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Abstract: Artificial intelligence (AI) is revolutionizing the field of orthopedic bioengineering
by increasing diagnostic accuracy and surgical precision and improving patient outcomes.
This review highlights using AI for orthopedics in preoperative planning, intraoperative
robotics, smart implants, and bone regeneration. AI-powered imaging, automated 3D
anatomical modeling, and robotic-assisted surgery have dramatically changed orthopedic
practices. AI has improved surgical planning by enhancing complex image interpretation
and providing augmented reality guidance to create highly accurate surgical strategies.
Intraoperatively, robotic-assisted surgeries enhance accuracy and reduce human error while
minimizing invasiveness. AI-powered smart implant sensors allow for in vivo monitoring,
early complication detection, and individualized rehabilitation. It has also advanced
bone regeneration devices and neuroprosthetics, highlighting its innovation capabilities.
While AI advancements in orthopedics are exciting, challenges remain, like the need for
standardized surgical system validation protocols, assessing ethical consequences of AI-
derived decision-making, and using AI with bioprinting for tissue engineering. Future
research should focus on proving the reliability and predictability of the performance of AI-
pivoted systems and their adoption within clinical practice. This review synthesizes recent
developments and highlights the increasing impact of AI in orthopedic bioengineering and
its potential future effectiveness in bone care and beyond.
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1. Introduction
Recent advancements in artificial intelligence (AI) are redefining orthopedic bioengi-

neering, particularly in bone care, by enhancing precision, personalization, and postopera-
tive outcomes [1,2]. These innovations, from AI-driven surgical planning to smart implants
and bone regeneration technologies, are bridging gaps in traditional orthopedic practices
while raising new ethical considerations [1,3]. This article synthesizes peer-reviewed
findings and industry trends to explore AI’s transformative role in orthopedics.

Incorporating AI into orthopedics has many applications, from improving preopera-
tive protocols and intraoperative navigation to producing smart implants and hastening
bone regeneration treatments [1,2]. AI’s effect in orthopedics is especially impactful for
orthopedic diagnostics, as machine learning (ML) algorithms have been remarkably effec-
tive in assessing medical images (Figure 1) [4,5]. These developments improve diagnostic
accuracy and allow for the earlier detection of bone tumors and orthopedic conditions,
which can lead to improved patient outcomes [5,6].
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A comprehensive review of 34 studies revealed that AI techniques achieved overall
accuracy ranging from 0.44 to 0.99, sensitivity from 0.63 to 1.00, and specificity from 0.73 to
0.96 in distinguishing benign from malignant bone lesions across various imaging modali-
ties [5]. For instance, researchers at the Foot & Ankle Research and Innovation Laboratory
(FARIL) at Massachusetts General Hospital have created an innovative automated muscu-
loskeletal image interpretation system (AMIIS) that improves diagnostic accuracy by more
than 90% [4].

2. Methods
This review was conducted using a structured literature search of peer-reviewed

publications from January 2018 to March 2025 across databases including PubMed, Scopus,
and IEEE Xplore. The keywords included combinations of “artificial intelligence”, “machine
learning”, “orthopedic surgery”, “bone regeneration”, “robotics”, “smart implants”, and
“neuroprosthetics”. The inclusion criteria comprised English-language articles focused
on the application of AI or machine learning in orthopedic bioengineering, including
diagnostics, preoperative planning, surgical assistance, biomaterials, and rehabilitation
technologies. The exclusion criteria included conference abstracts, editorials, non-English
papers, and studies unrelated to orthopedic applications. After the initial screening of titles
and abstracts, 59 studies were selected for full-text analysis and thematic synthesis. Priority
was given to studies reporting performance metrics, clinical outcomes, or technological
innovation in AI-assisted orthopedic care.
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3. Discussion
3.1. AI’s Transformative Role in Orthopedic Bioengineering

AI’s role in orthopedic bioengineering, particularly in joint reconstruction, spine
surgery, and trauma care, has been extensively reviewed. Studies highlight its ability to
enhance precision and personalization in surgical outcomes while addressing challenges
like ethical considerations and regulatory gaps (Figures 2 and 3) [1,3,7]. Additionally, Rupp
et al. 2024 [8], conducted an online, cross-sectional survey on 360 orthopedic surgeons of the
AGA Society for Arthroscopy and Joint Surgery. They found that 54.5% of them expected AI
to complement the field of orthopedics within the next decade, with preoperative planning
being the most likely clinical use (83.8%) [8].
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AI-driven innovations, such as 3D anatomical modeling and surgical planning
(Figures 2 and 3), are bridging gaps in traditional practices by improving diagnostic accu-
racy and enabling patient-specific interventions [9–11], as further supported by survey data
(Figure 4) showing strong surgeon endorsement of AI’s clinical usefulness in orthopedics.
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3.2. AI in Preoperative Planning and Surgical Optimization

AI is revolutionizing preoperative workflows by automating the creation of 3D anatom-
ical models. Traditional manual segmentation of CT/MRI scans, which normally takes
weeks to complete, is now accomplished in minutes using AI algorithms (Figure 5), re-
ducing radiation exposure by enabling X-ray-based 3D reconstructions, reducing manual
segmentation time, and improving preoperative planning (Figure 6) [1]. For instance,
AI-powered tools like Enhatch provide surgeons with real-time, patient-specific models to
optimize implant alignment and predict surgical outcomes (Figures 6 and 7). Such precision
is critical in joint replacements, where even millimeter-level deviations impact long-term
functionality [9,10,12].
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These AI-driven systems reduce radiation exposure by enabling X-ray-based 3D re-
constructions, as seen in platforms like TiRobot, which cuts intraoperative X-ray use by
70% [1,11]. Beyond planning, AI’s integration in orthopedic surgery has led to measur-
able clinical improvements, including a 30% reduction in operative time, a 35% decrease
in patient blood loss, fewer surgical complications, and faster hospital recovery times
(Figure 7).
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Beyond model generation, AI plays an increasingly critical role in stereotactic naviga-
tion and intraoperative accuracy. Systems like TiRobot integrate AI-assisted stereotactic
guidance to achieve sub-millimeter precision in implant positioning by leveraging real-time
imaging data with preoperative models. These systems enhance targeting accuracy and re-
duce variability in complex procedures, especially in spinal and pelvic surgeries [11,16,17].
Complementing these systems are AI-driven imaging tools—particularly those powered by
convolutional neural networks (CNNs)—which automatically identify and segment regions
of interest (ROIs) within CT and MRI scans. This facilitates enhanced visualization of criti-
cal anatomical structures, guiding implant placement with exceptional precision [17–20].
ROI-based planning not only improves alignment but also shortens operative time and
minimizes the risk of iatrogenic injury through personalized, data-driven trajectory opti-
mization [1,2,21]. Moreover, CNNs have demonstrated >95% sensitivity in detecting subtle
bone defects and grading osteoarthritis, comparable to expert radiologists [1,22]. Another
2024 clinical study on TiRobot demonstrated a 20% increase in surgical efficiency and a 70%
reduction in radiation exposure during complex spinal and trauma surgeries [11].

While not femoral-specific, this aligns with AI’s role in optimizing fixation strategies
through real-time anatomical tracking and preoperative 3D planning. Similarly, Stryker’s
Mako system uses CT-derived 3D modeling to optimize implant size and alignment with
sub-millimeter precision, minimizing intraoperative errors and improving long-term func-
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tionality in joint replacements [7,10]. Kolomenskaya et al. (2023) demonstrated that AI
models analyzing biomechanical data and patient-specific factors can recommend tailored
fixation strategies, reducing postoperative complications by 32% compared to traditional
methods [1,7,23].

3.3. AI in Bone Grafting and Biomaterial Innovation

AI also transforms bone grafting and implant material selection, enhancing product
durability and patient outcomes. Traditional bone grafting methods, such as autogenic
grafts, are constrained by limited donor tissue availability and tissue harvesting complica-
tions. Likewise, allogeneic grafts carry risks of immune rejection and pathogen transmis-
sion. These challenges have driven interest in synthetic and composite materials for bone
repair [23].

AI is accelerating biomaterial innovation by optimizing their composition and struc-
tural properties. Bioceramics, such as hydroxyapatite (HAp)-based materials, offer superior
biocompatibility, osteoconductivity, and bioactivity, making them viable alternatives to
traditional grafts. AI-driven models streamline biomaterial selection by analyzing crucial
physiologic factors like porosity, degradation rates, and mechanical properties to enhance
bone integration [23,24].

Moreover, AI has changed scaffold fabrication for bone tissue engineering tremen-
dously. Instead of the previously existing, often slow and labor-intensive trial-and-error
procedures, AI-enabled approaches to scaffold design enable the prediction of material
behavior and assist in refining structures appropriately (Figure 8). With some materials
(e.g., bioactive glasses) having controlled release of ions to stimulate osteogenesis and
vascularization, AI-enabled techniques, like 3D printing and electrospinning, facilitate the
creation of customized scaffolds with optimized porosity and drug delivery [25]. Com-
posite scaffolds are useful for incorporating organic and inorganic materials to enhance
mechanical integrity and bioactivity [25]. These AI-enabled scaffold improvements in
orthopedics have led to better patient outcomes using shorter surgical times and fewer
complications (Figure 9) [10].
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Additionally, by accelerating project timelines, AI-enabled scaffold improvements can
greatly reduce the time spent on research and development from initial proof of concept
to patient use [26]. Despite the rapid improvements, there are still challenges in ensuring
ethical and regulatory approval for AI-generated materials. Future research should focus on
improving AI models for clinical applications related to parameters such as longevity of the
material in the body and biocompatibility. Incorporating AI into biomaterials in addition to
surgical options is a significant step towards disrupting current orthopedic medicine and
creating more efficacious orthopedic treatment options, as well as individualized treatment
approaches [26].

3.4. Machine Learning and Neural Networks in Implantology

Earlier AI models in medicine often relied on logic-based and symbolic methods, which
lacked the precision and predictive power of modern ML and deep learning (DL) algorithms.
ML allows systems to learn from data without explicit programming, using techniques such
as Bayesian networks, ensemble methods, and gradient boosting to improve diagnostics
and treatment planning, such as predicting dental and orthopedic implant needs [25,26].

DL, a subset of ML, employs artificial neural networks (ANNs) with multiple layers,
enhancing the ability to recognize complex patterns and solve sophisticated tasks. ANNs,
inspired by the structure of the human brain, process information through interconnected
nodes that adaptively learn from data. In implantology, ANN models help identify subtle
factors influencing implant success, predict long-term viability, and reduce complications
at all stages of treatment [25,26].

For example, a neural network trained on data from over 1600 patients achieved
a 94.48% accuracy rate in predicting implant survival using ReLU and softmax activa-
tion functions [26]. The model analyzed 55 statistical factors through one-hot encoding to
classify implants as either “survival” or “rejection” [26]. These AI-driven innovations under-
score the potential of intelligent algorithms in revolutionizing orthopedic bioengineering,
paving the way for safer, more effective, and highly customized patient care [25,26].

While ANNs have been foundational, other ML models continue to gain traction
in biomedical and orthopedic applications. Random Forests are frequently used in clas-
sification tasks because of their resilience to overfitting and ability to manage complex
datasets. For example, Random Forests have been shown to effectively predict clinical
outcomes, such as moderate to severe acute postoperative pain after orthopedic surgery,
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outperforming traditional logistic regression models in terms of classification error and
area under the curve (AUC) [27].

Support Vector Machines (SVMs) are applied to biomechanical modeling, including
tasks like distinguishing implant types and predicting mechanical failure under stress.
SVMs are valued for their robustness in handling high-dimensional data and their effective-
ness in classification scenarios, as demonstrated in various machine learning tutorials and
practical applications using scikit-learn and related frameworks [28]. Bayesian networks
have informed clinical risk stratification tools by integrating clinical and non-clinical factors
to model the probability of outcomes, such as time to return to sport and injury severity.
These networks can support individualized clinical decision-making and scenario planning,
as shown in recent studies involving professional athletes [29].

Reinforcement learning algorithms are being introduced in adaptive systems that
optimize implant placement by responding to real-time biomechanical feedback. While
peer-reviewed clinical studies on reinforcement learning in orthopedic implantology are
still emerging, the potential for adaptive, data-driven decision support is recognized in
the field. These diverse models are typically developed using powerful open-source
frameworks, such as TensorFlow, PyTorch, and scikit-learn, which provide accessible APIs
and support a wide range of machine learning techniques. AutoML platforms, including
Auto-Sklearn and Auto-PyTorch, further streamline the process by automating model
selection and hyperparameter tuning, allowing for efficient development and deployment
of machine learning models in clinical and research settings [28]. Together, this ecosystem of
ML tools is driving a new era of precision and personalization in orthopedic implantology,
enabling more accurate predictions, individualized treatment planning, and improved
patient outcomes [27–29].

3.5. AI in Bone Tumor Diagnosis and Treatment

AI is also advancing the diagnosis, treatment, and management of various bone
tumors in orthopedics, specifically in differentiating between benign (osteoid osteoma and
osteochondroma) and malignant tumors (osteosarcoma and chondrosarcoma).

AI has shown great potential to differentiate between benign and malignant bone
lesions in radiological reviews across multiple imaging modalities [30]. In a systematic
review of 34 studies, AI approaches demonstrated overall accuracy from 0.44 to 0.99,
sensitivity from 0.63 to 1.00, and specificity from 0.73 to 0.96 for distinguishing benign
from malignant bone lesions [30]. These AI models have been successfully applied in
radiographs, MRI, CT, and PET/CT scans, displaying various applications in medical
image analysis. Furthermore, in CT-based radiomics, AI models could differentiate atypical
cartilaginous tumors from high-grade chondrosarcoma with accuracy that was either on
par or superior to preoperative biopsy results [30].

Beyond imaging, ML models now assess tumor pathology at a cellular level, offering
more accurate prognoses than conventional methods. For osteosarcoma—the most com-
mon malignant bone tumor—a machine learning model developed at Kyushu University
evaluates the density of surviving tumor cells after treatment [30]. This model matches
pathologist assessments while offering improved consistency and efficiency in predicting
tumor response to therapy.

Furthermore, AI-assisted tumor pathology analysis eliminates human variability in
identifying residual viable tumor cells, allowing for more precise treatment response
assessment and personalized therapeutic planning.
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3.6. Intraoperative Robotics and Precision Surgery

Robotic-assisted systems are now standard in total knee arthroplasty (TKA) and spinal
surgeries, with the global orthopedic robotics market projected to reach USD 16 billion
by 2030 [9]. Platforms like Stryker’s Mako system leverage AI to execute pre-mapped
surgical plans with sub-millimeter accuracy, minimizing soft-tissue damage and improving
implant longevity [3,31]. Real-time AI feedback adjusts for intraoperative anatomical shifts,
enhancing reproducibility in osteotomies and joint reconstructions [3]. During knee and
hip replacements, these systems ensure precise bone cuts, optimal alignment of prosthetic
joints, and minimal soft tissue damage, leading to better patient outcomes, faster recovery
times, and fewer postoperative complications (Table 1) [31].

Table 1. Traditional surgery vs. AI-driven surgery.

Traditional Surgery Robotic-Assisted Surgery

Manual implant alignment Algorithm-driven precision

Higher risk of human error Reduced variability (<1◦ deviation)

Extended recovery periods Faster mobilization (e.g., 20% shorter hospital stays)

Over the past two decades, robotic technology in orthopedics has evolved from passive
systems, where surgeons retain full control, to active systems, where robots autonomously
perform tasks. Semiactive or “haptic technology”—as seen in robotic-arm-assisted TKA—
strikes a balance by providing real-time feedback, ensuring precise bone resection and
soft-tissue balancing. Robotic systems like Mako and ROSA Knee leverage AI to execute
pre-mapped surgical plans with <1◦ deviation in implant alignment, further improving
surgical precision [10,32].

AI-driven advancements in robotic platforms have significantly improved surgical
outcomes (Table 2). For instance, Mako’s semi-autonomous robotic arm achieves 99.9%
accuracy in hip–knee angulation within ±3◦ of planned targets, enhancing implant posi-
tioning and alignment. Similarly, OMNI-Botics utilizes AI-driven tensioning sensors to
balance ligaments intraoperatively, leading to a 99.48% implant survival rate at a 6-year
follow-up [32]. Another breakthrough, TiRobot, reduces operative time by 20% through
automated instrument positioning and real-time optical tracking, optimizing efficiency and
precision in orthopedic procedures [10,32].

Table 2. Various metrics showing the improvement in AI–robotic TKA over traditional TKA.

Metric Traditional TKA AI–Robotic TKA

Implant alignment accuracy 69.9% within target 99.9% within target

Postoperative ROM accuracy Slower 20% faster recovery

Radiation exposure High Reduced by 70%

3.7. Smart Implants and Remote Monitoring

Smart implants integrated with biosensors facilitate proactive postoperative care by
allowing continuous real-time monitoring of joint function outside the clinical environ-
ment [9,23]. For example, Zimmer Biomet’s Persona IQ knee implant monitors gait pattern,
step count, and load distribution to transmit data to clinicians, which allows them to
identify complications (e.g., loosening, infection, or abnormal biomechanics) before clinical
symptoms arise [9,23]. Studies have found that sensor monitoring allowed for early inter-
vention in 32% of patients who underwent TKA, effectively reducing the revision rate and
improving long-term outcomes [10].
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Integrating AI-based predictive models expands the functionality of smart implants.
AI can triangulate sensor data with patient biomarkers (e.g., inflammatory cytokines) to
predict the risk of implant failure before clinical symptoms arise, paving the pathway
for personalized and preemptive intervention. In addition, autonomous or AI-enabled
robotic systems used in orthopedic surgeries can utilize real-time feedback for optimal
implant positioning and alignment, with sub-millimeter accuracy in total knee and hip
arthroplasty, amongst other procedures. This data-driven strategy can reduce postoperative
complications, improve rehabilitation times, and extend the lifespan of the implant [26].

Furthermore, advances in materials science and additive manufacturing emphasize
the potential of smart implant technology. Mass customization of orthopedic implants
can be realized through 3D printing and robotics to ensure a patient-specific fit while
maintaining optimal biomechanical properties [25]. Titanium alloys and bioactive polymers
improve osseointegration, in addition to drug-releasing polymer frameworks, which can
help moderate inflammatory reactions [24]. Electrospinning is an example of a technique
used to create cell-adhered scaffolds that aid bone regrowth and provide stability to the
implant [25].

Nonsurgical protocols are also critical design components for implant design and
performance prediction. Finite element analysis (FEA) and graph-based modeling can
assess the bone–implant interface, studying parameters such as friction coefficient, porosity,
and load distribution [26]. These models create better biomimetic implants that replicate
some of the properties of actual bone and can minimize or eliminate mechanical mismatch
and long-term durability issues [23].

As smart implants evolve, their integration with AI, biosensors, and regenerative
materials represents a paradigm shift toward proactive, data-driven orthopedic care. With
real-time remote monitoring, predictive analytics, and personalized interventions, the
future of implantable electronics is poised to significantly improve patient outcomes and
surgical success rates [26].

3.8. AI-Driven Bone Regeneration and Neuroprosthetics

AI is transforming neuroprosthetics and bone regeneration by significantly improving
the precision, adaptability, and effectiveness of medical care (Table 3). Orthopedics and
neuroprosthetics have historically provided vital interventions for bone injuries and motor
impairments, but they suffer from important limitations, such as incomplete restoration of
function and slow recovery. AI advances neuroprosthetics that respond to key limitations
by offering more adaptive and personalized solutions. For neuroprosthetics, AI enhances
communication between the brain and affected limb using adaptive prostheses, real-time
adaptive control systems, and brain–computer interfaces (BCIs) [33,34]. This allows neu-
roprosthetics to learn and adapt to the patient’s movement patterns, providing greater
control and more natural function. Össur and ReWalk Robotics are two companies using
AI to develop adaptive prosthetic devices, like Össur’s Proprio system and the ReWalk
exoskeleton that adjust automatically to ground conditions or read brain signals to achieve
more natural arms, legs, or torso movements [34].
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Table 3. Leading AI companies in neuroprostheses.

Company Focus AI Application

Össur [34–36]
Advanced neuroprosthetics and
orthopedic technologies

Employs AI to improve the functionality
of prosthetics, exemplified by the Proprio
knee prosthesis, which dynamically
adapts to terrain and walking speed.

ReWalk Robotics [34,37,38]
AI-developed exoskeletons for
individuals with mobility
impairments

Utilizes AI to interpret user intent and
modulate exoskeleton movements,
enabling more natural and responsive
walking patterns.

Neuralink [34,39]
Brain–computer interface (BCIs)
development for neurological
disorders

Designs AI-driven BCIs for direct
brain-to-device communication, targeting
functional restoration in individuals with
paralysis.

Medtronic [34,40–42] Neurosurgical medical devices and
surgical systems

Integrates AI to enhance precision in
device implantation and tailor
interventions for neurological injuries and
diseases

Bionik Laboratories [34,43,44] Rehabilitation technologies and
neuroprosthetics

Develops AI-powered exoskeletons that
respond adaptively to user movement,
promoting mobility recovery for patients
with paralysis.

NeuroPace [34,45–47] Implantable neurostimulation
devices

Uses AI to customize and adjust brain
stimulation therapies in real time,
optimizing treatment for
individual patients.

BrainCo [34,48] Cognitive and motor
neurotechnology solutions

Leverages AI to support the development
of neuroprosthetics and enhance brain
function and control.

In the realm of bone regeneration, AI is driving advancements in both surgical plan-
ning and material design (Table 4). Companies like Bioventus and Xtant Medical are
integrating AI into their bone regeneration solutions, using predictive modeling to improve
implant designs and accelerate healing. AI-enhanced 3D printing and generative design
algorithms optimize scaffold structure for bone repair, balancing porosity and load dis-
tribution to enhance osseointegration and reduce recovery time. For instance, machine
learning techniques are used to design bioceramic scaffolds that promote faster bone heal-
ing, with trials showing up to 40% faster healing times than traditional methods. These
AI-driven innovations are particularly beneficial in complex fractures, osteoporosis, and
bone tumors, where tailored implants and biologically active materials speed up healing
and reduce complications.

Moreover, AI is enabling breakthroughs in neuroprosthetics for patients with spinal
cord injuries, stroke, ALS, and cerebral palsy by improving the functionality of adaptive
prostheses and BCIs (Table 5). By decoding neural signals, AI helps control prosthetics
more intuitively, restoring motor function and enhancing mobility for patients with severe
impairments. For bone regeneration, AI improves treatments for complex fractures, ad-
vanced osteoporosis, and traumatic injuries by customizing scaffold designs to optimize
bone repair and reduce recovery times [33,34].
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Table 4. Leading AI companies in bone regeneration.

Company Focus AI Application

Xtant Medical [34,49,50] Bone regeneration through surgical
interventions

Applies AI in medical devices to improve implant
integration and speed up the bone healing process

Bioventus [34,51–56] Bone healing via stimulation
technologies and cell therapies

Employs advanced AI to tailor therapies and
enhance recovery for fractures and skeletal
conditions

Orthofix [34,57,58] Treatments for musculoskeletal
disorders and bone repair

Integrates AI with electronic bone stimulation to
support regeneration following surgical
procedures

RevBio [34,59,60] Biologically based therapies for bone
repair

Uses AI to develop engineered biomaterials that
facilitate healing in complex bone fractures

Bioretec [34,61–63] AI-driven solutions for bone
regeneration

Applies AI to design and optimize healing devices
tailored to fracture-specific structural requirements

Table 5. Health challenges in neuroprostheses that AI can resolve.

Health Challenge Technology Surgical Technique Benefit

Spinal Cord Injuries
(SCIs) [34,39–42,64]

Brain–computer interfaces
(BCIs) by Neuralink,
adaptive exoskeletons from
ReWalk Robotics and Ekso
Bionics

Exoskeletons require no
surgery (external devices);
BCIs involve surgical
implantation of brain
electrodes

Restoration of partial or
full mobility, increased
independence, and
improved quality of life

Stroke (CVA) [34,43,44,65]
Smart prosthetics with
adaptive control systems
by Bionik Laboratories

Minimally invasive
procedures for implanting
sensors and electrodes in
neuroprosthetics

Enhanced rehabilitation
through prosthetics that
adapt to user movement

Amyotrophic Lateral
Sclerosis
(ALS) [34,45–47,66]

Implantable brain
stimulation devices from
NeuroPace

Deep brain stimulation
(DBS) surgery for device
placement

Improved environmental
interaction and device
control via neural signals

Cerebral Palsy [34,40–42]
AI-powered prosthetics
from Medtronic for tailored
mobility solutions

Surgical implantation of
neurostimulators to
support motor control

Increased task performance
and greater autonomy

Amputations [34–36,67–69]
Intelligent prosthetics like
Össur’s Proprio system,
responsive to terrain

Amputation surgery
followed by prosthetic
fitting

More precise motor
functions and more natural
gait simulation

Pioneering companies such as Neuralink and Medtronic are actively working on
cutting-edge BCIs that incorporate advanced AI and are intended to restore motor function.
Meanwhile, companies such as RevBio and Bioretec use AI to develop new therapies that
support bone regeneration using bioactive ceramics and 3D-printed implants. These two
approaches are fundamentally transforming how we think about treatment for healing
damaged bone and recovering lost motor function, ultimately offering patients more
effective, patient-specific, and less invasive approaches to treatment (Table 6).

By combining AI-driven approaches in neuroprosthetics and bone regeneration, we
are witnessing a paradigm shift in medical technology that promises to restore function
and mobility and significantly improve the quality of life for patients facing serious medi-
cal challenges.
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Table 6. Health challenges in bone regeneration that AI can resolve.

Bone Regeneration Challenge Technology Surgical Technique Benefit

Complex Fractures [34,57,58,70] Predictive surgical planning
models by Orthofix

Osteosynthesis using bone
stimulators or AI-guided implant
designs

Faster recovery through
personalized treatment and
enhanced fracture healing

Advanced Osteoporosis [34,61–63,71] AI-driven, 3D-printed implants
by Bioretec

Implant-based fracture fixation or
joint replacement (osteosynthesis
or arthroplasty)

Improved bone strength and
reduced risk of recurrent
fractures with biologically
compatible implants

Bone Tumors [34,49,50,72,73]
Regenerative biomaterials and
AI-assisted grafts by Xtant
Medical

Oncologic surgery for bone tumor
resection followed by AI-guided
bone graft placement

Accurate anatomical
post-tumor resection with
enhanced structural integrity

Congenital Deformities [34,59,60,74] AI-customized prosthetics
Corrective osteotomies with
patient-specific prosthesis
placement

Functional and aesthetic
improvements via
individualized surgical
correction

Traumatic Injuries [34,51–56] Bone stimulation and cell
therapy from Bioventus

Surgical repair with bone
stimulators and regenerative
materials (osteosynthesis)

Effective regeneration of
damaged bone using
advanced biomaterials and
stimulation

4. Ethical and Practical Considerations
The increasing use of AI in orthopedic bioengineering has led to remarkable advances

in patient care and surgical accuracy. Still, it presents several ethical and practical challenges
that must be addressed carefully (Figure 10). A particular concern is data bias, as AI
algorithms often utilize datasets that do not necessarily represent the diversity in the
population. Without accounting for diversity, AI may introduce inaccuracies into the
evaluative process, particularly for underrepresented patients. For instance, AI models
achieve their optimal performance through training data collected largely from patients of
European or North American descent. Yet, they may not reflect the anatomical differences
found among other patient groups, making their outputs less effective for the latter patients.
This example illustrates why it is critical to employ diverse datasets when training AI
models so that they exhibit equitable performance across all patient populations [3,26,75].
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Along with data bias, there is also concern about manual surgical skills being erased
due to the increasing use of AI. For example, a 2023 study showed that residents trained
solely by robotic-assisted systems performed TKA many times less accurately than residents
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trained by open techniques. This phenomenon is generally referred to as deskilling, and it
represents a major risk, particularly when the surgeon may not be able to resolve a failed
artificial intelligence system or if the system malfunctions in the operating room. In these
situations, a complete system collapse may result from an active threat, malware challenge,
or technical error. For these reasons, it is important that trainees also practice conventional
methods even while building their expertise in AI-assisted surgery [3,26,77].

Regulatory gaps also complicate the adoption of AI in orthopedics. Although AI may
increase precision and decrease human errors, many AI-assisted orthopedic devices are not
fully tested in real-world applications. The FDA found that only 50% of devices underwent
dynamic clinical validation. Additionally, clinical testing often occurs within controlled
environments, hindering the validation of devices in real clinical practice with variable
clinical scenarios. Furthermore, suppose an AI-assisted device has not been fully tested in
a clinical environment. In that case, it questions the reliability and validity of the device
when employed outside of a controlled laboratory, necessitating standardized regulatory
guidelines to validate AI systems prior to implementation in clinical practice [3,26,78].

Finally, introducing AI systems into medicine must align with established ethical
principles in using AI technologies. For example, the Declaration of Geneva of the World
Medical Association states that AI technologies should not discriminate based on age,
gender, race, or other social factors. Addressing overt discrimination in an AI system is
relatively straightforward; however, biases that result from unconscious bias in the training
datasets are more problematic. AI systems must be made safe from bias, and a dataset
must be monitored and continuously updated to reflect the general patient cohort and
continuously evolve given novel medical practice [3,75,79]. The ethical implications of
a patient’s privacy and consent remain significant issues as AI-driven systems reduce
engagement. AI systems do not afford the patient a true dialogue, as AI systems do not
truly engage or offer any consenting process [3,77].

The concept of informed consent becomes increasingly complicated when AI systems
act like “black boxes”, so that neither the patient nor the physician thoroughly comprehends
the underlying decision-making process. In these instances, it is technically possible for
patients to give consent, but they do not truly understand what consent means in terms of
procedures that the AI supports, so the consent becomes meaningless [75,77–80]. Likewise,
the use of AI for surgical procedures, like a robot making an incision or guiding the
procedure in TKA, creates situations that may lead to excessive deference to technology,
adversely affecting the surgeon’s confidence and skill when using this potentially faulty
technology. This problem may also lead to significant concerns if AI algorithms make faulty
recommendations because surgeons rely on AI without questioning the recommended
intervention [80,81].

Another important issue is cybersecurity. As AI technologies in orthopedics become
more mainstream, the likelihood of cyberattacks against AI-enabled systems will increase.
A breach involving the theft of data or compromised software systems could have severe
implications, including providing incorrect surgical guidance or causing data breaches. A
study published in HealthITAnalytics (2024) indicates that black box AI tools often lack
adequate cybersecurity controls, making them amenable to attacks that could compromise
patient safety and data integrity [82]. This points to an important need for strong cyberse-
curity controls to protect patient data and ensure the integrity of AI systems [75,77–82].

Lastly, accountability for using AI technologies raises the next significant ethical issue.
When an AI system fails or has an adverse outcome, it is unclear whether accountability
lies with the software developer, the healthcare provider, or the regulatory agency that
sanctioned the technology. This uncertainty complicates the ethical and legal framework
around the use of AI in medicine. Research published in BMJ Medical Ethics (2021) points
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to the alarming ethical questions arising from black box algorithms since there is a lack
of accountability and transparency when adverse events occur through the algorithm’s
opaque decision-making process [81,82]. Addressing these concerns requires a joint effort
among engineers, clinicians, and policymakers to produce a structure for developing
standards of ethical use of AI (Figure 11).
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As AI-driven innovations evolve, they offer enormous potential to transform orthope-
dic practices, but only if these ethical and practical challenges are carefully managed. By
addressing issues such as data bias, surgeon deskilling, regulatory gaps, and accountability,
the healthcare industry can maximize the benefits of AI while minimizing its risks [76].

5. Future Directions
The future of orthopedics appears set for significant advances, powered by accelerating

developments in AI, biomaterials, and nascent technologies, such as 3D bioprinting. AI is
revolutionizing how patients are cared for because of improved accuracy of diagnostics
and enhancements in surgical planning, risk assessment, and postoperative recovery
monitoring. For example, using an AI tool that generates 3D anatomical models from
imaging data takes only a few clicks. It can dramatically reduce the time it takes to set
up a preop plan and improve the procedure’s accuracy (e.g., knee replacement, fracture
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repair) [9,83]. AI algorithms can also analyze large datasets, recommend individualized
surgical approaches, predict outcomes, and provide real-time feedback to surgeons [84].

Notwithstanding the insights of AI, challenges remain, particularly regarding reg-
ulatory frameworks and addressing ethical issues, including the privacy of data and
algorithmic bias, which remain barriers to implementation. Countries have begun to put in
place regulatory standards to optimize the clinical use of AI. Still, it will remain critical to
continue to develop guidelines on dataset curation and algorithmic transparency of AI to
ensure ethical use [76,82–84].

Regarding materials, the advancements in orthopedic implants are redefining practices
with improved durability and a more favorable experience for patients. Utilizing 3D-
printed titanium alloys, highly cross-linked polyethylene, and bioresorbable polymers
enhances longevity and biocompatibility in implants with reduced infection rates. The
Persona® Solution™ PPS® Femur from Zimmer Biomet has an innovative porous design
that provides novel options for patients sensitive to traditional materials. At the same time,
Onkos Surgical has produced an FDA-approved antibacterial covering for their tumor and
revision implants that invokes a modern approach to infection prevention with antibiotics
in implant care. Bioresorbable implants, like screws and plates, are gaining traction, with a
projected market of USD 16.35 billion by 2035 [85,86]. These materials become resorbed
over time, eliminating follow-up surgeries for hardware removal [86].

Integrating AI and 3D bioprinting will help expedite orthopedic bioengineering ther-
apy by creating patient-specific bone grafts based on individual anatomy to decrease
the mismatch between patient anatomy and implant materials, improving surgical out-
comes. For example, smart implants with embedded sensors can remotely access data
on healing rates to measure a limb’s range of motion and alignment without an invasive
procedure [83,84]. Large-scale clinical trials are needed across multiple populations to
verify these procedures and innovations further. The ROSA Knee system provided a 99.26%
survival rate at 3 years post-implantation in a study containing a high number (766) of
patients, indicating the possibility of smart implants to significantly evolve the overall
quality of care in the orthopedic setting [9,83,84].

The orthopedic future is moving towards robotics and advanced materials to deliver
this type of care into everyday clinical practice in the near term. The utilization of robotics
and advanced materials will yield further enhanced patient outcomes and more accessible
orthopedic care due to the different and varied setups that robotics entails. In this evolving
landscape, orthopedic care will only further evolve into the patient’s needs and centered
access to individualized care. The overall future of orthopedics is one of the exciting
possibilities in re-establishing a field we sometimes do not think of as “scientific”. It
unifies the newest possibilities of robotics and advanced materials while still holding to
the ethical responsibilities of our profession, dedicated to improving the quality of life for
our patients across the world and, maybe even one day, to achieving a proposed global
equitable healthcare system.

6. Conclusions
AI integration in orthopedic bioengineering has led to a definitive change in patient

management with increased precision, personalization, and efficiency. These innovations
are changing the face of orthopedic practice, from AI-assisted diagnostic tools to smart
implants and regenerative therapies. For example, AI algorithms have been shown to
have very high sensitivity (94%) and specificity (91%) when detecting osteoarthritis at
accuracies comparable to fellowship-trained arthroplasty surgeons [87]. ML models have
even been developed to optimize the preoperative plan for procedures such as total knee
arthroplasty (TKA), predicting component size with accuracy from 88.3% to 99.9% [87].
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However, challenges remain, including data bias, automated reliance on AI systems, and
regulatory limitations. Ethical issues, such as algorithm transparency, patient privacy, and
accountability of adverse events, must also be considered [4].

Multidisciplinary collaboration will be crucial as the field evolves to address these
challenges and ensure ethical AI deployment. Future research should focus on large-scale
clinical trials to validate AI technologies and their impact on patient outcomes. For instance,
studies have shown that robotic-assisted surgeries improve implant alignment and soft
tissue balance in TKA, but further research is needed to assess reproducibility across diverse
clinical settings [1,3]. Developing standardized protocols for algorithm transparency is
another critical step. Transparent AI systems can help build trust among clinicians by
highlighting key radiologic features used in decision-making processes, as demonstrated
by deep learning models for diagnosing osteoarthritis [1]. Additionally, exploring novel
applications such as AI-driven bioprinting could revolutionize the creation of patient-
specific implants and prosthetics by tailoring designs based on anatomical data [88].

By embracing these innovations responsibly, the orthopedic community can harness
AI’s potential to significantly improve patient outcomes and advance the field of bone care.
For example, generative AI has shown promise in designing customized implants that en-
hance comfort and functionality by analyzing parameters like bone density and movement
patterns [88]. As we move forward, continued research and development in AI applications
will undoubtedly play a pivotal role in shaping the future of orthopedic bioengineering.
This progress promises more precise, accessible, and personalized treatment options for
patients worldwide.
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