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Essential gene disruptions reveal complex
relationships between phenotypic robustness,
pleiotropy, and fitness
Christopher R Bauer, Shuang Li & Mark L Siegal*

Abstract

The concept of robustness in biology has gained much attention
recently, but a mechanistic understanding of how genetic
networks regulate phenotypic variation has remained elusive. One
approach to understand the genetic architecture of variability has
been to analyze dispensable gene deletions in model organisms;
however, the most important genes cannot be deleted. Here, we
have utilized two systems in yeast whereby essential genes have
been altered to reduce expression. Using high-throughput micro-
scopy and image analysis, we have characterized a large number
of morphological phenotypes, and their associated variation, for
the majority of essential genes in yeast. Our results indicate that
phenotypic robustness is more highly dependent upon the expres-
sion of essential genes than on the presence of dispensable genes.
Morphological robustness appears to be a general property of a
genotype that is closely related to pleiotropy. While the fitness
profile across a range of expression levels is idiosyncratic to each
gene, the global pattern indicates that there is a window in which
phenotypic variation can be released before fitness effects are
observable.
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Introduction

Measurement of any quantitative trait in any population will return

a distribution of values. The standard reductionist approach to biol-

ogy, the prevalence of population-based molecular assays, and the

relative abundance of mean-centric statistical tests have directed the

vast majority of biological inquiry toward understanding the factors

that influence phenotype means. Meanwhile, the dispersions of

values around the mean and the shapes of the distributions have

remained largely invisible or ignored (Geiler-Samerotte et al, 2013).

Although the traditional approach of studying population means has

proven fruitful in many situations, a growing body of evidence

suggests that our understanding of many basic biological processes

looks very different at the level of individuals and the phenomena

that contribute to, or are contingent upon, differences between

individuals have not received adequate attention (Cai et al, 2008;

Eldar et al, 2009; Sharma et al, 2010; Aldridge et al, 2012; Trott

et al, 2012).

Phenotypic differences between individuals are derived from

three sources: genetic variation, differences in environments, and

stochastic processes. Genetic variation is generally the most appreci-

ated and, in many cases, the most well understood of these factors.

It is also common knowledge that environmental conditions play a

critical role in shaping the ultimate phenotypes of organisms.

However, it has only been in the past decade that the role of

stochastic processes in phenotypic expression has gained much

attention (Raser & O’Shea, 2004; Eldar & Elowitz, 2010). Progress

has been hindered not only by technological challenges in monitor-

ing individual cells and molecules, but also by intellectual barriers.

Whereas genetic and environmental factors can have easily obser-

vable effects on phenotype mean values, the primary impact of

stochastic events is on the variance associated with a given pheno-

type. Thinking about variances is still somewhat foreign to many

biologists and requires new intellectual frameworks. Nonetheless,

there is a growing appreciation of the importance of randomness in

biology (Raj et al, 2010; Levin et al, 2011).

It has long been appreciated that there is a need to limit fluctua-

tions within a cell, but phenotypic heterogeneity can play a benefi-

cial role. In order to produce tissues that comprise a mixture of cell

types, many developmental processes have harnessed stochastic

processes to facilitate differentiation. Color vision requires multiple

types of photoreceptor cells that express different pigments. During

development, chance interactions between enhancers and promot-

ers can cause photoreceptor cells to express a single pigment

gene (Jacobs, 2009; Johnston & Desplan, 2010). Heterogeneity in

olfactory receptors seems to be established by similar mechanisms

(Lomvardas et al, 2006).

Within microbial populations, epigenetic switching provides a

constant source of phenotypic heterogeneity that can help a subset

of cells to survive stressful conditions and take advantage of chance

opportunities in an unpredictable environment (Balaban et al, 2004;
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Thattai & van Oudenaarden, 2004; Kussell & Leibler, 2005). This

variability has implications for human disease since it can affect

microbial drug resistance and pathogenicity (Soll, 1997; Balaban

et al, 2004). Moreover, these same concepts are relevant to cancer.

Recent work has shown that reversible transitions between chroma-

tin states generate heterogeneity in aggressive melanoma tumors.

This provides subpopulations of cells with enhanced abilities to

metastasize or survive drug treatments (Roesch et al, 2010; Sharma

et al, 2010). Understanding the biological mechanisms that underlie

phenotypic heterogeneity will be critical to develop better treatment

options to combat metastases and recurrence of cancers.

Perhaps the most promising model for studying these aspects of

biology is the yeast, Saccharomyces cerevisiae. In addition to the

wealth of tools and data already available, yeast appear to display

some similar properties to melanoma cells with regard to heteroge-

neity and reversible phenotypic switching. While most individual

yeast cells proliferate rapidly, a small fraction exhibit greatly

reduced growth rates. These slow growing cells, marked by high

levels of TSL1 protein, exhibit increased stress resistance and are

able to produce offspring that revert back to the regime of rapid

growth (Levy et al, 2012). Exploring the molecular mechanisms

underlying these phenomena may provide unique insights that can

ultimately be applied to diseases such as cancer.

Yeast are also highly amenable to genome scale, systematic

screens. This has provided a glimpse into the genetic basis of pheno-

typic heterogeneity. In a massive undertaking, nearly all nonessen-

tial gene knockout strains were stained, imaged, and scored for a

huge number of morphological phenotypes (Ohya et al, 2005).

These data have not only provided an important resource for the

yeast community, but a unique opportunity to assess the contribu-

tion of genes to the phenotypes of single cells.

Using these data, we had previously identified ~300 nonessential

yeast genes that reduce the effects of stochastic or microenviron-

mental variation on the expression of cellular morphology (Levy &

Siegal, 2008). That is, genetically identical cells in the same environ-

ment showed significantly greater morphological variation in the

absence of these genes than in their presence. These gene products

are termed phenotypic stabilizers (Masel & Siegal, 2009). The identi-

fied phenotypic stabilizers tend to participate in core cellular

processes and tend to be highly connected within genetic or

protein–protein interaction networks (Levy & Siegal, 2008). Essen-

tial genes also tend to participate in core cellular processes and tend

to be highly connected in cellular networks to an even greater extent

than the nonessential phenotypic stabilizers. These observations

raise the hypothesis that essential genes may play the primary role

in modulating the robustness of phenotypes to stochastic and micro-

environmental variation (Levy & Siegal, 2008).

We had also previously proposed, based on simulations of evolv-

ing gene-regulatory networks, that the suppression of phenotypic

variation is an intrinsic property of complex genetic networks and that

deletion of any gene in such a network is likely to increase variation

(Siegal & Bergman, 2002; Bergman & Siegal, 2003). It has also been

proposed that genetic perturbations may increase phenotypic varia-

tion due to a general impairment of cellular networks that is associ-

ated with a reduction in fitness. This was evidenced by a negative

relationship between growth rate and phenotypic potential, a measure

of the extent to which a mutation increases phenotypic variation,

within the set of nonessential knockout strains (Wang et al, 2011).

In this study, we have expanded our analysis of phenotypic

stabilization to include the majority of essential yeast genes by

taking advantage of a collection of hypomorphic mutants. Each

strain in this collection has been engineered with an altered 30 UTR
to reduce the expression of a single essential gene by a method

called decreased abundance by mRNA perturbation (DAmP)

(Breslow et al, 2008). For each of 873 haploid DAmP strains, we

have collected images of more than 1,000 individual cells. We

analyzed these images using CalMorph (Ohya et al, 2005) to

measure more than 100 morphological phenotypes in each strain.

Our analyses indicate that essential gene perturbations are far more

likely to result in increased phenotypic heterogeneity than are

nonessential gene deletions. The release of previously constrained

variation appears to be a property that is specific to individual genes

and cannot be explained simply by gene product dosage. The stabil-

ization of morphological variation by a given gene can be general-

ized across many phenotypes even after accounting for correlated

morphological features. The increased heterogeneity within a

specific genetic background is strongly linked to its degree of pleio-

tropy (the extent to which a mutation alters multiple, independent

phenotypes). However, the increased heterogeneity is not often

predictive of the fitness of that genotype, affording the possibility

that such variation may have evolutionary relevance.

Results

Phenotypic stabilization is a common function of essential genes

We used high-throughput fluorescence microscopy to collect images

of cells from 873 strains in the haploid DAmP collection. Each strain

in this collection contains an insertion in the 30 UTR of a single

essential gene. These insertions destabilize the corresponding

mRNA and typically cause a reduction of 2- to 10-fold in protein

levels compared to wild-type cells (Breslow et al, 2008). We stained

the cells with FITC-conjugated concanavalin A to mark the cell wall

and DAPI to mark the nucleus (see Materials and Methods) (Fig 1).

We then imaged the cells and processed the images using CalMorph

to obtain measurements of 187 phenotypes (Ohya et al, 2005). For

each strain, at least three biological replicates were performed,

yielding data for at least 1,000 cells per strain. In total, we analyzed

over 2 million individual cells.

We summarized the total amount of phenotypic variation within

a strain by a measure called phenotypic potential (Levy & Siegal,

2008; Costanzo et al, 2010; Lehner, 2010; Venancio et al, 2010;

Wang et al, 2011; Graham et al, 2012; Simko & Csermely, 2013;

Yvert et al, 2013). Our method for calculating phenotypic potential

(detailed in Materials and Methods) is similar to that described

previously (Levy & Siegal, 2008) with two major exceptions. First,

the presence of multiple replicates for each genotype allowed us to

use mixed-effect linear modeling to estimate the effect of individual

preparations on each phenotype measurement. In this way, we were

able to identify 15 phenotypes (mostly related to fluorescence inten-

sity) that were highly variable between replicates and exclude them

from further analyses. We also excluded an additional 40 pheno-

types for other reasons such as those with multimodal distributions

that are not well characterized by standard measures of dispersion

or phenotypes with frequent missing values (see Materials and
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Methods), leaving 132 high-quality phenotypes. Second, we used a

different approach to deal with non-independence of the phenotypes

measured by CalMorph. The original analysis was based on the

summary statistics (mean and standard deviation) of each genotype

rather than individual cell measurements and relied upon partition-

ing around medoids on mean-corrected standard deviations to select

largely independent phenotypes for subsequent analysis (Levy &

Siegal, 2008). Here, we performed principal component analysis on

the individual cell measurements. This approach allowed us to

combine a group of highly correlated phenotypes into a single, more

precise measure rather than to discard all but one of them. For

downstream analyses, we considered only the top 41 principal

components that retain >90% of the total variance present in the 132

high-quality CalMorph phenotypes (Supplementary Figs S8–S10).

The 41 principal components, henceforth referred to simply as

phenotypes, actually comprise three groups, because CalMorph

classifies cells into three classes prior to measurement (A: unbud-

ded, B: budded with one nucleus, C: budded with two nuclei).

Because principal component analysis was performed on each

class separately, some between-genotype correlations between

phenotypes from the different classes remain. Nevertheless, the 41

phenotypes represent morphological measurements that are not

appreciably correlated with each other. We next calculated the stan-

dard deviation of each phenotype for each strain. These raw stan-

dard deviations cannot be used directly as measures of phenotypic

variation, for two reasons. First, across all genotypes, the observed

standard deviations can have a strong dependence on means. We

therefore used the residuals from loess regressions of standard devi-

ations against means to generate mean-corrected measures of varia-

tion for each phenotype (Levy & Siegal, 2008; Geiler-Samerotte

et al, 2013). Second, if two or more random variables are correlated,

the standard deviation of their first principal component will be

YDR355C RNA1 NOP1

ERG12CDC42IWS1

R1158 MEX67 FBA1

Figure 1. Example images of mutants with high or low levels of phenotypic variation.
Cell walls are labeled with FITC-conjugated concanavalin A (magenta) and nuclei are labeled with DAPI (green). DAmP-YDR355C (phenotypic potential = 3.25), DAmP-RNA1
(phenotypic potential = 1.81), DAmP-NOP1 (phenotypic potential = 3.07), DAmP-IWS1 (phenotypic potential = 2.14), DAmP-CDC42 (phenotypic potential = 2.54), and
DAmP-ERG12 (phenotypic potential = 1.61) are all high-confidence phenotypic stabilizers. R1158 (phenotypic potential = �0.05) does not contain any essential gene
mutations. DAmP-MEX67 (phenotypic potential = �1.42) and DAmP-FBA1 (phenotypic potential = �1.01) are DAmP strains that display low phenotypic variation.
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larger than the standard deviations of any of the original variables.

Since we did not want to weight our analysis toward phenotypes

that were measured redundantly, we normalized the residuals such

that each principal component had a standard deviation equal to

one.

A final phenotypic potential score was then defined as previously

(Levy & Siegal, 2008): a strain’s normalized residual standard devia-

tions were ranked across phenotypes and the top half (20 pheno-

types in this case) were averaged. Because a large number of

phenotypes are averaged, this phenotypic potential score captures

the extent to which a mutation increases general morphological

variation, rather than variation specific to a particular phenotype

(Levy & Siegal, 2008). Averaging the ~50% most-variable pheno-

types, rather than all of them, reduces noise in the score (Levy &

Siegal, 2008). The number of phenotypes averaged had very little

effect on the determination of which genes are phenotypic stabiliz-

ers (Supplementary Fig S1).

We next sought to define the set of genes that functioned as

phenotypic stabilizers by determining a threshold above which

phenotypic potential scores were unlikely to fall by chance.

Randomly permuting our entire dataset to break associations

between cells and genotypes allowed us to empirically estimate the

probability of observing a given phenotypic potential score by

chance and thereby to estimate the false discovery rate (FDR) given

our data. The maximum number of true positives is expected to

occur at a phenotypic potential threshold of 1.065, which corre-

sponds to a FDR of 0.06. Using this threshold, we estimate that at

least 175 essential genes (20% of those assayed) function as pheno-

typic stabilizers (Fig 2). This percentage is considerably higher than

that estimated for nonessential genes, 7.1% (Levy & Siegal, 2008).

Our method for calculating phenotypic potential is expected to

give a conservative estimate of the percentage of phenotypic stabi-

lizers. The loess regression assumes that the bulk of the mutants do

not exhibit increased phenotypic variation. The more phenotypic

stabilizers there are contributing to a dataset, the more the residuals

from the loess regression are compressed downward (Levy & Siegal,

2008). Given that a large percentage of DAmP strains nonetheless

had significantly high phenotypic potential values, it is likely that

the actual percentage of phenotypic stabilizers among the essential

genes is much higher. To better assess this, we estimated an alterna-

tive null expectation based on the parental strain that the DAmP

library was derived from. We performed 12 biological replicates

of R1158 and added the resulting phenotypic data to our dataset.

The mean phenotypic potential score of the replicates was

�0.05 � 0.21. Allowing three standard deviations from the mean

phenotypic potential for the reference strain, we estimate that 455

essential genes (52% of those assayed) function as phenotypic stabi-

lizers (Fig 2). Even this may be an underestimate given that some of

the DAmP strains may not reduce expression enough to have

substantial phenotypic effects.

Regardless of the threshold used, it appears that the essential

genes are highly enriched for phenotypic stabilizers compared to the

nonessential genes, as predicted. Recall that a basis for this predic-

tion was that, for nonessential genes the number of protein–protein
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Figure 2. Distribution of phenotypic potential scores.
A kernel density plot of the phenotypic potential scores from all DAmP strains is shown in red. Random permutation of the same dataset yields the probability density of
phenotypic potentials shown as the black curve. In blue is the distribution of phenotypic potentials from a wild-type control strain.
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interactions correlates positively with phenotypic potential, and

essential genes have on average even more protein–protein interac-

tions than nonessential phenotypic stabilizers (Levy & Siegal, 2008).

We therefore examined whether phenotypic potential correlates

with the number of protein–protein interactions among the essential

genes represented in the DAmP collection; however, we did not

observe a significant correlation (Fig 3). For a subset of the DAmP

collection, genetic interaction data are available, but again there

was no relationship between the number of genetic interactions and

phenotypic potential (Supplementary Fig S4). We postulate that the

strong tendency of essential genes to have very large numbers of

interactions limits the possibility of finding further enrichment

within the subset of essential genes with high phenotypic potential.

Similarly, nonessential phenotypic stabilizers are enriched for

genes annotated to core cellular processes (Levy & Siegal, 2008), so

we tested for enrichment of gene ontology (GO) terms among the

essential phenotypic stabilizers. We were unable to find any GO

terms that were enriched among the phenotypic stabilizers relative

to the entire set of genes in the DAmP collection. This is not comple-

tely surprising, given that the genes in the DAmP collection are

already very highly enriched for a large number of terms.

Robustness can be generalized across phenotype space

Our measure of phenotypic potential summarizes phenotypic heter-

ogeneity, within a given genotype, across a high-dimensional

phenotypic space. We thus wished to explore further how this hetero-

geneity was distributed across individual phenotypes. In one

extreme possibility, perturbing a gene could result in a massively

increased variation for a very small number of phenotypes without
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Figure 3. Correlations between phenotypic potential, the number of protein–protein interactions from BioGRID, and the published relative growth rates.
The lower-left panels show the pairs of variables plotted against each other with the red lines indicating loess regressions. The diagonal panels display the underlying
distributions of each metric. The upper right panels show the Pearson correlation coefficients for each comparison.
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any effect on—or even a reduction in—the variation of others. At

the other extreme, a gene perturbation could increase the standard

deviation associated with many independent phenotypes. This can

be thought of as pleiotropy in variation. Our data suggest that the

latter scenario is closer to the truth for most genes.

The first approach we took was simply to vary the number of

phenotypes that were averaged to calculate phenotypic potential

and to compare the resulting scores. Even when we compare the

two most extreme scenarios, defining phenotypic potential either as

the normalized residual standard deviation associated with the

single most-variable phenotype or as the average of the variances

for all 41 phenotypes, the rank order of the genes remains similar

(Spearman’s q = 0.73) (Supplementary Fig S1). If we average the

standard deviations of at least 10 phenotypes, the rank order of

genes quickly converges (Spearman’s q > 0.88 for all pairwise

comparisons) (Supplementary Fig S1).

Thus, if a given genotype displays a large residual standard

deviation in almost any single phenotype, it will tend to display

substantial variation across many morphological phenotypes. This

result is surprising given that the phenotypes we are comparing are

principal components that are, by definition, uncorrelated within

each cell class of our full dataset. Trivial explanations of this result,

such as geometrical constraints or other morphological patterns that

are common to all yeast cells, are therefore precluded. Rather, these

findings indicate that the robustness of cell morphology can be

thought of as a general feature of a given genotype, at least with

regard to single-gene perturbations. Recent analyses of wild yeast

isolates with a wide range of genetic diversity suggest that this

conclusion may be applicable more broadly, as a subset of isolates

showed high variance for many independent cell-morphology

phenotypes (Yvert et al, 2013).

We next sought to identify any phenotypes that broke with this

trend of general morphological robustness. An analysis of the pair-

wise correlations between residual phenotype standard deviations

across all genotypes indicated that nearly all showed a positive

relationship. It is worth noting that the average correlation

between all phenotype mean pairs is negligible at 0.01 (Supple-

mentary Fig S5). Across all phenotype pairs, the average correla-

tion of the residual variances was 0.27. Only 15 comparisons

(~1% of the total) had Pearson’s correlation coefficients less than

�0.2 (Fig 4). This subset was dominated by two phenotypes, prin-

cipal components 2C and 4A (Fig 4). Both of these components

are composed solely of CalMorph phenotypes that relate the posi-

tion of the nucleus to other cellular landmarks. That is, genotypes

with high variability in nuclear position within the cell tend to

have relatively low variability in other phenotypes, and vice versa.

It is difficult to speculate what biological significance this pattern

may have, if any.

Pleiotropy is strongly correlated with phenotypic potential

Since the phenotypic potential associated with a genotype

summarizes variability across many independent phenotypes, we

hypothesized that this measure might be related to pleiotropy. In

other words, mutations that increase variation in multiple pheno-

types may also alter multiple phenotypic means. It is not neces-

sarily the case that this hypothesis should be true. As previously

described, we used the residuals from loess regression of

phenotype standard deviations against their respective means as

our ultimate measures of dispersion for calculating phenotypic

potential. This approach controls for instances where the mean

value of a particular phenotype has any systematic relationship to

the standard deviation.

As a measure of pleiotropy, we simply counted the number of

phenotype means that differed from the wild-type reference. Given

the large number of cells in each genotype, most of the DAmP

strains showed statistically significant changes to most phenotypes.

Thus, we required that the mean value for a mutant must fall

beyond one standard deviation of the wild-type mean in order to be

counted as having an effect.

There are several definitions of pleiotropy, which can lead to

confusion (Paaby & Rockman, 2013). It is therefore important to

specify precisely what type of pleiotropy is being considered. Our

pleiotropy score directly measures what has been termed “develop-

mental pleiotropy”, or the extent to which a mutation affects

multiple, independent traits (Paaby & Rockman, 2013). Less

directly, it may also measure what has been termed “molecular gene

pleiotropy”, or the number of functions a gene has (Paaby &

Rockman, 2013).

A plot of the number of affected phenotypes versus phenotypic

potential reveals a strong positive relationship with Spearman’s

q = 0.48 (Fig 5). Loess regression shows that this relationship is

nearly linear up to approximately 4 affected phenotypes and tapers

off with additional phenotypes. While we could not directly detect

over-representation of genetic or physical interactions among the

strongest stabilizers, pleiotropy may be a proxy for network

centrality. Previous analyses of nonessential gene knockouts has

suggested that hubs in genetic networks tend to be enriched for

(molecular gene) pleiotropic effects (Costanzo et al, 2010) as well as

for effects on phenotypic variation (Levy & Siegal, 2008). The finding

that a relationship between pleiotropy and variation holds in a

completely independent dataset provides strong support to the idea

that hubs in biological networks not only impact mean values of

multiple phenotypes but also play a primary role in limiting the

effects of stochastic variation.

Phenotypic robustness is not predictive of fitness

We next wished to determine whether the release of phenotypic

variation, upon gene perturbation, could be simply a side effect of

general cellular impairment and loss of fitness, as has been

proposed (Wang et al, 2011). To test this hypothesis, we measured

fitness-related phenotypes and compared these measurements to

our phenotypic potential scores.

We first focused our investigations on subsets of strains at the

extremes of the phenotypic potential distribution, where differences

would be easiest to observe. The 48 DAmP strains with the highest

phenotypic potentials were named Hi-Var, and the 48 lowest were

called Low-Var. Each of these strains was subjected to individual

microcolony growth-rate measurements as described previously

(Levy et al, 2012). In brief, single cells were deposited on glass-

bottom, 96-well plates in liquid media and colony areas were

tracked by time-lapse microscopy for 9 h. For each genotype,

specific growth rates (doublings in microcolony area per hour) for

approximately 5,000 microcolonies were obtained. When we

compared phenotypic potential to mean growth rate, we
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surprisingly observed a weak positive correlation (R = 0.28) (Fig 6).

The average specific growth rate of the Hi-Var strains was 0.345

doublings/h compared to 0.299 doublings/h for the Low-Var

strains. Although this result is statistically significant (P < 0.0003),

it is clear that mean growth rate is not a strong predictor of variability

in morphology. This result is not easily reconciled with the hypothe-

sis that high phenotypic potential is generally caused by low fitness.

One of the major advantages of performing growth-rate analysis

on individual microcolonies that are derived from single cells is that

the variance in growth rates within a population can be measured
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ª 2015 The Authors Molecular Systems Biology 11: 773 | 2015

Christopher R Bauer et al Essential genes regulate phenotypic robustness Molecular Systems Biology

7



along with the mean (Levy et al, 2012; Ziv et al, 2013). Given that

the extent of variation is highly correlated across most morphologi-

cal phenotypes, we suspected that the extent of variation in growth

rates might also correlate. This was not the case. Comparing pheno-

typic potential to the standard deviation in growth rate resulted in

an extremely poor correlation (R < 0.01) (Fig 6). Substituting the

growth-rate coefficient of variation for the standard deviation

produced a better correlation (R = 0.25); however, this is still a

weaker relationship than with mean growth rate alone indicating

that the dispersion in growth rate did not add any additional predic-

tive power. Thus, it seems that morphological robustness is not

necessarily linked to robustness in non-morphological phenotypes.

Perhaps this is due to fundamental differences in the selection pres-

sures that have shaped variation of these traits.

One remaining possible explanation for the lack of correlation

between morphological variation and growth rate is that many of

the strains with relatively high growth rates might also have

increased death rates relative to wild-type. If this were true, the vari-

ability in morphological phenotypes might be inflated by a modest

fraction of cells that were near death and had extreme morphologies.

To test this possibility, we added 1 lg/ml propidium iodide (a

marker of dead cells) to the growth medium and repeated our

growth-rate analysis with the Hi- and Low-Var strains. Immediately

after plating the cells, we collected bright-field and fluorescence

images of all fields followed by time-lapse tracking in bright field

only. Those cells with fluorescent nuclei at the first time point were

counted as dead, while all others were considered to be alive, and

thus the proportion of dead cells could be calculated for each strain.

When we compared phenotypic potential to the proportion of dead

cells, again there was no appreciable association (R = 0.15; Fig 6).

In addition to our own measurements of the growth rates of the

Hi-Var and Low-Var strains, we compared phenotypic potential

scores for each of the DAmP strains with their growth rates relative

to wild-type, which had been measured previously by competition

assays (Breslow et al, 2008). A simple linear regression with pheno-

typic potential as a function of relative growth rate revealed a very

weak negative association R = �0.17 (Fig 3). This relationship was

similar to, but slightly weaker than, that found between growth rate

and phenotypic potential in the nonessential-gene knockout collec-

tion (Wang et al, 2011). It is puzzling to note that when we

compared the published relative growth rates of the DAmP strains

with the 96 strains that we measured by the microcolony assay,

there were substantial inconsistencies (Supplementary Fig S2).

Measurements of bulk growth rates by optical density also show the

same inconsistencies (Supplementary Fig S3). Surprisingly, the vast

majority of the published growth rates for the DAmP strains are very

close to wild-type (more than 1 in 4 are reported to out-compete

wild-type cells) yet we measured a wide range of growth-rate

defects for all of these strains. This discrepancy is difficult to resolve

as the batch-competition method used to determine the relative

growth rates should be extremely sensitive.

Phenotypic stabilization is gene specific and dosage dependent

One caveat of our analysis is that each DAmP mutation has a unique

degree of “knockdown” and the extent to which each mutation

−2

0

2

4

0 5 10 15 20
Number of Perturbed Phenotypes

P
he

no
ty

pi
c 

Po
te

nt
ia

l

Figure 5. Relationship between pleiotropy and phenotypic potential.
For each DAmP strain, the number of phenotypes that differ from the wild-type reference by at least one standard deviation are plotted on the x-axis. A small amount of noise
was added to prevent overplotting. Phenotypic potential scores are plotted along the y-axis. The blue line indicates the result of a loess regression.
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affects the molecular processes that the gene participates in is largely

unknown. It is possible that the genes we identified as stabilizers

simply correspond to the strains where the gene dosage was reduced

enough to see a phenotype. If this were true, our false-negative rate

would be high and it would indicate that the vast majority of

essential genes can function as phenotypic stabilizers. To assess this

possibility, we utilized an independent, tunable method to perturb

essential genes (Mnaimneh et al, 2004). In this “Tet” system, each

essential gene has a constitutively active promoter whose transcrip-

tional activity can be down-regulated to various degrees by the addi-

tion of doxycycline. In this way, the gene’s expression can be

reduced to a desired level by adjusting the concentration of doxycy-

cline in the growth medium (Mnaimneh et al, 2004).

To examine the effects of specific gene expression levels on

morphological variation, we selected a set of 34 candidate genes to

conduct an in-depth analysis. The doxycycline-repressible strains

we chose all had reported growth rates near wild-type levels in YPD

and all had reported severe growth defects, or complete lack of

growth, in the presence of 10 lg/ml doxycycline (Mnaimneh et al,

2004). These genes also spanned nearly the entire range of pheno-

typic potential values in the DAmP collection. We grew each strain

to saturation in parallel cultures of YPD media containing 16 differ-

ent concentrations of doxycycline ranging from 0 to 20 lg/ml, since

most of the strains failed to grow at measureable rates within this

range. These cultures were then diluted 1:100 into YPD with the

same concentration of doxycycline as before, grown for 8 h, and

prepared for imaging identically to the DAmP strains. We also

included 7 biological replicates of the ancestor strain that does

not respond to doxycycline to insure that most cells in the dataset

were not affected. Each of these strains was also analyzed using

a microcolony growth assay to determine its growth rate (Levy

et al, 2012).

We first sought to address the extent of the false negatives from

the DAmP data. For 112 conditions that contained the wild-type

strain, R1158, the phenotypic potential scores ranged from �1.20 to

0.36 with a mean of �0.43. Surprisingly, every Tet strain showed a

phenotypic potential higher than 0.36 in at least one condition and

75% of all strain by doxycycline combinations fell above this level.

Though the range phenotypic potentials varied greatly by gene, it

appeared that every gene we tested played at least a limited role in

buffering phenotypic variation. It is important to note that unlike

the DAmP system, the Tet responsive alleles are not under the

control of their native regulatory sequences and thus may be over-

expressed at low concentrations of doxycycline and any complex

expression dynamics will be abrogated. It is also reasonable to

assume that the Tet system can alter the levels of gene expression

noise due to transcriptional bursting. This would provide a clear

mechanism of how cell-to-cell variation could be established.

Regardless, these data demonstrate that variation in morphological

phenotypes is exquisitely sensitive to proper expression of essential

genes.

We next sought to use this system to independently address the

relationships between pleiotropy, growth rate, and phenotypic

potential. A comparison between the number of phenotypes that
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differ from wild-type against phenotypic potential using the Tet

system yields results that are very similar to those found from the

DAmP alleles. While less pleiotropy was observed in general, there

remains a strong positive correlation between the two measures for

0–5 phenotypes, after which the relationship breaks down (Supple-

mentary Fig S11). Pooling all of the data together, it is also apparent

that there is a negative correlation between growth rate and pheno-

typic potential in this context. Specifically, this correlation is only

apparent when phenotypic potential is greater than one, and for

values less than one, there is little if any trend (Fig 7).

Individual examination of each gene reveals a much wider range

of behaviors (Supplementary Figs S6 and S7). Five of the genes

tested (ARP4, CDC42, CDC6, POL1, and POL30) exhibit elevated

phenotypic potentials even in the absence of doxycycline and

showed sudden and severe growth defects as expression was

reduced. Approximately one third of the genes did show a corre-

sponding increase in variation as growth rate declined over at least

part of the range of gene expression levels. However, many genes

(e.g., POL5, LCB2, SDA1, SEC17) showed no change in variability

even as growth rates approached zero, and most genes showed

some changes in variation while growth rate was constant. In the

case of RRN3, phenotypic potential actually approached wild-type

levels only when growth was severely reduced (Fig 7, Supplemen-

tary Figs S6 and S7). While the global trend suggests that a moder-

ate degree of variation can typically be revealed before fitness is

necessarily reduced, it is clear that the expression dynamics or

specific functions of genes are important in determining how their

roles in phenotypic stabilization and growth are related.

Discussion

We have conducted a large-scale assessment of cell-morphology

phenotypes in a set of hypomorphic and repressible alleles of 873

essential genes in yeast. Our data comprise dozens of independent

morphological measurements for more than 3 million cells. Most of

these genes are absent from large-scale, genome-wide screens due

to reliance on the deletion library. Thus, this work represents an
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Figure 7. Phenotypic variation and growth rates in Tet-repressible strains.
In the top panel, all phenotypic potential scores are plotted against microcolony growth rates for all Tet strains across all concentrations of doxycycline. The points are shaded
to indicate the concentration of doxycycline ranging from zero (purple) to 20 lg/ml (green). The lower panels show the dynamics of eight individual genes. In each
case, the levels of doxycycline range from zero on the far left to 20 lg/ml on the far right. Box plots show the distributions of growth rates observed with color shading to
indicate the observed phenotypic potential (blue = low variation, red = high variation, white boxes indicate too few cells to calculate a phenotypic potential, and the
absence of a box indicates fewer than 10 colonies observed).
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important step in providing standardized measures of these genes’

effects on morphology.

Our primary motivation for this study was to understand the

genetic control of phenotypic robustness. We have identified at least

175 essential genes that suppress the effects of stochastic or micro-

environmental variation on phenotypic variation. The proportion of

phenotypic stabilizers among essential genes is therefore substan-

tially higher than that among nonessential genes, as had been

predicted (Levy & Siegal, 2008). The high proportion also supports

the idea that a large number of genes in yeast promote robustness

(Levy & Siegal, 2008).

The nonessential genes previously identified as stabilizers of

morphological variation shared many characteristics with essential

genes, including strong over-representation of GO terms for core

cellular processes and highly connected positions within molecular

networks. However, we were unable to identify any relationship

between these measures and phenotypic potential within the 873

essential genes that we assayed. It may be that these correlations

were simply missed in this study due to the high baseline levels of

GO-term enrichment and protein–protein interaction network

connectivity already present in the essential genes. Since some of

the DAmP strains do not reduce gene expression enough to have

phenotypic effects, it is also possible that a high level of false-

negative results obscured correlations. Analysis of a subset of

essential genes using Tet-repressible alleles suggests that this is

indeed the case and that nearly all essential genes play at least a

limited role in maintaining phenotypic robustness.

Another important difference between our study and previous

investigations of deletion mutants is that each DAmP allele has an

unknown degree of variation in expression level. It could be argued

that the phenotypic variation we observed is simply a function of

variable expression between cells. Although such effects cannot be

ruled out entirely, we do not believe they can explain our results.

Variation in protein content between cells can be well modeled with

only two parameters describing transcriptional burst size and burst

frequency (Cai et al, 2006). Factors that have been shown to regu-

late the kinetics of transcriptional bursting and gene expression

noise include the presence of a TATA-box, nucleosome occupancy,

chromatin modifications, pausing of the transcriptional apparatus,

and the location of genes within the nucleus (Boeger et al, 2008;

Choi & Kim, 2009; McCullagh et al, 2010; Ribeiro et al, 2010; Miller-

Jensen et al, 2011). Since the DAmP alleles possess the native

promoter sequences, it is unlikely that any of these processes would

be perturbed. Furthermore, DAmP multiple copy arrays have been

used specifically as a method to decouple the affects of gene expres-

sion noise from mean expression level (Vardi et al, 2013).

Our results lend support to the idea that phenotypic robustness

of cellular morphology is a general property of a genotype rather

than trait specific. A given strain’s variability in nearly any

morphological phenotype was correlated with its variability in most

other phenotypes. This was true despite the fact that mean values

for these same traits were not correlated (Supplementary Fig S5).

Given that all of the strains we assayed are isogenic—or at least

nearly so—aside from their unique single-gene disruptions, we

cannot say for sure that this concept is broadly applicable to popula-

tions that contain substantial amounts of genetic diversity. A recent

analysis that is highly complementary to our own may shed some

light on this question. Yvert et al (2013) used a nearly identical

morphological phenotyping method to analyze within- and

between-genotype variability for a collection of wild yeast isolates

representing diverse genetic backgrounds. It seems more common

in their dataset than in ours that a given strain will show relatively

large amounts of variance within specific sets of phenotypes but not

others. However, they do identify some genotypes that are globally

more variable than others. These genotypes do not cluster into a

single S. cerevisiae lineage or habitat of origin (Yvert et al, 2013),

suggesting that several evolutionary transitions to high global vari-

ance have occurred under different ecological pressures and that

small numbers of mutations may modulate general morphological

robustness in nature.

The relative evolutionary costs and benefits of robustness versus

heterogeneity depend on the selective regime and, in particular, on

the predictability of the environment (Levy and Siegal, 2012). The

existence of differences in morphological variation between natural

isolates suggests that evolution might tune robustness (Yvert et al,

2013). Further study will be required to determine whether these

differences are indeed adaptive. Genetic mapping of the differences

between wild strains could also test whether genes with high pheno-

typic potential are the ones harboring alleles that confer different

levels of robustness, or instead whether unknown constraints

prevent genes with high phenotypic potential from varying in

nature. In the same vein, it is of interest to better understand how

differences in morphological phenotype distributions relate to differ-

ences in growth-rate distributions. Wild isolates do differ in their

growth-rate variances (Ziv et al, 2013). The ecological relevance of

these differences is unknown as yet, but growth-rate heterogeneity

has been shown in the laboratory to be plausibly adaptive by

enabling a population to hedge its bets against acute environmental

changes (Levy et al, 2012).

The study of natural genetic variation also raises important ques-

tions about the relationship between nongenetic and genetic sources

of phenotypic variation. For example, is a genetic background that

is prone to greater variation among isogenic cells also prone to

greater average effects of new mutations? It is fair to say that the

consensus prediction for many years has been that the answer to

this particular question would be yes (Meiklejohn & Hartl, 2002;

Masel & Siegal, 2009). Only recently has the prediction been directly

tested and, in that case, the answer was no (Richardson et al,

2013). Similar tests of other phenotypic stabilizers, including our

newly discovered essential ones, will need to be done before the

connection between stochastic/microenvironmental and mutational

robustness can be completely rejected.

Whether they are mechanistically connected or not, modulators

of the levels of nongenetic variation and of genetic variation are

potentially major drivers of adaptation. As stated above, increased

nongenetic variation could constitute a bet-hedging mechanism.

Seen in a slightly different way, it could enable a kind of phenotypic

exploration that permits initial survival under extremely challenging

conditions, prior to genetic change (Frank & Rosner, 2012). For

genetic variation, a phenomenon known as capacitance could accel-

erate evolutionary change. A capacitor modulates the effects of

genetic variation so that it accumulates neutrally then is revealed at

potentially opportune times (Rutherford & Lindquist, 1998; Sangster

et al, 2004).

One criticism that has been raised against the adaptive value

of heterogeneity in natural populations is that highly variable
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genotypes may be unlikely to exist for long enough to find a specific

environmental context for which they would be well suited. The

underlying idea behind this view is that the function of a cellular

network is critically dependent upon the sufficient function of each

individual network component. Allowing greater variation in

multiple components means that the net effect will be deleterious.

Thus, cells, like families, would be subject to the Anna Karenina

principle where all happy cells are alike; each unhappy cell is

unhappy in its own way (Tolstoy, 1877). One argument in favor of

this model is that population growth rates, often considered proxies

for fitness in yeast, were found to be negatively associated with

phenotypic potential in the previously published dataset of the

nonessential-gene deletion collection (Levy & Siegal, 2008; Wang

et al, 2011).

Our results support a more nuanced view of phenotypic hetero-

geneity, particularly in the case of nongenetic variation. We have

shown that increased morphological variation does not necessarily

imply decreased growth. Indeed, for the DAmP alleles as a whole,

growth rate does not strongly predict phenotypic potential and, to

the extent that it does, the relationship runs opposite to expecta-

tion: higher phenotypic potential correlates with higher growth

rate. A more detailed analysis of individual genes using the Tet

system provides more clarity. While many strains did show both

increased morphological variation and reduced growth rate as

expression was reduced, this pattern was not clear in most cases

and was sometimes reversed. There may be a limit at which

extreme levels of variability ultimately lead to growth defects, but

also a range in which variation is unrelated to growth. Therefore,

mutations that increase variability are not necessarily at any

special disadvantage relative to those that maintain low variability.

The different patterns observed in the DAmP and Tet systems

suggest that subtleties in gene expression dynamics may be a criti-

cal piece of this puzzle. One likely factor is the role of noise in

gene expression, which must play a role at some level in variation

between isogenic cells.

Taken together, our findings indicate that a large number of

nonessential genes (Levy & Siegal, 2008) and essential genes (this

study) can function as phenotypic stabilizers. These results suggest

that the mutational target for modulation of phenotypic stability is

large. It is unclear whether severe mutations in nonessential gene or

subtle modifications to essential genes are the more likely scenario

for the release of phenotypic variation. Regardless, phenotypic

stability has the potential to be a highly evolvable trait. Still, much

work remains to understand the forces that shape levels of nonge-

netic heterogeneity and to identify cases in nature when increased

heterogeneity has been adaptive.

Materials and Methods

Yeast strains

The DAmP allele haploid collection (BY4741-derived MATa his3D1
leu2D0 ura3D0) was purchased from Open Biosystems. Of the 879

strains listed in the collection, we were able to successfully culture all

but 6 strains (CDC47, MCM6, RPS31, YLR230W, RPB11, and HSP10).

The Yeast Tet-promoter Hughes Collection (BY4741-derived MATa

his3D1 leu2D0 met15D0) was purchased from Open Biosystems.

Yeast growth and handling for morphological analysis

Unless otherwise specified, all yeast strains were grown in liquid

YPD media at 30°C in a shaking incubator. All strains were grown

in 96-well plates containing 200 ll/well YPD + 200 lg/ml G418.

Cells in 96-well plates were harvested by centrifugation at 172 × g

for 2 min.

Preparation of cells for imaging

DAmP strains were diluted 1:100 from stock plates into new

plates and grown for 48 h. These saturated cultures were then

diluted 1:200 into new plates, and cell density was measured for

the four strains with the highest reported growth rates every 2 h.

After 8 h of growth (or earlier if any one of the fastest growing

strains exceeded a density of 5 × 106 cells/ml), cells were

harvested and fixed in PBS containing 4% paraformaldehyde

(100 ll/well) for 1 h at room temperature. Cells were washed

twice with PBS (200 ll/well) and then stained with a solution of

20 lg/ml FITC-conjugated concanavalin A (MP Biomedicals,

75 ll/well) for 1 h at room temperature in the dark. Cells were

washed twice with PBS, resuspended in PBS (typically 150 ll/
well), and stored at 4°C for up to 1 week. Cells were gently soni-

cated using a Misonix ultrasonic liquid processor with a 96-probe

tip set at amplitude 10 with 10 1-s pulses immediately before

mounting.

For each plate, 5 ml of mounting media was prepared by mixing

2.5 ml VectaShield, 2 ml PBS, and 500 ll DAPI (1 lg/ml). 50 ll of
mounting media was added to each well of a glass-bottom 96-well

plate (Matrical). 50 ll freshly sonicated cell suspension was then

added to each well and mixed thoroughly. These plates were centri-

fuged at 689 × g for 2 min prior to imaging.

Image collection and analysis

Images were collected using a Nikon TE2000 microscope outfitted

with a perfect focus system, a Prior automated stage, a Nikon Intensi-

light light source, and a QI Click 2.4-megapixel camera. Typically,

65–100 fields/well were captured in two channels configured for

FITC and DAPI, respectively. Unlike the original protocol (Ohya

et al, 2005), ours did not include a third channel with a filamen-

tous-actin stain (phalloidin), as we had determined that actin-based

CalMorph phenotypes contributed little to analysis of morphological

variation (Richardson et al, 2013). Raw tiff images were processed

using custom software to produce 696 × 520 8-bit jpeg images.

These images were then analyzed using the CalMorph software

package (Ohya et al, 2005).

Data quality control

All CalMorph data were processed in the R programming environ-

ment. Any genotypes that did not contain at least 200 images

each of G1–S, S–G2, and M-phase cells were removed from

further analysis. CalMorph phenotypes with codes C127, D160,

D164, D171, D188, and D189 were eliminated from the dataset

due to annotation issues or because they measured distances on

the order of one or two pixels. Any phenotypes that contained

more than 3% missing values were removed from analysis. Any
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cells with missing values for any remaining phenotypes were

removed from the dataset. Discontinuous or multimodal pheno-

types were identified by the dip test. Any phenotypes with a dip

statistic greater than 0.05 were removed from further analysis.

Cells with any phenotypes that were more than 10 standard devi-

ations from the mean were removed from the dataset because

manual inspection suggested that such outliers were always arti-

factual. Linear modeling was performed to determine the effect

due to replicate plates. Any phenotypes for which 20% or more

of the total variance was explained by replicate effects were

removed from the dataset. A full list of the CalMorph phenotypes

used in this study is in Supplementary Table S1.

Data analysis

All data analysis was performed in the R programming environ-

ment. The complete dataset was divided into three matrices based

on the major CalMorph phenotypic groups (A, A1B, and C; corre-

sponding to G1–S, S–G2, and M–G1, respectively). Each pheno-

type (column) was Box–Cox-transformed to produce an

approximately normal distribution. Each value was subtracted

from its column mean and divided by its column standard devia-

tion so that each phenotype had a mean of 0 and a standard devi-

ation of 1. Dimensional reduction was performed by principal

component analysis such that >90% of the total variance was

retained with a minimal number of components. Loess regression

was performed on the variances within each genotype with

respect to their mean values for each remaining principal compo-

nent. The residuals were taken as the mean-corrected variances,

and these were normalized such that the total variance of the

individual, mean-corrected variances, across all genotypes, within

each component, was equal to 1. The phenotypic potential of a

genotype was then calculated by averaging the variances across

the 50% of the principal components that had the largest vari-

ances for that genotype. The false discovery rate was estimated

by performing 100 random permutations of the residual variances

within each principal component and determining the fraction of

random permutations with a value at least as large as a given

phenotypic potential score.

Growth-rate measurement

All of our growth-rate data were obtained using time-lapse micro-

colony microscopy as described previously (Levy et al, 2012).

Similar methods were used to measure the percentage of dead

cells. In this case, the growth medium was supplemented with

1 lg/ml propidium iodide. Cells were imaged under bright field

and fluorescence. At the first time point, each cell was called as

either living or dead based on the fluorescence intensity. It was

also verified that no cells that were called as dead produced any

progeny.

Data availability

Summaries of several datasets associated with this study are avail-

able as Supplementary Datasets S1, S2, S3, S4, S5 and S6. All of the

images and raw morphological data associated with this study are

publicly available through the Dryad data repository (doi:10.5061/

dryad.ft7dj). Any additional data is available upon request by

contacting Mark Siegal (mark.siegal@nyu.edu).

Supplementary information for this article is available online:

http://msb.embopress.org
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