Cell. Longev. 2019, 2019, 7629673. [CrossRef]

86. Kamat, P.K.; Kalani, A.; Tyagi, S.C.; Tyagi, N. Hydrogen sulfide epigenetically attenuates homocysteine-
induced mitochondrial toxicity mediated through NMDA receptor in mouse brain endothelial (bEnd3) cells.
J. Cell. Physiol. 2014, 230, 378–394. [CrossRef]

87. Zhang, Z.; Wei, C.; Zhou, Y.; Yan, T.; Wang, Z.; Li, W.; Zhao, L. Homocysteine induces apoptosis of human
umbilical vein endothelial cells via mitochondrial dysfunction and endoplasmic reticulum stress. Oxid. Med.
Cell. Longev. 2017, 2017, 5736506. [CrossRef] [PubMed]

88. Larsen, F.J.; Schiffer, T.A.; Weitzberg, I.; Lundberg, J.O. Regulation of mitochondrial function and energetics
by reactive nitrogen oxides. Free. Radic. Biol. Med. 2012, 53, 1919–1928. [CrossRef] [PubMed]

89. Tyagi, N.; Moshal, K.S.; Ovechkin, A.V.; Rodriguez, W.; Steed, M.; Henderson, B.; Roberts, A.M.; Joshua, I.G.;
Tyagi, S.C. Mitochondrial mechanism of oxidative stress and systemic hypertension in hyperhomocysteinemia.
J. Cell. Biochem. 2005, 96, 665–671. [CrossRef]

90. Lee, S.-J.; Kim, K.-M.; Namkoong, S.; Kim, C.K.; Kang, Y.-C.; Lee, H.; Ha, K.-S.; Han, J.-A.; Chung, H.-T.;
Kwon, Y.-G.; et al. Nitric oxide inhibition of homocysteine-induced human endothelial cell apoptosis
by down-regulation of p53-dependent noxa expression through the formation of S-nitrosohomocysteine.
J. Biol. Chem. 2004, 280, 5781–5788. [CrossRef]
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