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Childhood trauma exposure is a potent risk factor for psychopathology. Emerging research suggests that aberrant
saliency processing underlies the link between early trauma exposure and later cognitive and socioemotional
deficits that are hallmark of several psychiatric disorders. Here, we examine brain and behavioral responses dur-
ing a face categorization conflict task, and relate these to intrinsic connectivity of the salience network (SN). The
results demonstrate a unique pattern of SN dysfunction in youth exposed to trauma (n=14) relative to compar-
ison youth (n=19)matched on age, sex, IQ, and sociodemographic risk.We find that trauma-exposed youth are
more susceptible to conflict interference and this correlates with higher fronto-insular responses during conflict.
Resting-state functional connectivity data collected in the same participants reveal increased connectivity of the
insula to SN seed regions that is associated with diminished reward sensitivity, a critical risk/resilience trait fol-
lowing stress. In addition to altered intrinsic connectivity of the SN, we observed altered connectivity between
the SN and default mode network (DMN) in trauma-exposed youth. These data uncover network-level disrup-
tions in brain organization following one of the strongest predictors of illness, early life trauma, and demonstrate
the relevance of observed neural effects for behavior and specific symptom dimensions. SN dysfunction may
serve as a diathesis that contributes to illness and negative outcomes following childhood trauma.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Information about the world is funneled into our brain through sen-
sory organs. Various inputs compete for our attention, andwe prioritize
and weigh these inputs in favor of thosemost relevant to our goals. The
process by which we select among competing stimuli is rapid and pre-
dominately automatic. Current neurobiological models hold that aber-
rant filtering, detection, and mapping of salient external stimuli or
internal mental events play a significant role in psychopathology
(Menon, 2011). According to thesemodels, increased bottom-up detec-
tion of salient events impairs the ability to recruit higher-order brain
systems mediating attention and cognitive control. Elevated interfer-
ence by inappropriately assigned salient information may underlie cog-
nitive dysfunction and emotion regulatory deficits hallmark of several
psychiatric disorders.
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. This is an open access article under
Childhood trauma exposure is a critical and significant risk factor, as-
sociatedwith ~50% of childhood psychiatric disorders and ~30% of later-
onset clinical disorders (Green et al., 2010). A growing body of evidence
indicates that disruptions in cognitive processes and their associated
neural underpinnings may contribute to the elevated risk in these indi-
viduals. These studies show altered perceptual sensitivity and attention
control (review by Pollak, 2008), and potentiated neural responses to
salient stimuli in individuals who have experienced early adversity or
trauma (Dannlowski et al., 2012; Herringa et al., 2013; McCrory et al.,
2011). Hyperactivity of brain regions that detect and enhance
biologically-relevant information, such as the amygdala, fronto-insular
cortex (comprising the anterior insula and ventrolateral prefrontal cor-
tex), and dorsal anterior cingulate cortex (dACC), are consistently re-
ported findings. Activity in these regions correlates with emotional
arousal (Taylor et al., 2003), autonomic activity (Critchley, 2005), and
anticipation of aversive events (Kalisch et al., 2005). Notably, these re-
gions are key nodes of the salience network (SN), an intrinsic connectiv-
ity network involved in detecting, integrating, and filtering relevant
interoceptive, autonomic, and emotional information (Seeley et al.,
2007; Taylor et al., 2009). Prior studies also demonstrate that activity
and connectivity within the SN is elevated in adults with major
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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depressive disorder (Hamilton et al., 2012; Manoliu et al., 2013), post-
traumatic stress disorder (PTSD; Sripada et al., 2012), and anxiety disor-
ders (Etkin and Wager, 2007). It has been postulated that aberrant
function and interaction of the SN may contribute to negative biases in
attention and thought inherent in these disorders (Etkin and Wager,
2007; Hamilton et al., 2012). It is possible that functional changes in
the SN are a consequence of childhood trauma that also serve to in-
crease psychiatric risk.

Neurobiological investigations have yet to provide clarity regarding
functional brain changes that link the experience of childhood trauma
with the development of psychopathology. First, the majority of neuro-
imaging studies are conducted in adults with histories of childhood
trauma. Effects observed in adults may reflect secondary compensatory
mechanisms rather than those primarily associated with trauma. Evalu-
ation of childhood and adolescence, periods proximal to the time of the
traumatic experience, may inform understanding of early emergence of
neurological traits that are precursors tomental illness. Recent pediatric
research has begun to address this gap, revealing heightened sensitivity
of SN regions to emotional stimuli in youthwho have experienced early
adversity or trauma (Maheu et al., 2010; McCrory et al., 2011;
Tottenham et al., 2011; White et al., 2012). To our knowledge, SN en-
gagement during interference processing has yet to be examined in a
high-risk developmental trauma framework. Second, because most ei-
ther lack behavioralmeasures or find no differences in behavior, chang-
es in brain activationmay reflect core deficits, compensation, or both. In
addition, few studies link neural changes to psychiatric symptoms, and
even fewer examine specific symptom dimensions (e.g., reward sensi-
tivity) which may show greater correspondence with neurobiological
variation (Morris and Cuthbert, 2012). Third, we are aware of no pediat-
ric studies that examine the impact of childhood trauma on resting-
state functional connectivity of the SN.

Based on prior findings of altered perceptual sensitivity and atten-
tion control and heightened neural responses to salient stimuli in adults
that experience early trauma, we test the hypothesis that salience
processing and functional organization of the SN becomes disrupted in
youth — proximal to the traumatic experience. An overactive SN
alerting systemmay contribute to cognitive and socioemotional deficits
observed in individuals who have experienced trauma in early life.
Tasks that create conflict (i.e., tension between two competing stimuli)
provide a reliable behavioral metric of the ability to detect and filter ex-
traneous stimuli, and the degree to which conflicting information inter-
feres with ongoing cognitive processing. Evaluation of neurocognitive
function during conflict allows us tomeasure engagement of SN regions
and the relevance of neural changes for behavior. A prior study in
women with PTSD (related to interpersonal trauma) found higher re-
sponses to interference in the insula, supporting the notion of increased
salience detection in the SN in thosewhohave experienced trauma and/
or secondary disease symptomology (Bruce et al., 2012). While the
amygdala is traditionally thought of in the context of emotional conflict,
research shows that core SN regions, including the dACC and fronto-
insular cortex, track conflict more broadly (Aupperle et al., 2015;
Egner et al., 2008).

The fronto-insular cortex (FIC) is considered an integral hub of the
brain, regulating information flow across other large-scale brain
networks involved in attentional processing and cognitive control
(Sridharan et al., 2008). Research shows that the right FIC (rFIC), in par-
ticular, mediates switching between self-directed (e.g., default mode
network) and executive control networks (Sridharan et al., 2008), and
that this switch has relevance for mental health (Hamilton et al.,
2011). The FIC contains a specialized class of neurons with large axons
that facilitate rapid relay of control signals to other cortical regions
(Cauda et al., 2014), and is thus well suited to initiate network
switching. Developmental research shows that the FIC is one of the ear-
liest developing structures in the prenatal period (Afif et al., 2007), and
its role as an integral hub of the brain is establishedwithin the first years
of life (Fransson et al., 2011; Gao et al., 2011). Although the critical role
of this structure is evident in early life, there is evidence that large-scale
functional brain connectivity continues to undergo significant
restructuring throughout childhood (Menon, 2013). The FIC, in particu-
lar, shows weak within- and between-network functional connectivity
in childhood (Uddin et al., 2011), highlighting its potential source of vul-
nerability for developmental psychopathology.

The FIC is also an important site of convergence for salient proprio-
ceptive, interoceptive, emotional, cognitive, homeostatic and environ-
mental inputs. Information originating from sensory perceptive
regions is received by the amygdala and FIC, extending into mid-
posterior insular regions (Cauda et al., 2014). The amygdala and mid-
posterior insula are considered part of the extended SN, given evidence
from both human neuroimaging (Seeley et al., 2007; Taylor et al., 2009)
and primate tract tracing (Mesulam and Mufson, 1982) literatures. Al-
though salience filtering likely occurs at multiple levels of processing,
current theory holds that the SN (and the rFIC in particular), triggers a
cascade of cognitive control signals, impacting how stimuli are subse-
quently processed (Menon and Uddin, 2010). This unique role under-
scores the potential for profound disruptions in cognitive and affective
functioning should insular function or connectivity be altered.

Here, we describe research that examined the impact of childhood
trauma on connectivity within the SN during rest and neurocognitive
function during a face-categorization conflict task. We hypothesized
that youth exposed to trauma would show greater behavioral decre-
ments to conflicting stimuli (i.e., higher conflict interference), increased
response to conflict in SN brain regions, and increased connectivity
within the SN. While we focus on function and connectivity within the
SN, we also tested for altered connectivity between the SN and the de-
fault mode network (DMN), given the SN3s critical role in initiating net-
work switching and prior research showing changes in SN–DMN
connectivity in adults with MDD (Manoliu et al., 2013) and PTSD
(Sripada et al., 2012). Finally, we evaluated the correspondence be-
tween observed variation in the developing connectome and individual
variation in positive and negative valence systems. These dispositions
are relevant for psychopathology (as outlined by the Research Domain
Criteria initiative; Morris and Cuthbert, 2012) and offer insight into
the manner of differences observed between groups, aiding interpreta-
tion of neural effects as risk or adaptation factors. A self-report measure
of trait reward sensitivity (RS) was used to assess the positive valence
systems, while validated anxiety and depressive symptom measures
were used to assess negative valence systems.

2. Materials and methods

2.1. Participants

A total of 51 youth, recruited locally through advertisements or child
psychiatry clinics (Detroit, Michigan), participated in this functional
magnetic resonance imaging (fMRI) study. Exclusionary criteria includ-
ed: English as a second language, lower than a 2nd grade reading level,
history of brain injury, neurological ormovement disorders, or presence
of MRI contraindications. Parental informed written consent and child/
adolescent assent were obtained prior to participation. The Human In-
vestigation Committee of Wayne State University approved the study
protocol.

Both trauma and comparison participants were recruited based on
high sociodemographic risk. Prior research shows that trauma frequen-
cy is extreme among African Americans living in impoverished areas
(nearly 90%; Gillespie et al., 2009). Moreover, minority, urban residents
are nearly two timesmore likely to develop emotional psychopathology
following trauma exposure (Gillespie et al., 2009; Goldmann et al.,
2011; Kessler et al., 1995). Despite this population3s apparent increased
susceptibility to mental illness following trauma, little research has ex-
amined trauma and its neural correlates in high-risk, urban residents.

IQwas evaluated using the KaufmanBrief Intelligence Test (KBIT v.2;
Kaufman and Kaufman, 2004). Pubertal maturation was assessed using



Table 1
Participant demographics by group.

Trauma
(n = 14)

Comparison
(n = 19)

Age, m (SD) 12.61 (2.11) 12.06 (2.66)
Sex (female), n (%) 10 (71.4) 15 (78.9)
Pubertal development, n (%)

Pre/early pubertal (Tanner stages 1–2) 5 (35.71) 8 (42.1)
Mid/late pubertal (Tanner stages 3–5) 9 (64.29) 11 (57.9)

IQ, m (SD) 100.14
(13.17)

104.29
(14.34)

Race/ethnicity, n (%)
African American 5 (35.71) 9 (47.37)
Caucasian 3 (21.43) 8 (42.11)
Hispanic 2 (14.29) 0
Biracial 1 (7.14) 1 (5.26)
Not reported 3 (21.43) 1 (5.26)

Household annual income, n (%)
Less than $40,000 10 (71.43) 9 (47.37)
$40–60,000 2 (14.29) 4 (21.05)
$60–80,000 1 (7.14) 3 (15.79)
Over $80,000 0 3 (15.79)
Not reported 1 (7.14) 0

Type of trauma endorsed, n (%)
Physical abuse 2 (14)a 0a

Neglectful home environment 2 (14)a 0a

Exposure to domestic violence 7 (50)a 0a

Exposure to any other violence not already
identified

7 (50)a 0a

Multiple separations from parent or caregiver 2 (14)a 0a

Sexual abuse or exposure 3 (21)a 0a

Anxiety symptomology (SCR), m (SD) 19.38 (13.97) 13.38 (8.94)
Depressive symptomology (CDI), m (SD) 2 (2.56) 2.26 (3.01)
Reward sensitivity (BAS, z-scores), m (SD) −0.2 (0.59) 0.07 (0.94)

Reward responsivity 17.21 (1.58) 18 (2.09)
Fun seeking 12.07 (1.9) 12.44 (2.67)
Drive 10.43 (2.47) 11 (2.56)

Motion during cognitive conflict taskb, m (SD)
Translational mean movement 0.05 (0.03) 0.05 (0.03)
Rotational mean movement 3.44 (4.01) 4.01 (5.16)
Translational RMS 0.05 (0.03) 0.05 (0.03)
Rotational RMS 0.06 (0.03) 0.06 (0.04)
Translational max excursion 0.47 (0.5) 0.44 (0.26)
Rotational max excursion 0.45 (0.36) 0.46 (0.29)

Motion during resting-state scanb, m (SD)
Translational mean movement 0.15 (0.12) 0.18 (0.13)
Rotational mean movement 0.12 (0.12) 0.14 (0.1)
Translational RMS 0.1 (0.06) 0.11 (0.05)
Rotational RMS 0.001 (0.001) 0.001 (0.001)
Translational max excursion 0.66 (0.43) 0.85 (0.39)
Rotational max excursion 0.47 (0.31) 0.57 (0.28)

Chi-square tests were used for sex, race/ethnicity, puberty, and trauma-type comparisons;
two-sample t-tests for age, symptomology, and motion comparisons; Mann–Whitney U
for income.
Abbreviations: standarddeviation, SD;mean,m; IntelligenceQuotient, IQ; Screen for Child
Anxiety Related Emotional Disorders, SCR; Children3s Depression Inventory, CDI; Behav-
ioral Activation Subscale of the BIS/BAS, BAS; root-mean-square (head position change),
RMS.

a Indicates group comparison is significant at p ≤ 0.05.
b Translational (x, y, z)movement is reported inmm; rotational, in degrees. Parenthetical

values given by totals or means represent percentages and SDs, respectively.

518 H.A. Marusak et al. / NeuroImage: Clinical 8 (2015) 516–525
Tanner staging (Marshall and Tanner, 1968). Following prior work
(Forbes et al., 2009), participants were categorized as pre/early (Tanner
stages 1–2) or mid/late pubertal (stages 3–5). Resting-state data from
22 participants have been reported previously (Thomason et al.,
2013). Face categorization conflict task data presented here have
never been previously reported, however data from an analogous
emotion-categorization stroop task in 29 participants included here
have previously been described (Marusak et al., 2015; tasks
counterbalanced for order of presentation). Although we did not con-
duct diagnostic testing or exclude individuals with attention-deficit/
hyperactivity disorder (ADHD), data from initial study screening
noted 3 trauma and 1 comparison participants for potential ADHD-like
behavior. Two participants were on psychotropic medications: one
trauma participant was taking strattera and sertraline, and one compar-
ison participant was taking trazadone, intuniv, metadate CD, zoloft, and
colonidine. Follow-up analyses excluding the two participants on med-
ications yielded no changes to observed effects.

2.2. Trauma and clinical measures

Utilizing parent and youth reports, youth participants who experi-
enced at least one trauma indicated on the Children3s Trauma Assess-
ment Center Screen Checklist (source: Michigan Trauma Assessment
Center) were categorized as ‘trauma’. Number and type of endorsed
traumas are provided in Table 1. Participantswithmovement exceeding
4mmor 3 rotational degrees (n=12; 3 trauma, 9 comparison), conflict
task accuracy b50% (n=4; 1 trauma, 3 comparison), or errors in behav-
ioral data collection (n = 2; 1 trauma, 1 comparison) were excluded
from analyses. Therefore, all data are reported for 14 trauma-exposed
and 19 age-, sex-, and IQ-matched comparison youth.

Individual variation in positive and negative valence systems was
assessed, as outlined by the Research Domain Criteria initiative
(Morris and Cuthbert, 2012). Variation in negative valence systems
were measured using two validated self-report measures of anxiety
and depressive symptoms: the 41-item Screen for Child Anxiety-
Related Emotional Disorders (SCR; Birmaher et al., 1997) and the 10-
item Children3s Depression Inventory (CDI; Saylor et al., 1984). The
20-item Behavioral Inhibition and Activation Scales (BIS/BAS; Carver
andWhite, 1994)was used tomeasure variation in positive valence sys-
tems. Trait RS was conceptualized as the Behavioral Activation (BAS)
component of the BIS/BAS, following prior work (Garner et al., 2012;
Marusak et al., 2015). Scores for each of the three BAS subscales
(representing different aspects of reward function: reward responsive-
ness, fun seeking, drive) were converted to z-scores and averaged to
form RS, an overall index of reward function. RS data were not available
for one comparison participant. A visual analog scale (VAS) was used to
obtain an average rating of fear/anxiety during the MRI visit (repeat
measures at 30-minute intervals) as previously described (Thomason
et al., 2013).

2.3. Experimental paradigms and procedures

See Supplemental Material forMRI acquisition parameters and sum-
mary of approach taken for mitigation of possible motion related
confounds.

2.3.1. Conflict task
During fMRI, participants underwent a face categorization conflict

task adapted from Egner et al. (2008). The task consisted of 163 presen-
tations of happy or fearful facial expression photographs, overlaid with
the words “FEMALE” or “MALE” to create categorically congruent and
incongruent stimuli (see Fig. 1A). Participants were instructed to identi-
fy the gender of the face stimuli with a button press response, while try-
ing to ignore the task-irrelevant gender word stimuli. Stimuli were
presented for 1000 ms, with a varying interstimulus interval of
2000–4000 ms (mean = 3000 ms), in a pseudorandom order,
counterbalanced across trial types for expression, word, response but-
ton, and gender. The original task (Egner et al., 2008) utilized adult
face stimuli. Here, we adapted the task for children by utilizing an
established set of child and adolescent face stimuli (Egger et al., 2011),
minimizing the complex relations inherent in adult face stimuli
(Marusak et al., 2013). Stimuli were presented with EPrime Software
v.2.0 (Psychology Software Tools, Inc., Pittsburgh, PA) during fMRI scan-
ning and displayed on a back-projection screen viewed by participants
via a mirror attached to the head coil. Task duration was 12:46. Partici-
pants with poor task performance (b50% accuracy) or errors in
behavioral data collection were not included in the study sample. For
the remaining participants, task accuracy was fair (mean = 86.4%,



Fig. 1. (A) Face categorization conflict task and (B) group differences in conflict interference. Participants were instructed to identify the underlying face gender (male or female) while
ignoring an overlying gender word (‘MALE’ or ‘FEMALE’). Trials varied such that distracter words either matched (“congruent”) or conflicted (“incongruent”) with the underlying face.
Trauma-exposed youth show a greater loss of accuracy for incongruent relative to congruent trials (I − C). Negative values indicate a loss in performance. ***p b 0.001, two-sample t-
test. Error bars represent standard error.
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SD = 9.92%). Reaction time (RT) was unavailable for one participant
due to errors in data collection, and this participant was therefore not
included in RT analyses but retained in all other analyses for
completeness.

2.3.2. Resting-state paradigm
Following the conflict task, the participants underwent a 6-minute

resting-state paradigm. The participants were asked to lie quietly in
the scanner with their eyes closed for the duration of the scan.

2.4. Imaging Data analysis

2.4.1. Preprocessing
BOLD fMRI data were processed using SPM8 software (Statistical

Parametric Mapping; http://www.fil.ion.ucl.ac.uk/spm/) implemented
inMATLAB (MathWorks, Inc., Natick, MA). The first four image volumes
were excluded to allow for signal equilibration effects. Preprocessing
steps included: (i) slice-time correction, (ii) image realignment,
(iii) spatial transformation to the Montreal Neurological Institute
(MNI) template using the participant-specific transformation parame-
ters created by fitting mean functional images to the single reference
EPI standard template (in SPM). Data were not resampled during nor-
malization, thus retained the native resolution (3.44 × 3.44 × 4 mm)
for subsequent analysis. (iv) Images were then spatially smoothed
with a Gaussian kernel (6 mm full width at half maximum [FWHM]
for task data; 8 mm FWHM for resting-state data).

2.4.2. Conflict task
A 128-s temporal high-pass filter was applied to the data, and tem-

poral autocorrelation was estimated using a first-order autoregressive
model. Two independent participant-level models were created in the
context of a general linear model to examine effects of (1) conflict and
(2) conflict regulation. In the first model, separate regressors for the
stimulus events (convolved with a canonical hemodynamic response
function) were created for incongruent (I) and congruent (C) trials.
For the second model, trial types were broken down based on the pre-
ceding trial type: regressors were created for postcongruent incongru-
ent trials (cI), postincongruent incongruent trials (iI), postcongruent
congruent trials (cC), and postincongruent congruent trials (iC). All
participant-level models included regressors of no interest correspond-
ing to the six motion parameters, and modeled error and post-error
trials separately. Participant-level contrasts isolated (1) conflict-
related neural activity by subtracting congruent from incongruent trials
(I− C), and (2) conflict regulationby subtractingpost-congruent incon-
gruent trials from post-incongruent incongruent trials (iI − cI). The
contrast iI− cI isolates activity during conflict trials for which behavior
differs by virtue only of priming induced by conflict demands of the pre-
vious trial type (i.e., previous trial is either congruent or incongruent).
Engagement of the conflict system on the preceding trial should ready
the system for reengagement. Group-level random-effects two-sample
t-tests were used to test for group differences in neural activity during
(1) cognitive conflict (I− C), and (2) conflict regulation (iI − cI).

2.4.3. Resting-state
Connectivity analyses were performed using the CONN fMRI

functional connectivity toolbox (version 12.1; http://www.nitrc.org/
projects/conn). Resting-state fMRI volumes were submitted to seed-
based connectivity analyses to assess connectivity within the SN, and be-
tween the DMN and SN. First, seed time series data were extracted from
SN and DMNmasks comprising 6mm radii spheres centered at Montreal
Neurological Institute (MNI) coordinates of peak-valued loci. These coor-
dinates were determined by group averaged independent components
analysis of intrinsic functional networks identified in an independent
N= 65 pediatric sample (Thomason et al., 2011): (41, 21,−5), (−2, 23,
33), and (−46, 15,−5) for the SN, and (5,−53, 13), (−2, 57,−18), and
(52, −63, 26) for the DMN, see Fig. S1. Correlation estimates controlled
for estimated translational and rotationalmotion aswell as awhitematter
and cerebral spinal fluid nuisance time course. A band-pass filter was ap-
plied to investigate low-frequency correlations (between 0.01 and 0.1 Hz;
VanDijk et al., 2010). Pearsonbivariate correlation coefficientswere calcu-
lated between average time courses in the SN seed region mask and all
other voxels of the brain. Group-level random-effects two-sample t-tests
were used to test for group differences in intrinsic connectivity of the
SN, and connectivity between the DMN and key SN regions.

2.4.4. Regions of interest
To examine the relevance of intrinsic SN connectivity for neural en-

gagement during a cognitive task, all between-group effects were con-
sidered within SN regions known to be recruited in the conflict task:
(i) bilateral amygdala (left, x = −30, y = −6, z = −14; right, x = 32,
y = 0, z = −12), (ii) dACC (x = 2, y = 32, z = 31) and (iii) rFIC
(x = 40, y = 30, z = −7) using coordinates derived from our prior
work (Egner et al., 2008; Etkin et al., 2006). (iv) We also examined a
mid-posterior insula region (x=−38, y=−13, z=−8) that showed
higher responses in adults with PTSD during a similar task (Bruce et al.,
2012). Regionalmasks (10mmradii spheres)were created around each
peak and then intersected with a gray matter mask. Group differences
were examined within each region separately using a threshold of
p b 0.05, small-volume family-wise error (FWE) corrected. All coordi-
nates provided in this report are given in MNI convention.

2.4.5. Exploratory whole-brain results
Between-group whole-brain effects of I − C are also reported at a

threshold of p b 0.005, cluster minimum = 10 voxels. This threshold
was derived from suggested standards for whole-brain analyses
(Lieberman and Cunningham, 2009).

http://www.fil.ion.ucl.ac.uk/spm/
http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/conn
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2.5. Relations among measures

2.5.1. Correlations among measures
Average signal change/connectivity strength was extracted from

peaks of group difference (4 mm radii spheres) and plotted for visu-
alization, and/or submitted to 4 planned Pearson correlation analy-
ses in IBM SPSS v.22 to evaluate correspondence among brain
activation, connectivity, task performance, and symptom severity.
Specifically, we tested for relations between insula connectivity
and (i) insula reactivity to conflict, (ii) behavioral response to con-
flict, and (iii) RS, and (iv) between insular and behavioral responses
to conflict.
2.5.2. Mediation analysis
PROCESS Software v.2.11 (Hayes, 2013) implemented in SPSS was

used to test for themediating effects of insula–SN connectivity in the as-
sociation between trauma exposure and RS. We focused on RS due to
prior research documenting relations between neural effects related to
trauma exposure and this symptom dimension (Bogdan et al., 2013;
Marusak et al., 2015). Relations between neural connectivity and symp-
toms related to negative valence (anxiety, depression) were also exam-
ined. The mediation model assumes significant relations between
trauma exposure and connectivity, and between connectivity and RS.
Connectivity values were extracted from the insula region showing in-
creased SN connectivity in trauma-exposed youth. We then evaluated
the correspondence between connectivity strength and RS. This ap-
proach uses bootstrapping, and indirect effects are considered signifi-
cant when confidence intervals do not overlap zero (Hayes, 2013).
Fig. 2. Trauma-exposed youth show greater (A) right fronto-insular cortex (rFIC) and (B) l
decrements. Fronto-insular response to conflict is exaggerated in trauma-exposed youth, esp
[I− C]). Clusters are significant at pFWE b 0.04, small-volume corrected. X, Y, Z coordinates ar
3. Results

Trauma and comparison groups were matched on age, sex, pubertal
maturation, IQ, race, annual household income, and movement during
both fMRI experiments (Table 1). Two trauma participants were left-
handed. Groups did not differ on RS, anxiety, or depressive symptoms
(Table 1). Participants also did not differ on ratings of state anxiety ob-
tained via visual analog scale (VAS), t(31)= 0.08, p=0.94. Lack of dif-
ferences between groups in state and trait mood symptoms suggests
that observed effects are not influenced by group differences in fear
and anxiety.

3.1. Greater behavioral decrements to conflict in youth exposed to trauma

Consistent with the conflict effect, incongruent trials (relative to
congruent trials) caused significant accuracy decreases and slowing in
reaction time (RT) across the sample, accuracy: t(32) = 3.26, p =
0.003; RT: t(31)=3.8, p=0.001. Relative to comparison youth, trauma
participants showed a greater impairment in accuracy for incongruent
vs. congruent trials (I− C), t(31)= 3.8, p b 0.001 (Fig. 1B). Specifically,
conflict trials caused ~8% loss in accuracy in trauma-exposed youth,
while performance was relatively consistent across incongruent and
congruent trials in comparison youth. This is in line with the notion
that trauma-exposed youth show greater behavioral interference by
task-irrelevant distracters. Breakdown by trial type (I, C; see Fig. S2)
showed that this group differencewas driven by lower accuracy in trau-
ma participants during incongruent rather than congruent trials
(group × trial-type interaction, F(1,31) = 14.42, p = 0.001). No group
differences in RT interference or conflict regulation were observed,
eft mid-posterior insula response to conflict, that correlates with greater performance
ecially those that demonstrate large interference values (incongruent − congruent trials
e given in MNI convention. Error bars represent standard error.
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p3s N 0.17 (Table S1). Groups did not differ on overall task accuracy or RT
(p3s N 0.29; see Table S1 for full summary).

3.2. Trauma-exposed youth show elevated insula reactivity to conflict

We observed greater rFIC response to conflict (I − C) in trauma-
exposed relative to comparison youth, x = 32, y = 34, z = −10, Z =
2.98, pFWE = 0.031, Fig. 2A. Across the sample, higher rFIC reactivity
was associated with greater performance decrements to conflict
(I − C), r(33) = −0.375, p = 0.032. A similar pattern was observed
in left mid-posterior insula; trauma-exposed youth showed higher re-
sponse to conflict (x = −34, y = −10, z = 10, Z = 3.89, pFWE =
0.002) which was associated with greater performance decrements,
r(33) = −0.433, p = 0.012, Fig. 2B. Amygdala and dACC SN regions
did not show group differences in responses to conflict, and neural
activity did not differ between groups during conflict regulation
(iI − cI). Exploratory whole-brain effects of I − C are provided in
Table S2. Briefly, trauma-exposed youth showed higher response to
conflict (I− C) in the FIC, putamen, inferior parietal lobe, and sensori-
motor areas; comparison youth showed higher response to conflict in
the inferior parietal lobe.

3.3. Aberrant salience network (SN) connectivity in trauma-exposed youth

Relative to comparison participants, trauma-exposed youth demon-
strated increased SN connectivity within the left amygdala (x = −28,
y = −6, z = −18, Z = 3.13, pFWE = 0.046; Fig. 3A) and left middle
insula (x = −28, y = 8, z = −16, Z = 3.98, pFWE = 0.011; Fig. 3C),
Fig. 3. Group differences in salience network (SN) connectivity. Trauma-exposed youth show in
creasedmiddle insula (INS), C, to SN signal covariance. Increased SN connectivitywithin the left
y = 34, z = −10) response to conflict, D. Results are significant at pFWE b 0.05, small-volume
error.
and reduced SN connectivity in the right dACC (x = 4, y = 36, z = 34,
Z = 3.14, pFWE = 0.044; Fig. 3B). Increased SN connectivity in the left
middle insula was associated with higher rFIC response to conflict
(I− C; Fig. 3D), r(33)=0.516, p=0.002, and greater performance dec-
rements to incongruent trials, although the latter effect was a non-
significant trend, r(33) = −0.335, p = 0.057. SN connectivity across
the sample is presented in Fig. S3.
3.4. Altered connectivity within the salience network (SN) is associated
with variation in trait reward sensitivity (RS)

Driven by prior work showing relationships between depressive
symptoms and altered SN connectivity in the insula (Manoliu et al.,
2013), and by our recent work showing associations between trait RS
and altered function of emotional conflict neural systems in trauma-
exposed youth (Marusak et al., 2015), we tested associations between
SN-insula connectivity and RS. The strength of SN connectivity was ex-
tracted from the peak of the insula region that showed higher connec-
tivity in trauma-exposed youth. We then tested for associations
between connectivity in this region and RS across the sample. We ob-
served that higher SN to left insula connectivity was associated with di-
minished RS, r(32) = −0.373, p = 0.036. Mediation analyses showed
that the association between trauma exposure and RS was mediated
by SN-insula connectivity (β = −0.4, standard error (SE) = 0.21,
lower limit confidence interval = −0.89, upper limit confidence inter-
val = −0.007; see Fig. 4). Neither anxiety nor depressive symptoms
were related to SN connectivity in the insula (p3s N 0.27).
creased amygdala (AMY), A, decreased dorsal anterior cingulate cortex (dACC), B, and in-
insula (x=−28, y=8, z=−16)was associatedwith greater right fronto-insular (x=32,
corrected. X, Y, Z coordinates are given in MNI convention. Error bars represent standard



Fig. 4. Salience network (SN) connectivity within the insulamediates the relationship be-
tween trauma exposure and reward sensitivity (RS). Unstandardized regression coeffi-
cients and bias-corrected 95% confidence interval (CI) for the indirect effect from a
bootstrap-mediation analysis. Specifically, trauma exposure led to diminished RS through
increased SN connectivity within the insula. *p b 0.05.
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3.5. Aberrant connectivity between the salience network (SN) and default
mode network (DMN) in trauma-exposed youth

Next, we evaluated connectivity between the SN and the DMN. As
shown in Fig. 5, trauma-exposed youth showed reduced DMN to SN
connectivity, particularly in the dACC (x = 2, y = 26, z = 40, Z =
4.05, pFWE= 0.011). DMN connectivity across the sample is presented
in Fig. S3.
4. Discussion

Contemporary neurobiological models suggest that inappropriate
assignment of saliency to external stimuli or internal mental events
leads to aberrant interactions within and between large-scale
neurocognitive networks, and plays a significant role in several psychi-
atric disorders (Menon, 2011). Recent research in adults supports this
conceptualization (e.g., Manoliu et al., 2013; Sripada et al., 2012). How-
ever, it is unknown if changes are evident in the brain prior to the
emergence of clinically significant symptoms; these may underlie
vulnerability. The present study is the first to link early life trauma
exposure — a major predisposing factor for the development of
psychopathology — to dysfunctional architecture of large-scale
Fig. 5. Altered connectivity between the salience network (SN) and the default mode network
with the right dorsal anterior cingulate cortex (dACC), a key SN node. Resting-state functi
pFWE = 0.011, small-volume corrected. Coordinates are given in MNI convention. Error bars r
neurocognitive networks in a sample of high-risk urban youth. We
demonstrate increased SN connectivity within the insula in trauma-
exposed youth that has cognitive repercussions: increased SN connec-
tivity correspondswith suboptimal brain and behavioral responses dur-
ing a conflict task. Further, we demonstrate that altered SN connectivity
is associated with individual variation in positive valence systems. That
is, higher SN connectivity within the insula was associated with lower
RS. These results suggest that enhanced salience detection, diminished
sensitivity to reward, and connectome-level brain changesmay contrib-
ute to later cognitive and affective deficits observed in individuals who
have experienced trauma. A schematic representation of the overarch-
ing framework is provided in Fig. 6.

Trauma-exposed youth show elevated rFIC and left mid-posterior
insula response to conflict relative to comparison youth. The latter is
striking given that a similar left mid-posterior insula region (x = −37,
y = −21, z = 12) was shown to be hyperreactive in women with
PTSD during an emotional interference task analogous to the paradigm
employed in the current study (Bruce et al., 2012). In that study, partic-
ipants were instructed to indicate whether two non-emotional house
stimuli in the horizontal axis were the same or different, while ignoring
distracting emotion–face pairs in the vertical axis. Posterior insular re-
gions are thought to interact with anterior fronto-insular regions to
modulate autonomic reactivity to salient stimuli. Once a salient stimulus
is detected, the rFIC initiates attentional control signals and facilitates
network switching. In the current study, higher reactivity of both rFIC
and mid-posterior insula to conflict was associated with greater perfor-
mance decrements. This suggests that increased salience detection in
fronto-insular regions may interfere with the ability to recruit higher-
order cognitive systems necessary for task execution, or cause inappro-
priate engagement of higher-order systems to task-irrelevant, conflict-
ing stimuli.

We observed greater contributions of the insula and amygdala to the
SN in trauma-exposed youth. This finding is consistent with prior re-
search in adultswith PTSD (Sripada et al., 2012). Our results thus extend
earlier observations and suggest that strengthening of connectivity
within a network that detects salient external and internal events be-
gins proximally to the traumatic experience, during youth. Moreover,
we observed that patterns detected at rest correspondedwith those ob-
served during a neurocognitive task. Specifically, SN connectivity was
higher in the insula, which was more responsive to conflict in trauma-
exposed youth. These converging results support the notion that elevat-
ed SN activity is a pervasive phenomenon that may affect these individ-
uals across a variety of contexts. These data are also fitting with prior
behavioral reports of sustained attention to extraneous stimuli in
youth who have endured early life trauma (Pechtel and Pizzagalli,
(DMN) in trauma-exposed youth. Trauma-exposed youth show lower DMN connectivity
onal connectivity is depicted as Fisher-transformed r values. Results are significant at
epresent SEM.



Fig. 6. Schematic representation of (A) salience network (SN) organization and (B) model of SN dysfunction in youth exposed to trauma. (A) The normal function of the SN is to detect
relevant internal and external cues among myriad inputs. Ventral sensory pathways, including the amygdala and mid-posterior insular regions, feed forward stimulus information to
core SN regions (i.e., right fronto-insular cortex (rFIC) and dorsal anterior cingulate cortex (dACC)). Engaged rFIC may influence dominance in other neurocognitive systems that are rel-
evant for goal-directed cognitive processes (e.g., conflict regulation). This is consistent with suggestions that the FIC is an integrative hub that filters how sensory inputs are further proc-
essed (Menon and Uddin, 2010). (B) The present results demonstrate that childhood trauma, a major predisposing factor for psychopathology, is associated with altered function and
connectivity of the SN. Fitting with conceptual models of posttraumatic stress disorder (Patel et al., 2012) and major depressive disorder (Hamilton et al., 2012), changes within the SN
may lead to a cascade of events that increase risk for cognitive and affective dysfunction hallmark of these disorders. Our results suggest that altered salience processing may underlie
the link between early life trauma and development of psychopathology. Specifically, we observed greater performance decrements to conflict trials, which correspondedwith increased
fronto-insular responses in trauma-exposed youth. We also observed altered connectivity within the SN, and between the SN and the default mode network (DMN). Network-level dis-
ruptions may underlie the observed sub-optimal brain and behavioral responses during the conflict task in trauma-exposed youth. Finally, strength of SN connectivity within the insula
was associated with reduced reward sensitivity, an affective trait emerging as an important risk/resilience factor in the aftermath of early trauma exposure.
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2011). Inappropriate assignment of salience to mundane events could
interfere with ongoing cognitive or affective processes by biasing atten-
tional resources. For instance, elevated salience detection could dimin-
ish a child3s ability to focus on the task at hand, or to regulate
emotional responses.

Trauma and comparison groups did not differ on demographic fac-
tors measured, allowing us to compare the effects of trauma exposure
in groups that were similar in sociodemographic risk. Given also that
the trauma group did not present with marked clinical symptomology
relative to the comparison group, observed neural changes may repre-
sent either risk or adaptation to adverse early environments. Our results
support the former. Specifically, we observed that youth showing the
most aberrant pattern of insula–SN covariance (e.g., elevated connectiv-
ity) showed diminished levels of RS. RS is an affective trait thatmay con-
tribute to the emergence of stress-related psychopathology during
adolescence (Bogdan et al., 2013) and as such, dysfunctional SN connec-
tivity within the insula may represent a neural substrate of increased
risk. Longitudinal follow-up planned in this sample may allow for fur-
ther evaluation of this potential mechanism.

Our analyses indicate that SN connectivity is lower in the dACC in
trauma-exposed youth. This is in contrast to the observed strengthening
of SN connectivity in the amygdala and middle insula. This result
suggests reduced reliance on a core SN region (i.e., dACC), with a con-
comitant increase in regions thought to carry salient interoceptive, ho-
meostatic and emotional information to core SN nodes (i.e., amygdala,
middle insula). In line with a recent conceptual framework (Menon,
2011), we demonstrate a link between aberrant connectivity of the
rFIC within the SN and aberrant connectivity between the SN and
DMN, a network involved in self-referential processing (Buckner et al.,
2008). Prior research shows that altered connectivity of large-scale neu-
ral networks has relevance for mental health. For instance, depressed
adults show altered connectivity within the SN3s rFIC and strength of
connectivity relates to symptom severity (Manoliu et al., 2013). The
network-level brain changes observed in the present study therefore
hold implications for psychiatric risk. Altered network connectivity
may also provide an avenue for intervention. For example, a recent
study showed that transcranial magnetic stimulation (TMS) was capa-
ble of attenuating aberrant network connectivity in depressed individ-
uals by modulating interactions between networks (Liston et al.,
2014), an encouraging result.

Study limitations warrant mention. First, sample size was limited,
and replication in larger samples is warranted to improve generalizabil-
ity of the observed effects. Thus, results are presented as preliminary,
but highlight important neural and behavioral differences in trauma-
exposed youth in an understudied population of urban-dwelling, mi-
nority youth with a high stress burden. Next, we lack information
about the onset (age) and duration of trauma experienced by these
study participants. While retrospective analyses show that trauma
onset and type relate to distinct emotional outcomes (English et al.,
2005), prior studies also document nonspecific effects of these variables
on outcomes (Arata et al., 2007; Collishaw et al., 2007) and some sug-
gest that disentangling unique effectsmay result in overly narrow inter-
pretations (Green et al., 2010). Future studies should also consider
obtaining trauma documentation beyond self- and parent-report mea-
sures (e.g., positive forensic investigation by Child Protective Services).
Next, it is unclear why groups did not differ in levels of internalizing
symptomology (anxiety, depression, RS). This may be because both
groups were drawn from the same sociodemographic risk community,
and did not differ on IQ, race, or income. Comparing groupswith similar
backgrounds provides a unique opportunity to isolate effects of trauma
in the context of high-risk youth. However, future research might con-
sider comparing traumagroupswith andwithout diagnoses or presence
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of elevated symptom levels. Additionally, since this research is cross-
sectional, we cannot examine which, if any, of these participants will
go on to develop stress-related clinical disorders. While this work pro-
vides the first characterization of SN integrity and conflict systems in
trauma-exposed youth at high risk for clinical disorders, future longitu-
dinal work is needed to evaluate disease trajectories. Finally, while we
observed a significant relationship between trauma and SN function,
other factors are likely to influence and be influenced by SN function,
such as age and gender. Effects of additional factors and their potential
interactions with trauma is important for future work that may seek
to develop personalized interventions to promote optimal outcomes
in children who have experienced trauma.
4.1. Conclusions

The present results demonstrate a compellingpattern of SN dysfunc-
tion, particularly in the insula, in youth exposed to trauma. We show
that trauma-exposed youth are more susceptible to interference during
conflict and this correlates with higher fronto-insular responses to con-
flict, and increased tethering of the insula to the SN. We therefore pro-
vide evidence of trauma-related changes across multiple domains of
neural function, and show that the observed effects have relevance for
behavior. Our data also suggest a direct link between connectome-
level brain organization and specific symptom dimensions associated
with psychiatric risk. In particular, increased insula engagement in the
SNwas associatedwith diminished RS, an affective trait that is emerging
as a critical risk/resilience factor in the aftermath of stress. Overall, these
results support the notion that childhood trauma exposure is associated
with disrupted saliency processing at the level of large-scale neural net-
works. Our findings are preliminary, but may aid the formulation of hy-
potheses about neural processingdifferences that result from significant
traumatic life events. Further research will be needed to advance dis-
covery in this area to development of behavioral interventions, a
much-needed direction for follow-up work. For instance, mindfulness,
cognitive training, and neural stimulation have potential to quell over-
active SN nodes and alter the functional connectome (Liston et al.,
2014; Lutz et al., 2013).
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