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Muscle degeneration has been consistently identified as an independent risk factor for high mortality in both aging populations
and individuals suffering from neuromuscular pathology or injury. While there is much extant literature on its quantification and
correlation to comorbidities, a quantitative gold standard for analyses in this regard remains undefined. Herein, we hypothesize that
rigorously quantifying entire radiodensitometric distributions elicits more muscle quality information than average values reported
in extant methods. This study reports the development and utility of a nonlinear trimodal regression analysis method utilized on
radiodensitometric distributions of upper leg muscles from CT scans of a healthy young adult, a healthy elderly subject, and a
spinal cord injury patient. The method was then employed with a THA cohort to assess pre- and postsurgical differences in their
healthy and operative legs. Results from the initial representative models elicited high degrees of correlation to HU distributions,
and regression parameters highlighted physiologically evident differences between subjects. Furthermore, results from the THA
cohort echoed physiological justification and indicated significant improvements in muscle quality in both legs following surgery.
Altogether, these results highlight the utility of novel parameters from entire HU distributions that could provide insight into the

optimal quantification of muscle degeneration.

1. Introduction

Muscle degeneration, characterized by the progressive loss of
muscle mass, strength, and function, has been consistently
identified as an independent risk factor for high mortality
in both aging populations and individuals suffering from
neuromuscular pathology or injury [1-7]. When associated
with aging, this phenomenon is defined as sarcopenia, and
while its prevalence has been readily linked with profound
decreases in both physical activity and vitality, a precise,
quantitative method for defining its diagnosis and etiology
remains unknown [8-10]. However, despite the absence of
a universally accepted definition, extant clinical literature
commonly acknowledges the association of sarcopenia with
the loss of both skeletal muscle structure and function,
and many mechanisms have been implicated to govern
these changes [11-20]. In general, the noncontractile tissue

infiltration typically associated with muscle degeneration, in
accordance with a loss of muscle mass, confers an increased
risk for frailty, disability, reduced mobility, and eventual hos-
pitalization [21-24]. However, most importantly, sarcopenic
muscle degeneration has been directly correlated to eventual
mortality in middle-aged and elderly adults [25, 26]. With a
suggested prevalence of over 50% in individuals aged over
80 years, it is clear that identifying a normative clinical
definition for sarcopenia is of considerable importance in an
increasingly aging world [7].

The potential mechanisms that govern muscle degen-
eration in sarcopenia have likewise been identified within
the context of neuromuscular pathology or injury. Indeed,
the dramatic deleterious changes in muscle composition and
function exhibited in these patients have been implicated
as accelerated analogues to the changes evidenced in sar-
copenia. This notion is especially evident in patients with
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spinal cord injury (SCI), as paralysis from lower motor
neuron denervation drastically reduces skeletal muscle mass
and increases local muscle adiposity and fibrosis [27]. In
addition to SCI, skeletal muscle degeneration due to illness,
known as cachexia, has been analogously associated with
increases in relative muscle adiposity, which has likewise been
correlated to increased rates of cachectic patient mortality
and morbidity [28-30]. However, the optimum metric for
assessing these changes in skeletal muscle quality remains
debated.

Identifying a quantitative gold standard for myological
assessment would allow for the generalizability of transla-
tional myology studies to clinical practice, thereby supporting
the indication of compensatory targets for clinical interven-
tion. Indeed, there is much extant literature regarding the
investigation of muscle quality and implicating its use as a
comorbidity index [13, 31-40], but these studies generally
share few commonalities between quantitative assessment
methods. However, one metric that remains ubiquitous is
the use of average radiodensitometric HU values from entire
cross sections or volumes to describe the muscle quality.
While this value might indeed characterize general shifts in
adiposity, averaging image matrices in this regard has the
likelihood of eliminating a vast amount of other distribution
characteristics that could elucidate other subtle differences in
the muscle.

As of yet, the use of entire radiodensitometric distribution
to assess muscle quality remains unreported. The increasing
prevalence of sarcopenic and cachexic muscle degeneration
necessitates the establishment of a gold standard for quan-
titative myological assessment. This was the prime motive
for this study, which herein reports the development of a
novel nonlinear trimodal regression analysis methodology
utilized with radiodensitometric distributions from CT scans
of defined upper leg volumes of a healthy young adult, a
healthy elderly subject, and an SCI patient with complete
lower motor neuron denervation. This method is further
tested with a cohort of total hip arthroplasty (THA) patients,
whose operative and healthy legs were assessed both before
and one year following surgery. Results from these assess-
ments highlight the utility of utilizing entire HU attenuation
value distributions and identify novel parameters that could
provide further insight into how muscle degeneration can be
optimally quantified.

2. Material and Methods

2.1. Subject Details and Recruitment. To first ascertain poten-
tial differences in muscle degeneration pathways, as evi-
denced by subtle changes in HU distributions, three subjects
were utilized in the first part of this study. The first of these
subjects was a healthy, 35-year-old adult male subject, and the
second was a healthy 68-year-old elderly male. Both subjects’
CT scans were obtained as part of a general volunteer dataset
for research in our facility. The third subject was a 52-year-
old male who had suffered a right pelvic mass infiltration of
the sciatic nerve, which had to be partially sacrificed during
surgery. Both skin sensation and voluntary anterior-external
leg movement were rescued following surgery, but despite
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the progressive reinnervation of the thigh and posterior leg
muscles, complete denervation of the tibialis anterior and
severe, partial denervation of the glutei and posterior muscles
of the thigh was confirmed one year after surgery. CT images
at this time were obtained via academic collaboration with the
RISE2-Italy project for the purposes of this study [41-43]. To
further support the utility of the reported method, CT scans
from healthy and operative legs of 15 primary THA patients
were utilized. Patient data was obtained as part of our ongoing
collaborative database with the Icelandic National Hospital
(Landspitali, Reykjavik).

2.2. CT Acquisition and Soft Tissue Voxel Segmentation. All
participants in the project were scanned with a 64 Philips
Brilliance spiral-CT machine. The scanning region extended
from the iliac crest to the middle of the femur (Figure 1).
The image protocol included slice thicknesses of 1 mm, with
slice increments of 0.5mm, and the tube intensity was set
to 120 keV. In order to assemble 3D models of each patient’s
leg for soft tissue voxel segmentation, each patient’s CT scan
was imported into MIMICS Software (Materialise, Leuven,
Belgium, available from http://biomedical.materialise.com/
mimics). Tissue compositions within each leg volume were
quantified by transforming CT numbers into HU values as
previously reported [42]. These voxels were binned within
the segmented volume into three HU intervals, which is
evidenced in Figure 1as follows: [-200 to —10], [-9 to 40], and
[41 to 200] HU representing, respectively, fat (yellow), loose
connective tissue and atrophic muscle (cyan), and normal
muscle (red).

2.3. Voxel Distribution Binning. For each subject, HU dis-
tributions were derived from summing and transforming
each voxel's CT number value according to the following
linear transformation expression, defined by discretization of
distributions into 128 CT bins from the total range [-200 to
200] as performed in literature [34, 42-45]:

HU = CT x 3.125 — 200. @)

Each resultant histogram was then exported for regression
analyses. It should be noted that, for the purposes of
comparing pathological muscle degeneration to sarcopenic
degeneration, only the radiodensitometric distributions from
subjects’ left legs were utilized in the first part of this study.
However, both the healthy and operative legs were utilized
for the analysis of THA patients.

2.4. Statistical Analyses. Results from the THA cohort anal-
yses were assessed for statistical significance by two-tailed
heteroscedastic student’s t-tests. Differences were considered
statistically significant for p < 0.05.

2.5. The Method: Nonlinear Trimodal Regression Analysis. The
method utilized to computationally define each HU distri-
bution was a modified methodology for nonlinear regression
analysis. First, the general equation for each distribution was
defined as a quasi-probability density function by summing
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FIGURE 1: Segmented soft tissues and compositions within the tibialis anterior from (a) the healthy control subject, (b) the elderly subject, and
(¢) the pathological subject. Three tissue types of distinct radiodensitometric domains were utilized for the purposes of this study as follows:
[-200 to —10], [-9 to 40], and [41 to 200] HU representing, respectively, fat (yellow), loose connective tissue and atrophic muscle (cyan), and
normal muscle (red). Note that the fat voxel elements of the right (healthy) muscle of this patient were almost entirely superficial (visible on

the surface of the segmentation model).
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where N is the amplitude, y is the location, o is the width,
and « is the skewness of each distribution, all of which are
iteratively evaluated at each CT bin, which is herein defined
as the dependent variable, x. This definition is resultant from
the hypothesis that each HU distribution is trimodal, in
which they consist of three separate tissue types whose linear
attenuation coefficients occupy distinct HU domains, namely,
fat [-200 to —10 HU]J, loose connective tissue and atrophic
muscle [-9 to 40], and normal muscle [41 to 200]. Addition-
ally, we hypothesized that the inwardly sloping asymmetries
within the fat and muscle peaks could be described by skew-
ness (defined by the error function component, erfc) of their
probability density functions, whereas the central connective
tissue distribution was assumed to be a normal, nonskewed
Gaussian distribution. Utilizing this definition, a theoretical
curve was generated by employing an iterative generalized
reduced gradient algorithm via minimization of the sum of
standard errors at each CT bin value, x, thereby generating an

11-parameter matrix of probability density function variables.
This algorithm iterates each function variable according to
the computed variance of each step, and the selection of new
trial values is guided by computing the rates of change of this
variance as new inputs are generated. The minimization of
the sum of standard errors at each point, and thereby the
maximization of the coefficient of determination, R*, was
computed according to standard definitions [46].

An illustration of the results of this concept is shown
in Figure 2, where each of the three tissue types and their
respective probability density functions have been depicted.

3. Results and Discussion

3.1. Initial Case Studies: A Comparison of Degeneration
Pathways. As is evident from the results displayed in Fig-
ure 3, there are significant qualitative differences between
the shapes of the HU distributions of the healthy, elderly,
and pathological subjects. The curve of the healthy subject
exhibits a definitively high-amplitude muscle peak and a
comparatively blunted fat peak, whereas the fat and muscle
components in the elderly subject’s curve are decidedly
the opposite in appearance. Contrastingly, the pathological
subject elicited a distribution with heavily skewed fat and
muscle peaks which were likewise closer together and shifted
towards negative HU values.
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FIGURE 2: Diagram depicting the three components of the trimodal
radiodensitometric distribution utilized in this study. This figure
illustrates the location and skewness of each probability density

function, with tissue types as previously defined.
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When compared according to the typical metric of aver-
age HU value, it is evident that the healthy subject’s average
HU value was significantly shifted towards the muscle peak
in the distribution. However, the average HU values of the
elderly and pathological subjects were nearly indistinguish-
able from one another. To better explore the clearly obtuse
differences in their distributions, each regression analysis
parameter was compiled and compared for the three subjects.
The qualitatively distinguishable differences between HU
distributions are further exemplified by the results from
regression analyses and are compiled in Figure 4.

As is evident in Figure 4, each of the distribution param-
eters confers its own distinct differences and relationships
between subjects. The amplitude parameter, N, elicits par-
ticularly intriguing results when accounting singular tissue
types; the elderly subject’s fat amplitude is at least fourfold
larger than those of the other subjects, and the control
subject’s muscle amplitude is largest by at least twofold.
However, the connective tissue amplitude is highest in the
pathological subject; intriguingly, these values increase nearly
linearly between subjects, with the lowest connective tissue
amplitude in the control subject. These data are qualitatively
apparent in the muscle and fat tissue peaks but somewhat
less obvious in the central connective tissue peak. It is
important to recall that our definition for the connective
tissue distribution accounts for water-equivalent and loose-
fibrous tissues that are always part of healthy leg volumes, but
degraded, unhealthy muscle with aforementioned significant
fatty infiltration would likewise populate this central HU
attenuation region. This notion is described very well by
the connective tissue amplifications progressively increasing
from the control subject to the elderly and pathological
subjects.

An analogous linearity is apparent when observing the fat
tissue skewness, which is almost zero in the control subject
and most extreme (highly negative) in the pathological
subject. Interestingly, muscle skewness was zero in the elderly
and control subjects and nonzero but very small (0.07) in
the pathological subject. These data suggest that the fat peak’s
positive asymmetry could likewise be due to the progressive
infiltration of fatty tissue into the much higher HU value
muscle tissue. However, as this skewness relationship is
not commensurate in the muscle peak, it remains unclear
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whether skewness as a variable can completely describe
muscle degeneration.

The location parameter is almost identical between sub-
jects’ fat distributions, but the muscle peak location was
singularly high in the elderly subject. Likewise, the control
subject had a singularly positive connective tissue HU loca-
tion, whereas the other subjects’ values were negative. While
less significant, perhaps, these results are still intriguing,
showing that the central connective tissue regime of the
HU distribution shifted towards more negative, “fatter” HU
values in the elderly and pathological subjects. However, the
fat peaks remained unshifted, and, unexpectedly, the muscle
peak was higher in HU value in the elderly subject and nearly
identical in the control and pathological subjects.

Finally, the width parameter exhibited noticeable differ-
ences between subjects. The control subject had the widest fat
distribution, but the control muscle width was at least twofold
lower than the other subjects. Likewise, while the elderly
and pathological subjects had similar fat and muscle widths,
the elderly subject elicited a comparatively much higher
connective tissue distribution width. The physiological inter-
pretation of width as a parameter is somewhat obscure,
but one could argue that a sharply defined muscle and/or
fat peak might suggest a comparative reduction in muscle
degeneration. This notion is supported by the control subject’s
muscle peak being remarkably lower in width compared to
the other subjects; but this is unsupported by the fat peak
results.

3.2. Assessing Changes in Muscle following Total Hip Arthro-
plasty. As previously mentioned, the potential utility of the
reported method was further tested with a cohort of 15 THA
patients to assess changes in their upper leg muscle following
surgery. To do this, HU distributions from each patient were
acquired from both presurgical and one-year postoperative
CT scans. Each distribution parameter was analyzed for both
healthy and operative legs, and differences were assessed for
statistical significance.

As is evident in Figure 5, the results from our THA
cohort analyses further support many aforementioned rela-
tionships between regression parameters and the degree of
muscle degeneration, if one operates under the physiological
assumption that patient operative legs would naturally be less
utilized than their healthy legs. In general, fat amplitudes
decreased while muscle amplitudes increased one year after
surgery. However, it was only in the operative legs that
a significant increase in muscle amplitude was observed.
Connective tissue amplitudes were all significantly lower than
fat and muscle.

Regarding the location parameter, there were minimal
shifts evident in muscle and fat peaks, but commensurate
with previous observation, there were notable increases
in connective tissue location values in both the healthy
and operative legs one year after surgery. This suggests
the notion that connective tissue distributions may shift
towards healthy muscle following one year of corrective
ambulation and normative use. Indeed, once again, this
was most evident and singularly significant in the operative
leg.
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FIGURE 3: Radiodensitometric distributions showing their respective nonlinear regression curves and average HU values. (a) The control
subject’s curve showed a large muscle peak at around 55 HU, which directly contrasted with (b) the elderly subject’s distribution. (c) The
pathological subject’s distribution was much lower in total pixel count (due to lower overall mass within the leg volume) and elicited fat and
muscle peaks that are similar in amplitude with a large connective tissue regime between them.

The width parameter elicited no significant or meaningful
changes in either leg, but in accordance with previous
observation, the connective tissue peak widths were signif-
icantly larger than either the muscle or fat peaks, which
were both nearly identical in magnitude in both legs. While
not apparently useful, it still remains intriguing that each
distribution parameter seems to have its own sensitivity with
respect to the population.

Finally, the skewness parameter decreased in magnitude
in both the healthy and operative fat peaks but remained
relatively constant and small (less than one) in the muscle
peak, with one exception: the preoperative muscle peak
was significantly higher than each of the others. We previ-
ously saw that the pathological subject had a much more
extreme (more negative) fat skewness than the other two
initial subjects, suggesting the infiltration and/or buildup of
intramuscular fat in his degenerating muscle. This was once
again similarly evident here, as the operative legs of the THA
cohort elicited significantly more extreme, negative skewness
than the rest of the fat peak values.

Altogether, these results indicate significant improvement
in muscle quality in both legs following surgery, a notion
which is most evident in patient operative legs. These data
further support the notion that each HU distribution param-
eter may have a particular range of specificity when it comes
to muscle assessment, thereby suggesting the method’s utility
as a straightforward indicator for muscle degeneration.

3.3. Exploring the Partial Volume Effect. One of the more
commonly discussed topics regarding tissue segmentation

from medical images is that of the Partial Volume Effect
(PVE). This phenomenon may be defined as the loss of fidelity
in small regions or morphologies from limitations in spatial
resolution of a particular imaging modality, and PVE is of
particular relevance in positron emission tomography (PET)
and dissemination of intracranial tissues using magnetic res-
onance imaging (MRI) [47]. In regard to our study here, one
might argue that it may be necessary to initially correct pixels
on the boundary of muscle groups and subcutaneous fat, due
to the PVE being highest in these pixels. While this may
indeed allow for a better fat to muscle segmentation fidelity,
it may be argued that the degradation of myofibers would
readily dictate the prevalence of PVE within our CT images.
The correction of boundary pixels would therefore correct
the very pixels we wish to consider in our distributions, as
it is clear that their presence could be utilized as a supportive
metric for assessing muscle degeneration.

To test this notion, we took the control subjects HU CT
scan and segmented a two-pixel wide boundary layer between
fat and muscle tissues. These pixels were then subtracted from
the distribution at their given HU values and redistributed to
either the fat or muscle mean HU value based on their respec-
tive proximities to either tissue. The results from this analysis
are shown in Figure 6. As is evident from these results, the
subtraction of these pixels resulted in a great reduction in the
central connective tissue distribution and elicited minimal
changes in regression analysis parameter values. However,
the significant reduction in the water-equivalent and loose
connective tissue peak highlights the possibility for PVE
correction to remove useful data, especially considering that
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FIGURE 4: Results from the three representative subjects’ nonlinear trimodal regression analyses. (a) The amplitude parameter, N; (b) the
location parameter, y; (c) the width parameter, o; (d) the skewness parameter, a.

degenerated muscle and infiltrative adipose tissue would

most likely exist in this region.

It is likewise useful to assess these subjects according to
their average HU value, which is the oft-cited method for CT
analysis, as previously mentioned. As is evident in Figure 3,

this analysis gives no clear distinction between the elderly and
pathological patients, but the healthy subject’s average HU
value is much higher than the others. These results suggest
that the use of the average HU value cannot distinguish
between elderly and pathological distributions, despite clear
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evidence that there are significant differences in how their
muscle degeneration is evidenced by our radiodensitometric
curve parameters.

4. Conclusions

While there is much extant literature reporting the use of
average HU values to investigate muscle quality and its utility

as a comorbidity index, no studies have yet to utilize the entire
radiodensitometric distribution. The increasing prevalence
of sarcopenic and cachexic muscle degeneration necessitates
the establishment of a robust quantitative myological assess-
ment methodology. Herein, we hypothesize that rigorously
quantifying entire HU distributions can elicit much more
information regarding muscle quality than extant methods.
This study reports the development and use of this method,
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FIGURE 6: Results from Partial Volume Effect pixel removal using the healthy control subject. (a) Transverse CT cross section of the control
subject’s leg with two pixel boundary layers segmented and corrected. (b) Distributions illustrating the control subject HU distribution and
the segmented PVE pixel layer distribution. (c) Resultant distribution showing an almost nonexistent connective tissue central peak. (d)
Results from the corrected distributions with each parameter: (i) N; (ii) y; (iii) o3 (iv) «.

wherein we assess upper leg muscle quality utilizing non-
linear trimodal regression analysis with radiodensitometric
distributions from computed tomography (CT) scans of a
healthy young adult, a healthy elderly subject, and a spinal
cord injury patient exhibiting complete lower motor neuron
denervation. We show that physiological justification for
these initial results is yet again evidenced by the use of a
cohort of total hip arthroplasty (THA) subjects. While the use
of more subjects will be essential to reinforcing the physiolog-
ical claims reported here, these results altogether highlight
the potential utility of our method and the importance of
utilizing entire HU attenuation value distributions. We have
likewise identified a host of novel regression parameters
from these analyses that could provide further insight into
how muscle degeneration can be optimally quantified. These
notions support the conclusion that our method may be a
pivotal first step in the development of a new gold standard
for the analysis of muscle.
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