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Abstract: Quantum coherence is an important physical resource in quantum information science,
and also as one of the most fundamental and striking features in quantum physics. To quantify
coherence, two proper measures were introduced in the literature, the one is the relative entropy of
coherence Cr(ρ) = S(ρdiag)− S(ρ) and the other is the `1-norm of coherence C`1(ρ) = ∑i 6=j |ρij|. In
this paper, we obtain a symmetry-like relation of relative entropy measure Cr(ρA1 A2···An) of coherence
for an n-partite quantum states ρA1 A2···An , which gives lower and upper bounds for Cr(ρ). As
application of our inequalities, we conclude that when each reduced states ρAi is pure, ρA1···An is
incoherent if and only if the reduced states ρAi and trAi ρ

A1···An(i = 1, 2, . . . , n) are all incoherent.
Meanwhile, we discuss the conjecture that Cr(ρ) ≤ C`1(ρ) for any state ρ, which was proved to be
valid for any mixed qubit state and any pure state, and open for a general state. We observe that
every mixture η of a state ρ satisfying the conjecture with any incoherent state σ also satisfies the
conjecture. We also observe that when the von Neumann entropy is defined by the natural logarithm
ln instead of log2, the reduced relative entropy measure of coherence C̄r(ρ) = −ρdiag ln ρdiag + ρ ln ρ

satisfies the inequality C̄r(ρ) ≤ C`1(ρ) for any state ρ.
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1. Introduction

Quantum computing utilizes the superposition and entanglement of quantum states to operate
and process information. Its most significant advantage lies in the parallelism of operations [1–3]. To
achieve efficient parallel computing in quantum computers, quantum coherence is essentially used.
Quantum coherence arising from quantum superposition plays a central role in quantum mechanics
and so becomes an important physical resource in quantum information and quantum computation [4].
It also plays an important role in a wide variety of research fields, such as quantum biology [5–10],
nanoscale physics [11,12], and quantum metrology [13,14].

In 2014, Baumgratz et al. [15] proposed a framework to quantify coherence. In their seminal
work, conditions that a suitable measure of coherence should satisfy have been put forward, including
nonnegativity, the monotonicity under incoherent completely positive and trace preserving operations,
the monotonicity under selective incoherent operations on average and the convexity under mixing
of states. By introducing such a rigorous theoretical framework, a mass of properties and operations
of quantification of coherence were discussed. Moreover, based on that framework, many coherence
measures have been found, such as `1-norm of coherence and relative entropy of coherence [15], fidelity
and trace norm distances for quantifying coherence [16], robustness of coherence [17], geometric
measure of coherence [18], coherence of formation [19], relative quantum coherence [20], measuring
coherence with entanglement concurrence [21], trace distance measure of coherence [22–24].
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In addition, some research related to quantum coherence have been developed, including
quantum coherence and quantum correlations [25–30], an uncertainly-like relation about coherence [31],
distribution of quantum coherence in multipartite systems [32], quantum coherence over the noisy
quantum channels [33], maximally coherent mixed states [34], ordering states with coherence
measures [35], coherence and path information [36], complementarity relations for quantum
coherence [37], converting coherence to quantum correlations [38] and logarithmic coherence [39],
quantum coherence and geometric quantum discord [40]. Recently, Guo and Cao [41] discussed the
question of creating quantum correlation from a coherent state via incoherent quantum operations and
obtained explicit interrelations among incoherent operations (IOs), maximally incoherent operations,
genuinely incoherent operations and coherence breaking operations.

In this paper, we discuss some inequalities on the measures of quantum coherence. The organization
of this paper is as follows: In Section 2, we recall the framework of coherence measure and basic
properties of quantum coherence. In Section 3, we establish lower and upper bounds for the relative
entropy measure of coherence in a multipartite system. In Section 4, we discuss the relation between
Cr(ρ) and C`1(ρ). In Section 5, we give our conclusions obtained in this paper.

2. Preliminaries

In this section, we give a review of some fundamental notions about quantification of coherence,
such as incoherence states, incoherence operations, and measures of coherence.

Let H be a d-dimensional Hilbert space, whose elements are denoted by the Dirac notations
|ψ〉, |x〉 and so on, and let B(H) be the C∗-algebra consisting of all bounded linear operators on H.
The adjoint operator of an operator T in B(H) is denoted by T†. The identity operator on H is denoted
by IH , or simply, I. We use D(H) to denote the set of all density operators (positive and trace-1
operators) on H, whose elements are said to be the states of the quantum system S described by H.
Fixed an orthonormal basis (ONB) e = {|ei〉}d

i=1 for H, a state ρ of S is said to be incoherent with respect
to (w.r.t.) the basis e if 〈ei|ρ|ej〉 = 0(i 6= j). Otherwise, it is said to be coherent w.r.t. e. Let I(e) be the set
of all states of S that are incoherent w.r.t. e, that is,

I(e) =
{

ρ ∈ D(H) : 〈ei|ρ|ej〉 = 0(i 6= j)
}

.

For every ρ ∈ D(H), we define

ρe-diag =
d

∑
i=1
〈ei|ρ|ei〉|ei〉〈ei|.

Clearly, ρe-diag ∈ I(e). By definition, a state ρ is incoherent w.r.t e if and only if ρ = ρe-diag, i.e., it has a
diagonal matrix representation w.r.t. e, i.e.,

ρ =
d

∑
i=1

λi|ei〉〈ei| ≡


λ1

λ2
. . .

λd

 ,

where λi ≥ 0 are eigenvalues of ρ and ∑d
i=1 λi = trρ = 1; it is coherent w.r.t. e if and only if it can not

be written as a diagonal matrix under this basis.
According to [42], a linear map E on the C∗-algebra B(H) is a completely positive and trace

preserving (CPTP) map if and only if there exists a set of operators K1, . . . , Km in B(H) (called Kraus
operators of E ) with ∑m

n=1 K†
nKn = IH such that

E(T) =
m

∑
n=1

KnTKn
†, ∀T ∈ B(H).
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A CPTP map E on B(H) is said to be an e-incoherent operation (IO) if it has Kraus operators
K1, . . . , Km such that for all n = 1, 2, . . . , m, it holds that

KnρKn
† ∈ tr

(
KnρKn

†
)
I(e), ∀ρ ∈ I(e).

In this case, we call {Kn}m
n=1 a set of e-incoherent Kraus operators of E .

In order to measure coherence, Baumgratz et al. [15] presented the following four defining
conditions for a coherence measure Ce:

(A1) Ce(ρ) ≥ 0, ∀ρ ∈ D(H); and Ce(ρ) = 0 if and only if ρ ∈ I(e).
(A2) Ce(ρ) ≥ Ce(E(ρ)) for any e-incoherent operation E and any state ρ ∈ D(H).
(A3) Ce(ρ) ≥ ∑n pnCe(ρn) for any e-incoherent operation E with a set of e-incoherent Kraus

operators {Kn} and any state ρ ∈ D(H) where ρn = pn
−1KnρK†

n with pn = tr(KnρK†
n) 6= 0.

(A4) ∑i piCe(ρi) ≥ Ce(∑i piρi) for any ensemble {pi, ρi}.
It was proved in [15] that the relative entropy Ce

r(ρ) and the `1-norm measure Ce
`1
(ρ) of coherence

satisfy these defining conditions, which are defined as follows:

Ce
r(ρ) = S(ρe-diag)− S(ρ), (1)

where S(ρ) = −tr(ρ log ρ) is the von Neumann entropy, and

Ce
`1
(ρ) = ∑

i 6=j
|〈ei|ρ|ej〉|. (2)

Notably, for a bipartite quantum system AB, the reference basis for HAB = HA ⊗ HB can be taken
as a local basis:

eAB := eA ⊗ eB = {|ei〉 ⊗ | fk〉|i = 1, 2, . . . , dA, k = 1, 2, . . . , dB},

where eA = {|ei〉}dA
i=1 and eB = {| fk〉}dB

k=1 are the orthonormal bases for HA and HB, respectively. In
this case, every ρAB of AB has the following representation:

ρAB =
dA

∑
i,j=1

dB

∑
k,l=1

ρi,j,k,l |ei〉〈ej| ⊗ | fk〉〈 fl |. (3)

Put

ρAB
eAB-diag =

dA

∑
i=1

dB

∑
k=1

ρi,i,k,k|ei〉〈ei| ⊗ | fk〉〈 fk|. (4)

Thus, a state ρAB of the system AB is incoherent w.r.t. eAB if and only if ρAB = ρAB
eAB-diag, i.e.,

ρi,j,k,l :=
〈

ei| fk|ρAB|ej| fl

〉
= 0((i, k) 6= (j, l)).

Moreover, let ρA := trB(ρ
AB) and ρB := trA(ρ

AB). Then from Equations (3) and (4), we get that

ρA
eA-diag = trB(ρ

AB
eAB-diag), ρB

eB-diag = trA(ρ
AB
eAB-diag). (5)

In next section, we derive some inequalities, which give lower and upper bounds for the relative
entropy of coherence of multi-partite states.
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3. Lower and Upper Bounds for the Relative Entropy of Coherence

Xi et al. [30] proved that for any bipartite quantum state ρAB, the relative entropy of coherence
obeys some uncertainty-like relation by using the properties of relative entropy, which reads

CeAB
r (ρAB) ≥ CeA

r (ρA) + CeB
r (ρB), (6)

where ρA = trBρAB, ρB = trAρAB.
Afterwards, Liu et al. [31] proved that any tripartite pure state ρABC satisfies

CeABC
r (ρABC) ≥ CeAB

r (ρAB) + CeAC
r (ρAC), (7)

where eABC := eA ⊗ eB ⊗ eC, eAB := eA ⊗ eB, eAC := eA ⊗ eC, ρAB = trCρABC and ρAC = trBρABC,
provided that

λS(ρAB
e-diag) ≤ S(ρAB), (1− λ)S(ρAC

e-diag) ≤ S(ρAC) (8)

for some 0 ≤ λ ≤ 1. Combining Equations (6) and (7), the following inequality was derived in [31]:

CeABC
r (ρABC) ≥ 4

3

(
CeA

r (ρA) + CeB
r (ρB) + CeC

r (ρC)
)

(9)

for a pure state ρABC satisfying the condition (8).
The aim of this section is to establish lower and upper bounds of Cr(ρA1 A2···An) for a general

n-partite state ρA1 A2···An . To do this, we use ρX
diag and Cr(ρX) to denote ρX

eX-diag and CeX
r (ρX),

respectively.
First, for a bipartite ρAB of the system AB, we know from Equation (5) and the subadditivity of

von Neumann entropy that

S(ρAB
diag) ≤ S(trBρAB

diag) + S(trAρAB
diag) = S(ρA

diag) + S(ρB
diag)

and so

Cr(ρ
AB)− Cr(ρ

A)− Cr(ρ
B)

= S(ρAB
diag)− S(ρAB)− S(ρA

diag) + S(ρA)− S(ρB
diag) + S(ρB)

≤ S(ρA
diag) + S(ρB

diag)− S(ρAB)− S(ρA
diag) + S(ρA)− S(ρB

diag) + S(ρB)

= S(ρA) + S(ρB)− S(ρAB).

Thus,
Cr(ρ

AB) ≤ Cr(ρ
A) + Cr(ρ

B) + S(ρA) + S(ρB)−S(ρAB).

Combing this with Equation (6), we have

1
2

(
2Cr(ρ

A) + 2Cr(ρ
B)
)
≤ Cr(ρ

AB) ≤ Cr(ρ
A) + Cr(ρ

B) + S(ρA) + S(ρB)−S(ρAB). (10)

Second, for a tripartite quantum state ρABC, according to the super-additivity inequality (6),
we have

Cr(ρ
ABC) ≥ Cr(ρ

A) + Cr(ρ
BC),

Cr(ρ
ABC) ≥ Cr(ρ

B) + Cr(ρ
AC),

Cr(ρ
ABC) ≥ Cr(ρ

C) + Cr(ρ
AB).
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By finding the sums of two sides of the inequalities above, we obtain

Cr(ρ
ABC) ≥ 1

3

(
Cr(ρ

AB) + Cr(ρ
BC) + Cr(ρ

AC) + Cr(ρ
A) + Cr(ρ

B) + Cr(ρ
C)
)

. (11)

On the other hand, using definition (1) yields that

Cr(ρ
ABC)− Cr(ρ

AB)− Cr(ρ
AC)− Cr(ρ

BC)

= S(ρABC
diag )− S(ρABC)− S(ρAB

diag) + S(ρAB)

−S(ρBC
diag) + S(ρBC)− S(ρAC

diag) + S(ρAC)

=
[
S(ρABC

diag ) + S(ρB
diag)− S(ρAB

diag)− S(ρBC
diag)

]
+
[
S(ρAC)− S(ρAC

diag)
]
+
[
S(ρAB) + S(ρBC)− S(ρABC)− S(ρB

diag)
]

≤ S(ρA) + S(ρB) + S(ρB) + S(ρC)− S(ρB
diag)− S(ρABC)

≤ S(ρA) + S(ρB) + S(ρC)−S(ρABC),

since S(ρABC
diag ) + S(ρB

diag)− S(ρAB
diag)− S(ρBC

diag) ≤ 0 (strong subadditivity) and S(ρAC)− S(ρAC
diag) ≤ 0.

This shows that

Cr(ρ
ABC) ≤ Cr(ρ

AB) + Cr(ρ
AC) + Cr(ρ

BC) + S(ρA) + S(ρB) + S(ρC)−S(ρABC). (12)

Combining Equations (11) and (12) gives

1
3

(
Cr(ρ

AB) + Cr(ρ
AC) + Cr(ρ

BC) + Cr(ρ
A) + Cr(ρ

B) + Cr(ρ
C)
)

≤ Cr(ρ
ABC)

≤ Cr(ρ
AB) + Cr(ρ

AC) + Cr(ρ
BC) + S(ρA) + S(ρB) + S(ρC)−S(ρABC). (13)

As a generalization of inequalities (10) and (13), we can prove the following inequalities (14) for
any n-partite state ρA1···An of the system HA1 A2···An = HA1 ⊗ HA2 ⊗ · · · ⊗ HAn , which give lower and
upper bounds for the relative entropy of coherence. To do this, we let eAk = {|e

k
ik
〉}dk

ik=1 be an orthogonal
basis for the Hilbert space HAk (k = 1, 2, . . . , n), and let

eA1 A2···An = {|e1
i1〉|e

2
i2〉 · · · |e

n
in〉 : 1 ≤ ik ≤ dk(k = 1, 2, . . . , n)},

which is an orthogonal basis for the Hilbert space HA1 A2···An . Thus,

eA2···An = {|e2
i2〉|e

3
i3〉 · · · |e

n
in〉 : 1 ≤ ik ≤ dk(k = 2, 3, . . . , n)}

becomes an orthogonal basis for the Hilbert space HA2 A3···An = HA2 ⊗ HA3 ⊗ · · · ⊗ HAn . With these
notations, we have the following.

Theorem 1. For any state ρA1···An of the system HA1 A2···An = HA1 ⊗ HA2 ⊗ · · · ⊗ HAn , it holds that

1
n

n

∑
i=1

[
Cr(trAi ρ

A1···An ) + Cr(ρ
Ai )
]
≤ Cr(ρ

A1···An ) ≤
n

∑
i=1

[
Cr(trAi ρ

A1···An ) + S(ρAi )
]
−S(ρA1···An ), (14)

where ρAi denotes the reduced state of ρA1···An on the subsystem Ai.

Proof. To prove that the first inequality in Equation (14) holds, we know from Equation (6) that

Cr(ρ
A1···An) ≥ Cr(ρ

A1) + Cr(trA1 ρA1···An),
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Cr(ρ
A1···An) ≥ Cr(ρ

A2) + Cr(trA2 ρA1···An),

...

Cr(ρ
A1···An) ≥ Cr(ρ

An) + Cr(trAn ρA1···An),

and consequently,

Cr(ρ
A1···An) ≥ 1

n

(
n

∑
i=1

Cr(trAi ρ
A1···An) +

n

∑
i=1

Cr(ρ
Ai )

)
.

Next, let us prove that the second inequality in (14) holds by using mathematical induction.
Firstly, we know from Equation (10) that the desired inequality holds for n = 2 and any bipartite state.
Secondly, we assume the second inequality in (14) holds for n = N − 1 and any N − 1-partite state.
Then for any N-partite state ρA1···AN , we have

Cr(ρ
A1···AN ) = Cr(ρ

A1···AN−2(AN−1 AN))

≤
N−2

∑
i=1

Cr(trAi ρ
A1···AN−2(AN−1 AN)) + Cr(trAN−1 AN ρA1···AN )

+
N−2

∑
i=1

S(ρAi ) + S(ρAN−1 AN )−S(ρA1···AN−2(AN−1 AN)).

By using Equation (6), we know that Cr(trXη) ≤ Cr(η). Thus,

Cr(trAN−1 AN ρA1···AN )≤ Cr(trAN ρA1···AN ) ≤ Cr(trAN−1 ρA1···AN ) + Cr(trAN ρA1···AN ).

Combining the fact that

S(ρAN−1 AN ) ≤ S(ρAN−1) + S(ρAN ), S(ρA1···AN−2(AN−1 AN)) = S(ρA1···AN ),

we get that

Cr(ρ
A1···AN ) ≤

N−2

∑
i=1

Cr(trAi ρ
A1···AN−2(AN−1 AN)) + Cr(trAN−1 ρA1···AN )

+Cr(trAN ρA1···AN ) +
N−2

∑
i=1

S(ρAi ) + S(ρAN−1) + S(ρAN )−S(ρA1···AN )

=
N

∑
i=1

Cr(trAi ρ
A1···AN ) +

N

∑
i=1

S(ρAi )−S(ρA1···AN ).

Thus, the validity of the second inequality in Equation (14) is proved. The proof is completed.

As immediate application of Theorem 1, we have the following corollaries.

Corollary 1. Let ρA1···An be a state of the system HA1 A2···An = HA1 ⊗ HA2 ⊗ · · · ⊗ HAn . If ρA1···An is
incoherent, then the reduced states ρAi and trAi ρ

A1···An(i = 1, 2, . . . , n) are all incoherent. The converse is true
if each reduced states ρAi is pure.

Corollary 2. Let ρA1···An be a state of the system HA1 A2···An = HA1 ⊗HA2 ⊗ · · · ⊗HAn such that the reduced
states ρAi (i = 1, 2, . . . , n) are pure and incoherent. Then

1
n

n

∑
i=1

Cr(trAi ρ
A1···An ) ≤ Cr(ρ

A1···An ) ≤
n

∑
i=1

Cr(trAi ρ
A1···An ). (15)
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It is remarkable that the equalities in Equation (14) may hold in some cases. For example, when
d1 = d2 = · · · = dn = d and

|ψA1···An〉 =
(

1√
d

)n d

∑
i1,i2,··· ,in=1

|e1
i1〉|e

2
i2〉 · · · |e

n
in〉, (16)

the maximally coherent state
ρA1 A2···An = |ψA1···An〉〈ψA1···An |

satisfies
1
n

n

∑
i=1

[
Cr(trAi ρ

A1···An) + Cr(ρ
Ai )
]
= Cr(ρ

A1···An) = n log2 d,

due to the fact that Cr(ρ
Aj) = log2 d for j = 1, 2, . . . , n, and

Cr(ρ
A1···An) = − 1

dn log2
1
dn × dn = n log2 d, Cr(trAi ρ

A1···An) = (n− 1) log2 d.

Moreover, the second inequality in Equation (14) also becomes equality when n = 2. This shows that
the inequalities in Equation (14) are tight and can not be improved.

4. The Relation between Cr(ρ) and C`1(ρ)

In this section, we discuss the relation between Cr(ρ) and C`1(ρ). Rana et al. found that the
inequality

Cr(ρ) ≤ C`1(ρ) (17)

holds for any mixed qubit state ([39], Proposition 1) and any pure state ([39], Proposition 3). Moreover,
they conjectured that the inequality (17) holds for all states ρ. It was also proved ([39], Proposition 6)
that inequality (17) holds for any state ρ of the form ρ = p|ψ〉〈ψ|+ (1− p)δ(0 ≤ p ≤ 1) provided that
δ is an incoherent state w.r.t. the reference basis. As an extension of this result, we have the following.

Proposition 1. Let ρ be a state of S satisfying Equation (17) and let σ be any incoherent state of S. Then every
mixture η := pρ + (1− p)σ(0 ≤ p ≤ 1) of ρ and σ satisfies (17).

Proof. The convexity of Cr implies that

Cr(η) ≤ pCr(ρ) + (1− p)Cr(σ)

= pCr(ρ)

≤ pC`1(ρ)

= C`1(pρ + (1− p)σ)

= C`1(η).

The proof is completed.

Rana et al. proved in ([22], Proposition 6) that for arbitrary state ρ of a d-dimensional system, it
holds that

Cr(ρ) ≤ C`1(ρ) log2 d (18)

and derived in ([39], Equation (10)) that

Cr(ρ) ≤
{

C`1(ρ), if C`1(ρ) ≥ 1;
C`1(ρ) log2 e, if C`1(ρ) < 1.

(19)
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So, Cr(ρ) ≤ C`1(ρ) log2 e for all ρ. Thus, if we redefine the von Neumann entropy as S̄(ρ) = −tr(ρ ln ρ),
then the resulted relative entropy of coherence reads

C̄r(ρ) = S̄(ρdiag)− S̄(ρ) =
1

log2 e
Cr(ρ). (20)

This leads to the following inequality:

C̄r(ρ) ≤ C`1(ρ), ∀ρ ∈ D(H). (21)

5. Conclusions

In this paper, we have established lower and upper bounds for relative entropy of coherence
Cr(ρA1 A2···An) for an n-partite quantum states ρA1 A2···An . As application of our inequalities, we have
found that when each reduced states ρAi is pure, ρA1···An is incoherent if and only if the reduced states
ρAi and trAi ρ

A1···An(i = 1, 2, . . . , n) are all incoherent. Moreover, we have discussed the conjecture that
Cr(ρ) ≤ C`1(ρ) for any state ρ and observed that every mixture η of a state ρ satisfying the conjecture
with any incoherent state σ also satisfies the conjecture. We have also proved that when the von
Neumann entropy is defined by the natural logarithm ln instead of log2, the reduced relative entropy
measure of coherence C̄r(ρ) = −ρdiag ln ρdiag + ρ ln ρ satisfies the inequality C̄r(ρ) ≤ C`1(ρ) for any
state ρ.
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