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Simple Summary: Colistin is a last resort drug for the treatment of infection caused by
multidrug-resistant Gram-negative bacteria. Different studies have uncovered the negative impact of
colistin consumption in animals. Therefore, it has become essential to monitor the dosing regimens of
colistin and assess their negative effects. The current review intends to provide brief information of
colistin usage and its associated negative impact and discuss available techniques to detect colistin in
animal-based food so that effective preventive measures can be taken to minimize the health risks in
both animals and humans.

Abstract: Progress in the medical profession is determined by the achievements and effectiveness of
new antibiotics in the treatment of microbial infections. However, the development of multiple-drug
resistance in numerous bacteria, especially Gram-negative bacteria, has limited the treatment options.
Due to this resistance, the resurgence of cyclic polypeptide drugs like colistin remains the only option.
The drug, colistin, is a well-known growth inhibitor of Gram-negative bacteria like Acinetobacter
baumanni, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Technological
advancements have uncovered the role of the mcr-1(mobilized colistin resistance) gene, which is
responsible for the development of resistance in Gram-negative bacteria, which make them distinct
from other bacteria without this gene. Additionally, food animals have been determined to be
the reservoir for colistin resistance microbes, from which they spread to other hosts. Due to the
adverse effects of colistin, many developed countries have prohibited its usage in animal foods,
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but developing countries are still using colistin in animal food production, thereby imposing a major
risk to the public health. Therefore, there is a need for implementation of sustainable measures in
livestock farms to prevent microbial infection. This review highlights the negative effects (increased
resistance) of colistin consumption and emphasizes the different approaches used for detecting colistin
in animal-based foods as well as the challenges associated with its detection.

Keywords: antibiotics; colistin; detection methods; food animals; multi-drug resistance

1. Introduction

Colistin is an antibiotic synthesized non-ribosomally by Bacillus polymyxa subspecies colistinus [1].
Colistin (polymyxin E) and polymyxin B (PMB) have high structural similarities and differ only at
position six, where D-Leu is present in colistin, and D-Phe is present in PMB, as illustrated in Figure 1.
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Figure 1. Chemical structures of polymyxin E (colistin) (a) and polymyxin B (b). The functional
segments of polymyxins A: NR fatty acyl chain, B: linear tripeptide segment, C: the polar residues of
the heptapeptide, D: the hydrophobic motif within the heptapeptide ring.

Colistin is effective against various Gram-negative bacteria such as Acinetobacter baumanni,
Enterobactercloacae, Klebsiella pneumonia, and Pseudomonas aeruginosa [1,2]. The mechanism of action of
colistin involves interactions with the outer membrane of the organism, especially lipopolysaccharide
molecules, which causes displacement of calcium and magnesium ions and destabilizes the outer
membrane. This destabilization of the outer membrane causes the leakage of cell content and leads
to cell senescence [3,4]. During the 1970s, colistin was discontinued for clinical application as it
was associated with neurotoxicity, nephrotoxicity, and other ailments [5,6]. Recently, colistin was
reappraised and is being used as a last-line treatment against Gram-negative bacterial infections [6].

The extensive use of antibiotics for treating human infections caused by multidrug-resistant or
highly drug-resistant Enterobacteriaceae is threatening the efficacy of colistin [7]. Furthermore, this has
led to development of colistin resistance mediated by the transposable and plasmid-borne mcr genes
that have been reported worldwide in Enterobacteriaceae from both humans and food-producing animals’
samples. Salmonella enteric serovar infantis is one of the leading serovars among the top five Salmonella
serovars involved in human infections in Europe [8]. It is most frequently detected in broilers (45.6%)
and broiler meat (47.4%), as compared with other meats, which may be complicated by the substantial
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spread of multi-drug resistant (MDR) strains and extended spectrum beta-lactamase (ESBL)-producing
S. infantis infections. According to recent reports in Switzerland and the United States, the presence of
a conjugative pESI (plasmid emerging from Salmonella infantis)-like mega plasmid(harbour the mcr-1
gene) was found to be a significant cause of this infection, as also reported earlier in Israel and Italy in
2014 and 2015, respectively [9–12]. The mcr-1 gene was found in mussels while isolating Salmonella
enteric serovar Rissen ad ST-469 in northwest Spain during 2012–2016 [13]. This review highlights the
uses of colistin consumption in animal-based food, its negative effects, and different approaches and
advancements used for detecting colistin in animal-based food.

2. Colistin Use in Veterinary Medicine

For decades, colistin has been used as an additive in livestock feed for promoting growth and
treating intestinal infections [14,15] as shown in Figure 2.
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Figure 2. Graphical illustration of the spread of antibiotic-resistant bacteria as well as accumulation of
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The use of colistin in animal feed and hence human consumption through the food chain has
been documented in low and middle-income countries. According to a statistical analysis from 2000
to 2010, Brazil, China, India, Russia, and South Africa account for 13% of colistin use [16]. China is
a lead consumer of colistin globally, and about 2875 metric tons of colistin was consumed annually
from 2011 to 2015 in this country [17]. In 2006, the European Union forbade the use of colistin in
animal food to promote growth [18]. However, colistin continued to be the fifth most highly consumed
drug in 2013–2015 in Europe for the treatment purpose as per the European Surveillance of Veterinary
Antimicrobial Consumption Report, although no colistin drugs were marketed in Finland, Norway,
or Iceland [19,20]. Additionally, some countries like USA and Canada never approved colistin usage in
animal feed [19].

The recommended dosage of colistin varies according to the product and species, with 75,000 IU/kg
proposed for poultry and 100,000 IU/kg for other animals like calves, rabbits and pigs; these dosages are
consistent to 3.75–5 mg/kg. Colistin can be administrated with complete feed, milk, water, or through
injection. Approximately 0.01–0.02% of colistin is administered via milk; meanwhile, 25–50 mg/L is
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taken up by water. In feed, colistin is mixed in a range of 20–40 M IU/100 g, and 0.2 mg of colistin is
injected into 1–3-day old chicks [21].

Colistin presence in poultry occurs during the phase where mild colibacillosis is being treated,
as described in earlier reports [22–24]. Its bioavailability following oral administration is very low as it
does not get well absorbed from the gastrointestinal tract [25,26]. Common signs of colibacillosis in
poultry are localized (e.g., omphalitis) or systemic (e.g., colisepticemia) that cannot be treated at the
attained blood and tissue levels [27]. Drugs such as sulfonamides, tetracycline, and penicillin are more
appropriate for use than administering colistin for at least seven days and at higher doses for treating
mild colibacillosis [28]. Colistin is effectively used for primary diarrheal disease caused by Escherichia
coli, which is rarely found in poultry but successfully used as a growth promoter [27]. Various agencies
have defined the maximum residue limits (MRL) of colistin in animal-based food, as shown in Table 1.

Table 1. Maximum residue limits (MRLs) of colistin recommended in animal-based food by different
regulatory agencies.

Animal Species Target Tissue MRLs (Per Kg) Reference

All food producing animal spp. Fat, muscle, liver 150 µg, 150µg, 150 µg [29]
All food producing animal spp. Kidney 200 µg [29]
All food producing animal spp. Milk 50 µg [29]
All food producing animal spp. Eggs 300 µg [29]

Cattle, sheep’s Fat, muscle, kidney, liver, milk 150 µg, 150 µg, 200 µg, 150 µg, 50 µg [30]
Pig, goat, rabbit Fat, muscle, liver, kidney 150 µg, 150 µg, 150 µg, 200 µg [30]

Chicken Fat, liver, kidney, eggs 150 µg, 150 µg, 200 µg, 300 µg [30]
Turkey Fat, muscle, liver, kidney 150 µg, 150 µg, 150 µg, 200 µg [30]

Cattle, lamb Milk 50 µg [31]
Cattle, lamb, swine, chicken, rabbit Fat, muscle, liver, kidney 150 µg, 150 µg, 150 µg, 200 µg [31]

Bovine Muscle, liver, kidney 150 µg, 150 µg, 200 µg [32]
Porcine Liver, kidney 150 µg, 200 µg [32]
Poultry Muscle, liver, kidney 150 µg, 150 µg, 200 µg [32]

Pig, cattle, chicken Muscle, fat, liver 150 µg [33]
Cattle Milk 50 µg [33]

Pig, cattle, chicken Kidney 200 µg [33]

3. Dosing Regimen of Colistin in Animals

Colistin use varies by the type of livestock used as animal-based food. Milk-fed calves were injected
with 5 mg/kg of colistin sulfate (CS) (commercially available form), and 16µg/mL was recorded in peak
serum concentration analysis. On the other hand, 1.3 L/kg of colistin was used for volume distribution
and 3.4 mL/min/kg for renal clearance with an excretion half-life of 5–6 h [34,35]. The serum of dairy
cows and calves showed the persistence of colistimethate sodium when it was injected intramuscularly.
The highest value (60 IU/mL) of colistin concentration in the serum of cows was recorded within 3 h
after the administration of colistin. The highest peak of serum concentration in calves was recorded
1–2 h after colistin administration, and the calculated half-life was found to be two-fold more in cows as
compared to calves. The concentration of colistin is very low in milk and sometimes is found to be in the
detectable range after a second milking, whereas the well-diffused microbiological method shows no
residue in calves [36]. Another study revealed that peak colistin concentration can be measured within
2 h of dosing in serum and traces of it can be measured up to 6 h after intravenous administration,
as the detectable range was found to be 0.1–1 µg/mL in serum. There is no detectable limit for oral
administration of colistin [37]. The administration of colistimethate sodium intramuscularly increases
serum concentration as compared to colistin sulfate for dosages of 3.5 and 7.5 mg/kg, respectively.
This further reveals that serum protein has a binding affinity towards colistin sulfate in comparison to
colistimethate in ewes [38]. Similar results have also been recorded for dogs [39]. The colistin binding
with plasma protein was found to be 40% for cattle. In chickens, after oral injection of 50 mg/kg of
colistin, the maximum concentrations of 5.7 and 10.2 µg/mL, respectively, were detected in bile and
serum after 2 h.

Sato et al. [40] also conducted experiments on pigs using two different doses of colistin, i.e., 25 and
50 mg/kg. They reported peak serum concentrations of 1.0 and 8.3µg/mL after 1 h of administration of
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colistin in two different doses, as the sample is untraceable in later stages. The maximum concentrations
of 4.0 and 1.0 µg/mL in bile and serum of pigs were detected respectively after oral administration
of 25 mg/kg of colistin [40]. Another study reported the intractability of colistin in the serum of
gnotobiotic piglets which were fed 40 mg/kg of colistin in sterilized milk [41]. The research was
conducted on pigs to assess the effect of oral dosages of 2.5 and 5.0 mg/kg along with a 2.5 mg/kg
intravenous dose, and it was observed that the peak concentration of plasma was attained after 30 min
of administration and the half-life for both the doses was found to be 4.5 h with a clearance rate
of about 3 mL/kg/min [42]. CS concentrations were very difficult to calculate in the plasma of the
healthy pigs after oral administration, despite the use of exact and accurate analytical methods [43,44].
A concurrent oral challenge of pigs with an Enterotoxigenic Escherichia coli (ETEC) was done. The F4
strain did not increase CS intestinal absorption in a subclinical induction model of post-weaning
diarrhoea (PWD) [44]. However, CS concentrations in plasma were higher in pigs with clinical
post-weaning diarrhoea following an experimental oral challenge as compared to the unchallenged
pigs [45]. These studies revealed the low absorption of CS through the gastro-intestinal tract of pigs
even in infected animals and corroborate the involvement of oral CS administration in increasing
colistin resistance by exerting selection pressure (due to antibiotic) on the intestinal flora of pigs [46].

4. Negative Consequences of Colistin Consumption

Until 2015, colistin resistance in the Enterobacteriaceae family was believed to be generated
via chromosomal mechanisms which modified the lipopolysaccharide (LPS) layer by adding
2-aminoethanol, phosphoethanolamine (PetN) (a derivative of 2-aminoethanol), or other efflux
pumps or by forming capsules in these microorganisms [47]. Lipid A modification of LPS can be
associated with mutations triggering the activation of two-component systems including PmrA/PmrB
and PhoP/PhoQ or inactivating the mgrB gene, which induces negative feedback of the PhoP/PhoQ
system in Gram-negative species. In Escherichia coli, the etk and mgr R genes have been found to confer
resistance against colistin [48]. In 2015, Chinese researchers studied the colistin-resistant strains of
bacteria and reported the presence of the mcr-1 gene, which can transfer itself from one bacterial strain
to another [49]. The mcr-1 gene encodes a phosphoethanolamine transferase, which catalyzes the
addition of phosphoethanolamine (a cationic molecule) to lipid A of LPS, which changes the charge
of the cell membrane, and as result colistin (cationic) is unable to bind and triggers the lysis of the
cell membrane [50]. The PCR-based screening has enabled researchers to find mcr-2 to mcr-8 genes
(plasmid-mediated colistin-resistant genes) and revealed theprevalence of the mcr-2 gene in Escherichia
coli strains isolated from bovine and porcine [51–57]. Moreover, mcr-2 to mcr-8 genes share 44–77%
similarity with mcr-1, and the gene products synthesized by them have 32–83%similarity to the amino
acid sequence of mcr-1. A list of plasmid-borne mcr-1 in bacteria isolated from animal-based food is
shown in Table 2.
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Table 2. Isolation of colistin-resistant microbes from animal-based food in different countries.

Country Type of Animals Type of Samples Sample Size Type of Microbes Detection Basis Reference

Nepal Healthy chickens Cloacal swabs 324 Escherichia coli mcr-1 [58]

China

Healthy chickens Lung, spleen 644

Escherichia coli mcr-1 [59]
Pigs Liver 113

Cows Milk 61

Ducks Liver 44

Iran

Healthy broilers

Cloacal swabs

503

Klebsiella pneumoniae mcr-1, 2, 3, 4 [60]
Dead broilers 388

Dead lying hens 30

Dead turkeys 23

Vietnam
Healthy chickens

Cloacal swabs NS Escherichia coli mcr-1 [61]
Pigs

Brazil Healthy chickens

Breast 20

Escherichia coli mcr-1 [62]Thigh 20

Liver 1

Denmark Chicken meat ND NS Escherichia coli mcr-1 [63]

Spain
Swine

Lymph node
NS Salmonella enterica, Escherichia coli

mcr-1
[64]Faeces

Turkey Faeces NS Escherichia coli

Switzerland Chicken meat ND 6 Escherichia coli mcr-1 [65]

Germany
Healthy chicken Drumsticks 500 Cirobacter freundii, Klebsiella oxytoca, Pantoea agglomerans

Disc diffusion [66]
Pork Belly 500 Escherichia coli, Klebsiella oxytoca

Japan Diseased swine ND NS Escherichia coli mcr-1 [67]

Algeria Healthy chickens ND NS Escherichia coli Disc diffusion [68]

Taiwan

Diseased Chickens

ND

450

Salmonella spp. mcr-1 [69]

Pigs 279

Ducks 206

Turkeys 170

Geese 88

Great Britain Diseased pigs Small intestine 3 Escherichia coli, Salmonella typhimurium mcr-1 [70]
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Table 2. Cont.

Country Type of Animals Type of Samples Sample Size Type of Microbes Detection Basis Reference

Great Britain

Healthy Pigs Cecums 2509

Escherichia coli Disc diffusion [71]Cattle Distal rectums 891

Sheep Distal rectums 973

Italy Diseased pigs Rectal swabs, faeces, intestines NS Escherichia coli Disc diffusion, mcr-1 [72]

Great Britain Healthy pigs Cecal contents NS Moraxella spp. MIC and mcr-1,2 [52]

France Diseased pigs

Intestinal 63

Escherichia coli Disc diffusion [48]

Septicemia 2

Nervous system 1

Lymph node 1

Urine 1

Botswana Beef

Meat cubes 134

Escherichia coli O157: H7 Disc diffusion [73]Minced meat 133

Fresh sausages 133

India Poultry ND NS Salmonella spp. Disc diffusion [74]

India

Chickens Faecal, cecal 434

Salmonella enterica Disc diffusion [75]Ducks Faecal 38

Emus Faecal 35

ND—not defined; NS—not specified.
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Colistin is an ancient drug that was banned because of its nephrotoxicity and neurotoxicity activity
in humans; however, it was reintroduced to treat carbapenem resistance in Gram-negative bacteria
(Supplementary Table S1). Unfortunately, colistin resistance mechanisms have now been documented
in Enterobacteriaceae strains capable of producing carbapenemase, making them resistant to both classes
of drugs and a global health concern [76–79].

In 2016, the government of China banned the use of colistin as a food additive for livestock.
China alone was using 8000 tons of colistin per annum, whereas global production was 12,000 tons per
annum. Despite this ban, agrichemical companies in China were the leading colistin producer and tons
of colistin were exported to countries like India, South Korea, and Vietnam [80]. In India, five animal
pharmaceutical companies advertise products containing colistin for promoting growth or use for
metaphylactic purposes. As per the investigation carried out by the Bureau of Investigative Journalism
of London, chickens raised in India are heavily dosed with strong antibiotics. Venky’s, the chief
supplier of chicken products in India, has been reported to use the antibiotic colistin for therapeutic
purposes [81]. These practices are highly unsafe as drug-resistance is very common, and about 57% of
Gram-negative bacteria in India are carbapenem-resistant. Therefore, India depends on colistin for
treating acute infections in humans (in contrast, resistance to carbapenem in Klebsiella pneumoniae is
less than 1% in the United Kingdom) [80].

The Government of India did take the initiative to ban the usage of colistin antibiotics as a
growth supplement, but this initiative has not yet been associated with any regulatory body. Now the
Food Safety and Standards Authority of India (FSSAI) claims to have fixed the tolerance level of
antibiotics in food-based items, and they have also revised current standards governing toxics, residues,
and contaminants under the 2011 regulations [82]. Finally, in 2019, the FSSAI implemented a complete
ban on colistin use in India [83].

5. Routine Methods for Colistin Detection in Animals and Its Associated Challenges

Colistin, being a polar drug, forms a strong bond with phospholipids or proteins, which makes
drug extraction a more complicated process in tissues [84]. Hence, limited systems have been created
and are available to find colistin antibiotics in food, as shown in Table 3.
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Table 3. Different conventional methods used for the detection of colistin in animal-based food.

Country Sample Method Used
Chromatography Conditions Used

Detection Limit Reference
Model Column Solvent Flow Rate

China Spiked bovine milk HPLC–MS/MS

An HPLC (Hewlett-Packard HP
1100 series, Rockville, MD, USA)
integrated system consisting of a
100-well auto-sampler, a 100 µL

sample loop, a degasser,
a quaternary pump and a

thermostated column oven set at
25 ◦C was used

Chromatographic separation was
performed in a 250 mm × 2.1 mm,

5 µm Alltima C18 separation
column (Alltech, Deerfield, MA,
USA) and a corresponding C18

guard column (7.5 mm × 4.6 mm)

Mobile phase A: 0.1% formic acid in
acetonitrile and mobile phase B: saturated

ammonium formate:formic
acid:acetonitrile:water (1:5:50:950, v/v/v/v)

Flow rate of 0.2 mL min−1 under a
gradient elution program

comprised of two mobile phases
50 µg/Kg [85]

China Spiked fishery products UPLC–MS/MS

A UPLC–MS/MS system
comprised an Acquity UPLC

system connected online with a
Quattro Premier tandem mass
spectrometer (Waters, Milford,

MA, USA)

The column used was an
ACQUITYTM BEH C18 reversed
phase column (2.1 mm × 100 mm,
1.7 µm particle size) maintained at

40 ◦C

Mobile phase was 0.2% formic acid in
acetonitrile and 0.2% formic acid in water

Flow rate and temperature of the
drying gas (N2) were 750 L h−1

and 350 ◦C, respectively. The cone
gas flow (N2) was 50 L h−1

10 µg/Kg (colistin A),
40 µg/Kg (colistin B) [86]

Hungary Spiked pig feeds HPLC–fluorescence
detector

JASCO PU-980 high pressure
pump (JASCO, Kyoto, Japan)

A TSK ODS 120T column (150 ×
4.6 mmID, 5 µm) was used with an

injection volume of 25 µL

Mobile phase was 22:78 v/v acetonitrile–50
mM sodium sulfate, 20 mM

orthophosphoric acid, 25 mM triethylamine

Flow rate of the mobile phase and
post-column reagent were 1.5 and

1.0 mL min−1, respectively
20 mg/Kg [87]

Spain Spiked animal feeds HPLC–fluorescence
detector

Thermo HPLC system equipped
with a P200 gradient pump

Analytical column (150 × 4.6 mm
i.d.) used was packed with

Ultracarb 5 µm ODS 30%C. Guard
columns (50 × 4.6 mm i.d.) were

packed with dry 40 µm Pelliguard
LC-18

Mobile phases with methanol and
acetonitile Flow of 1.5 mL 5 mg/Kg [88]

France
Spiked bovine milk and

tissues (muscle, liver,
kidney, fat)

HPLC–MS

The HPLC system consisted of a
solvent delivery pump (model

P2000, Thermo Separation
Products, Les Ulis, France),

an injection valve (model 7725i,
Rheodyne, Cotati, CA, USA)

An analytical column (125 × 4 mm
i.d.) pre-packed with 5

µmNucleosil C18 (Macherey-Nagel,
Düren, Germany)

Mobile phase was acetonitrile and a 0.035 M
triethylamine solution adjusted to pH 2.5
with phosphoric acid and mixed in 17:83

(v/v) proportions

The flow rate was 1.5 mL/min 25 µg/L (milk), 100 µg/Kg
(tissues) [89]

China

Swine liver, chicken eggs,
feed, swine muscles,

chicken muscles, bovine
muscles, sheep muscles,

bovine raw milk

UHPLC–MS/MS
An Acquity ultra-performance
liquid chromatography system

(Waters, Milford, MA, USA)

An Acquity BEH C18 column
(50 mm × 2.1 mm i.d., 1.7 µm

particle size) (Waters, Milford, MA,
USA)

Mobile phases comprised of 0.5% formic
acid in water (solvent A) and 0.5% formic

acid in acetonitrile (solvent B)

Flow rate was 0.4 mL/min with the
following gradient program:

0–0.5 min, 95% A; 0.5–3.0 min,
95–50% A; 3.0–4.0 min, 50–5% A;

4.0–4.1 min, 5–95% A; 4.1–5.5 min,
95% A

5–30 µg/Kg [90]

Belgium Spiked swine manure UHPLC–MS/MS An Acquity UPLC H-class system
(Waters, Milford, MA, USA)

Reversed-phase Kinetex C18
column (100 mm × 2.1 mm i.d.,

1.7 µm) with a SecurityGuard Ultra
guard cartridge system
(Phenomenex, Utrecht,

The Netherlands)

The elution was performed gradually with
changing amounts of H2O/MeCN (95/5) +

0.5% FA + 0.1% ammonium formate
(solvent A) and MeCN + 0.1% FA (solvent

B). The gradient (15 min) was initiated with
95% of solvent A (0–1 min), followed by a

linear decrease of A to 75% (1–3 min).
From min 3–5, there was a linear decrease of
solvent A to 0% and this was held until min
7. Re-equilibration of the gradient at 95% A

was held from min 7–15

Flow at 400 µL/min 20.2 µg/Kg (colistin A),
15 µg/Kg (colistin B) [91]
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Table 3. Cont.

Country Sample Method Used
Chromatography Conditions Used

Detection Limit Reference
Model Column Solvent Flow Rate

China Spiked swine and poultry
feeds UHPLC–MS/MS

LC–MS/MS system (Thermo
Electron Corp., Wyman, Waltham,
MA, USA) consisting of a Finnigan

Surveyor Plus system with an
online degasser, a Surveyor

autosampler and a TSQ Quantum
triple quadrupole mass

spectrometer equipped with an
electrospray interface operating in

the positive mode (ESI+)

Separation was performed on
150 mm × 2.1 mm, 5 µm Hypersil

Gold C18 analytical columns
(Thermo Electron Corporation,

Waltham, MA, USA)

Mobile phase A consist formic acid in water
and mobile phase B formic acid in ACN Flow-rate of 0.2 mL min−1 27.5 µg/Kg (colistin A),

25.7 µg/Kg (colistin B) [92]

China

Spiked piglet premix,
pig feed additive, poultry

complete feed,
pig complete feed and
fattening pig premix

UHPLC–MS/MS Shimadzu liquid chromatography
system (Shimadzu, Kyoto, Japan)

Separations were carried out on a
Phenomenex Kinetex Biphenyl
column (50 mm × 2.1 mm i.d.,

2.6 µm particle size, Phenomenex,
Torrance, CA, USA)

Mobile phase consisted of 0.1% FA in ACN
solution (A) and 0.1% FA in water solution

(B) with the following gradient elution
program: 0 min, 6% A; 2 min, 6% A; 5 min,

40% A; 14 min, 70% A; 14.1 min, 6% A;
18 min, 6% A

Flow rate of 0.2 mL/min. 5–20 µg/Kg (colistin A),
and (colistin B) [93]

Canada Spiked chicken muscle UPLC–MS/MS

Waters Acquity UPLC interfaced
to a Waters Micromass triple

quadrupole Premier mass
spectrometer equipped with an ESI

source and controlled by
MassLynx 4.1 software(Waters,

Milford, MA, USA)

Poroshell 120, 100 × 2.1 mm id,
2.7 µm (Agilent Technologies,

Mississauga, ON Canada)

Mobile phase A (0.1% formic acid in
water)and mobile phase B (methanol) Flow rate of 0.40 mL/min 39 µg/Kg (colistin A),

50 µg/Kg (colistin B) [94]

Italy Spiked bovine milk, meat HPLC–MS

Thermo Ultimate 3000 High
Performance Liquid

Chromatography system (Thermo
Scientific, San Jose, CA, USA)

InfinityLab Poroshell 120 HILIC
column (100 × 2.1 mm; 2.7 µm,

Agilent Technologies, Santa Clara,
CA, USA) connected with the

InfinityLab Poroshell 120 HILIC
guard column (5 × 2.1 mm, 2.7 µm)

Eluent A was an aqueous solution
containing 1% (v/v) formic acid (FA) and
1 mM ammonium formate (AF), eluent B

was acetonitrile. The gradient was initiated
with 20% eluent A for 2 min, continued with
linear increase to 35% A in 5 min. In 1 min
eluent A increased to 95% and this condition

was maintained for 7 min. The system
returned to 20% B in 0.1 min and was

re-equilibrated for 4 min (run time: 17 min)

Flow rate was 0.25 mL min−1 33 µg/Kg [95]

Hong Kong Spiked bovine milk and
tissues HPLC–MS/MS

An integrated HPLC system
(Hewlett–Packard HP 1100series,

Rockville, MD, USA) consisting of
a 100-well autosampler, a degasser,

two-channel binary pump, and
atemperature control oven (set at
25 ◦C), and interfaced with a TSQ

Quantum Discovery mass
spectrometer (Thermo-Finnigan,

San Jose, CA, USA)

150 mm×2.1 mm, 5 µm
Phenomenex Luna C18 analytical

column (Torrance, CA, USA)
connected to a 7.5 mm × 4.6 mm

Alltech Alltima C18 guard column
(Deerfield, IL, USA)

Mobile phases, which were comprised of a
mixture of (A) 0.1% formic acid in water and

(B) 0.1% formic acid in acetonitrile,
were delivered under a gradient elution

program (0–4 min: 95% A, 5% B; 4–8 min:
30% A, 70% B and held for 4 min; 12 min:
95% A, 5% B and held for 3 min to restore
initial conditions before the next injection

Flow-rate of 0.25 mL min−1 1–16 µg/Kg (colistin A),
6–14 µg/Kg (colistin B) [96]
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Table 3. Cont.

Country Sample Method Used
Chromatography Conditions Used

Detection Limit Reference
Model Column Solvent Flow Rate

Switzerland Spiked bovine liver, kidney,
muscle, egg, milk UHPLC–MS/MS

Acquity system (sample and
solvent manager) from Waters

(Millford, MA, USA)

Kinetex C18, 2.1 × 150 mm ×
2.6 µm column with an installed

pre-filter (Krud-katcher), both from
Phenomenex (Torrance CA, USA)

Mobile phase A: 50 mL acetonitrile, 3 mL of
formic acid and 0.1 mL of trifluoroacetic

acid were transferred into a 1000 mL
volumetricflask and diluted to volume with

purified water; Mobile phase B: 50 mL of
purified water, 3 mL of formic acidand 0.1
mL of trifluoroacetic acid were transferred
into a 1000-mLvolumetric flask and diluted

to volume with ACN

Linear gradient was used: 0–2 min
with 8% B and flow0.4 mL min−1,

2–7 min with 8–20% B, 7–8 min
with 20–30% B, 8–11 min with

30–100% B, 11–11.1 min with 100%
B and flow 0.4–0.8 mL min−1,

11.1–12.5 min with 100%,
12.5–12.51 min with 100–8% B and

flow 0.8–0.4 mL min−1.
12.51–14 min with 8% B and flow

0.4 mL min−1

Muscle 15 µg/Kg (colistin
A), 30 µg/Kg (colistin B);
kidney 30 µg/Kg (colistin
A), 30 µg/Kg (colistin B);

liver 30 µg/Kg (colistin A),
30 µg/Kg (colistin B);

egg 20 µg/Kg (colistin A),
30 µg/Kg (colistin B); milk

20 µg/Kg (colistin A),
40 µg/Kg (colistin B);

[97]

France Spiked milk
Disc diffusion
method (STAR

protocol)
NA NA NA NA 1 mg/L [98]

NA—not applicable.
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Earlier, this drug was identified by adding chromophore/fluorophore groups which allow its
detection with conventional LC detectors. Sin et al. [85] first published a paper for bacitracin and
colistin detection using LC–MS/MS in the kidney, liver, and milk. Deproteinized milk samples were
extracted with a mixture of trichloroacetic/formic acid and the presence of bacitracin and colistin in
extracts was determined using a reversed-phase Alltima BDS C18 column using a gradient elution of
ammonium formate buffer and 0.1% formic acid in acetonitrile at 0.2 mL min−1. For identification
and quantification of major components of these two polypeptides, electrospray LC–MS/MS with time
scheduled multiple reaction monitoring (MRM) based upon the intensities of mass fragments from the
bacitracin A at 712→199 amu and 712→227 amu and colistin A at 586→101 amu, 586→202 amu and
586→241 amu were used.

An upgraded procedure for the detection of colistin B in the liver, muscle, and milk was also
developed [96]. This method proved to be a fast screening and quantitative protocol for monitoring
the concerned polypeptides present in food as a part of a surveillance program. Xu et al. [86]
developed an analytical procedure for colistin A and B in fish products. In this study, the extraction of
samples was done with 1.0 mol/L of hydrochloric acid (HCl) in methanol–water, and the sample was
further purified on PLS solid-phase extraction columns. Multiple reaction monitoring was performed
afterward using precursor–product ion combinations and resulted in mean recovery between 72.9%
and 82.9%. Kaufmann and Widmer [97] also reported a multi-residue method capable of detecting
five polymyxins with selective and acceptable recoveries for all compounds. In this study, using a
modern core-shell column with an eluent with trifluoroacetic acid, formic acid and acetonitrile resulted
in chromatographically well-resolved analyte peaks. Boison et al. [94] further improved this technique
and were able to detect seven polymyxins in chicken muscle. This process does not use ion-pairing
reagents during the mobile phase, which permits the use of the same instrument again to perform
different analyses, whereas the use of ion-pairing reagents requires effective washing/cleaning of LC
lines, which may lead to instrument downtime and damage with trifluoroacetic acid (TFA) before
switching the instrument for the analysis of other samples. All of the above methods follow the
same treatment strategy, i.e., an acid extraction protocol involving acetonitrile or methanol or water
in different proportions and subjected to reversed-phase SPE (solid-phase extraction) to lower the
aggregates of intrusive substances.

Saluti et al. [95] created a novel system for quantification as well as identification of
twelve aminoglycosides (AGs) and two colistins in bovine meat and milk through liquid
chromatography combined with quadrupole-orbitrap mass spectrometry and hydrophilic interaction
liquid chromatography (HILIC). In HILIC, bare silica poroshell 120 showed the optimum result
and the recoveries of all the drugs were near 72–87% in meat (except colistins) and 82–96% in milk.
In another study, an efficient analytical system was created for the simultaneous determination of
seven cyclopolypeptide antibiotics (vancomycin, polymyxin B, polymyxin E, teicoplanin A2, cacitracin
A, daptomycin, and virginiamycin M1) using liquid chromatography–tandem mass spectrometry [93].

LC–MS/MS and HPLC have enabled researchers to precisely identify colistin from biological
entities, but it requires skilled workforce and massive sample pre-treatment, involving both solid-phase
extraction and protein precipitation as shown in Figure 3.

These techniques are mainly used for laboratory examination and are not employed for robust
screening of bulky samples.

A microbiological technique, i.e., screening test for antibiotic residues (STAR), was developed
to analyze the milk samples spiked with eight different concentrations of colistin according to the
sensitivity of bacterial strains against this antibiotic. The detection limit of this approach was found to
be 1 mg/L. During authentication of the STAR protocol, the reading of colistin in milk was measured to
be 200–2000-fold more than its maximum residue limit (50 µgL−1), thus leading to rejection of this
protocol for colistin detection [98,99].
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6. Conclusions and Future Outlook

Colistin has been identified as an imperative alternative for MDR Gram-negative microbes.
However, the emergence of colistin-resistant strains has created the havok as it is the last resort for
treating infection. Moreover, many reports have linked the colistin resistance with inadequate dosing.
The challenges have made us realize the importance of optimized dosage, exclusively in chronically ill
patients with MDR strains. The resistant strains of colistin remain the matter of great concern and make
it of utmost importance to detect the colistin in food animals. However, there are very few conventional
methods available for the detection of colistin use in animal-based food and other livestock. Most
of these methods can detect colistin up to a sensitivity limit. The laboratory check-ups to assess the
effective use of colistin treatment at farms need to be highlighted by veterinarians. The data on the
usage of colistin in animal-based food are of vital necessity, as it supplies a base for the evolution of
national policies and also elucidates the hazards of colistin resistance management and evaluates the
effect of possible involvement [100,101].

Recently, a surface-enhanced Raman scattering (SERS) immune-sensor was developed for the
detection of colistin in milk [15]. In this method, 5,5-dithiobis-2-nitrobenzoic acid (DTNB) was labeled
on gold nanoparticles along with anti-colistin monoclonal antibody (mAb). The SERS immune-sensor
was attached to the lateral flow strip, which was further attached with Raman signal readout to
quantify the colistin amount with high precision. This method can detect concentrations as low as
0.10 ng/mL colistin in milk, which is higher than the value obtained earlier using ELISA and also the
maximum residue limit determined by the European Union. Additionally, the spiking experiments
displayed a high accuracy of the SERS immune-sensor, with a recovery of 88.1–112.7% with a standard
deviation of less than 15%. This approach has an advantage in terms of robustness and time of detection
(below 20 min) over the conventional techniques.

It is wellknown that there is dire need for improvement in colistin detection with high accuracy
and specificity in animal food. Few bio-sensors have been developed for identifying food-related
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disorders, like the transglutaminase-based nano-sensor for the prognosis of the celiac disorder, as well
as human pathogens, e.g., quick detection of Streptococcus pyogenes and Leptospirainterrogans [102–104].
New improvements and novel changes are required in techniques based on precision and specificity to
fulfil the future demand for colistin detection and to develop novel biosensors for rapid identification
of colistin in animal-based food.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/10/10/1892/s1,
Table S1. Antibiogram pattern of pathogenic microbes against colisitn isolated from patients.
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