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Abstract. Composite scale data is widely used in many therapeutic areas and consists of
several categorical questions/items that are usually summarized into a total score (TS). Such
data is discrete and bounded by nature. The gold standard to analyse composite scale data is
item response theory (IRT) models. However, IRT models require item-level data while
sometimes only TS is available. This work investigates models for TS. When an IRT model
exists, it can be used to derive the information as well as expected mean and variability of TS
at any point, which can inform TS-analyses. We propose a new method: IRT-informed
functions of expected values and standard deviation in TS-analyses. The most common
models for TS-analyses are continuous variable (CV) models, while bounded integer (BI)
models offer an alternative that respects scale boundaries and the nature of TS data. We
investigate the method in CV and BI models on both simulated and real data. Both CV and
BI models were improved in fit by IRT-informed disease progression, which allows modellers
to precisely and accurately find the corresponding latent variable parameters, and IRT-
informed SD, which allows deviations from homoscedasticity. The methodology provides a
formal way to link IRT models and TS models, and to compare the relative information of
different model types. Also, joint analyses of item-level data and TS data are made possible.
Thus, IRT-informed functions can facilitate total score analysis and allow a quantitative
analysis of relative merits of different analysis methods.

KEY WORDS: bounded integer model; composite scale data; IRT-informed total score analysis; total
score analysis.

BACKGROUND

Composite scales are commonly used in many disease
areas, such as CNS disorders and autoimmune diseases (1).
Often these scales were developed for diagnosis, but in lack
of reliable biomarkers they also function as clinical endpoints
to evaluate disease progression and treatment efficacy. Such
scales consist of several questions/items that are summarized
to a total score (TS), often the sum of the item scores. The
resulting TS is discrete and bounded.

Item-level data contains all the information collected,
and therefore adequately designed item response theory
(IRT) models are the most informative way to analyse
composite scale data (2). These models include item charac-
teristic curves (ICCs) for each item and handle correlation
between items through one or several latent variables.
However, IRT models may be complex to develop, require

large datasets, include many parameters, and take long time
to estimate. Most importantly, they cannot be used if data on
the item level is not available, which is the case we investigate
here.

When the item-level data is not available, the TS can be
modelled—which is the focus of this work. For this, several
approaches are used such as continuous variable (CV),
bounded integer (BI) (3), beta regression (4), or coarsened
grid models (5)—here we investigate CV and BI models.
None of these methods uses the information from item-level
data. However, if there exists an IRT model for the same
composite scale as the TS data, it might be used to inform TS-
analyses. Bounded data has lower variability at the bound-
aries, as these impose natural limits to the outcome. Thus, a
homoscedastic error, as is typical in CV models, is not the
best description of the variability. Instead, the mean and
variability at each latent variable value in an IRT model can
be computed through the ICCs. Therefore, an IRT model can
yield the expected variability at any predicted TS value.

An example of a composite scale is theMovementDisorder
Society–sponsored revision of the Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) (6). There are four parts to MDS-
UPDRS: nonmotor and motor aspects of experiences of daily
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living, motor examination, and motor complications, totally 68
items. Parkinson’s disease is heterogeneous and different
aspects of the disease progress at different rates (7, 8). Since
drug effects are unlikely to affect all items equally, drug
development within Parkinson’s disease is often focused on a
part of the whole MDS-UPDRS scale to gain power; items are
typically reassigned as nonmotor-, motor-, or tremor-related,
where the total subscore is used as an endpoint.

Indeed, recent work has shown that the disease progres-
sions of nonmotor, motor, and tremor complications can be
modelled separately in an IRT framework (9). In this work,
we focus only on the motor subscore which is typically the
most sensitive to drug effects since it has the fastest
progression rate (10)—it is also the largest subscale of
MDS-UPDRS.

IRT-informed TS-analysis, presented in this work, is a
new method to improve fit and parameter precision as well as
description of variability and disease progression in TS-
analyses. The idea is that modellers dealing with TS data
from a composite scale could gain information from existing
IRT models for that composite scale. To this end, IRT-
informed link functions between one previously published
IRT model and different TS models, and link functions
describing the standard deviation (SD) are evaluated on both
simulated and real data within Parkinson’s disease.

METHODS

Models

Eight different models for total score data were evalu-
ated in this work: four CV models and four BI models
(standard models, fully IRT-informed models for both mean
and SD, and partially IRT-informed models for either mean
or SD). They operate on the TS scale, Z scale (latent variable
of BI), and/or the Ψ scale (latent variable of IRT). The TS is
bounded, while Ψ, Z∈ℝ. A descriptive summary of the
models is shown in Table I.

Continuous Variable Models

Under the standard CV model with homoscedastic error
(S-CV), the observation j for subject i at time tij follows:

Yij ¼ f Θ;ηi; tij;Xi
� �þ εij
ηi∼N 0;ω2� �

εij∼N 0;σ2� �

where Θ are fixed effect parameters, ηi the random effects of
the inter-individual (IIV), Xi the covariates, εij the residual
unexplained variability (RUV), ω2 the variance of the IIV,
and σ2 the variance of the RUV.

The fully IRT-informed CV model (I-CV) is expressed
as:

Ψij ¼ h Θ;ηi; tij;Xi
� �

Yij ¼ pn1 Ψij
� �þ εij � pn2 Ψij

� �

ηi∼N 0;ω2� �

εij∼N 0; 1ð Þ

where Ψij is a latent variable described by the function h(·),
which is typically a function for disease progression and
treatment effects on the latent variable scale, and pn1 as well
as pn2 are predetermined polynomials with coefficients
calibrated to theoretical expectations (see “IRT-informed
functions” below). All other variables maintain their defini-
tion from above.

Furthermore, we define the partially IRT-informed CV
model for the mean (MI-CV) as

Yij ¼ pn1 Ψij
� �þ εij

and for the SD (SDI-CV) as

Yij ¼ f Θ;ηi; tij;Xi
� �þ εij � pn2 Ψij

� �
:

Bounded Integer Models

The standard BI model (S-BI) is a discrete data model
for bounded outcomes, where the probability of an individual
i to have the score k at time tij is:

P Yij ¼ k
� � ¼ ϕ

Zk
n
− f θ; ηi; tij;Xi
� �

g σ; ηi; tij;Xi
� �

 !

−ϕ
Zk−1

n
− f θ; ηi; tij;Xi
� �

g σ; ηi; tij;Xi
� �

 !

ηi∼N 0;ω2� �

where ϕ is the cumulative distribution function for the
standard normal distribution, Zk/n and Z(k-1)/n are the cut
points between categories k and k-1 defined through the
probit function for an n-category scale, f(·) is the function for
the mean, and g(·) the function for the variance on the probit
scale. The probability mass function across all scores adds to
1. For all BI models, the special cases for the first and last
categories (k = 1, k = n) apply:

P Yij ¼ 1
� � ¼ ϕ

Z1
n
− f θ; ηi; tij;Xi
� �

g σ; ηi; tij;Xi
� �

 !

P Yij ¼ n
� � ¼ 1−ϕ

Zn−1
n
− f θ; ηi; tij;Xi
� �

g σ; ηi; tij;Xi
� �

 !

The fully IRT-informed BI model (I-BI) is expressed as:

Ψij ¼ h Θ;ηi; tij;Xi
� �

P Yij ¼ k
� � ¼ ϕ

Zk
n
−pn3 Ψij

� �

pn4 Ψ ij
� �

 !

−ϕ
Zk−1

n
−pn3 Ψij

� �

pn4 Ψ ij
� �

 !

ηi∼N 0;ω2� �

where pn3 and pn4 are distinct polynomials from pn1 and pn2.
Similar to the IRT-informed CV models, we also define the
partial versions for the mean (MI-BI):
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P Yij ¼ k
� � ¼ ϕ

Zk
n
−pn3 Ψij

� �

g σ; ηi; tij;Xi
� �

 !

−ϕ
Zk−1

n
−pn3 Ψij

� �

g σ; ηi; tij;Xi
� �

 !

and the SD (SDI-BI):

P Yij ¼ k
� � ¼ ϕ

Zk
n
− f θ; ηi; tij;Xi
� �

pn4 Ψ ij
� �

 !

−ϕ
Zk−1

n
− f θ;ηi; tij;Xi
� �

pn4 Ψ ij
� �

 !

Derivation of IRT-Informed Functions

Based only on the ICCs (no new data is required) from a
published IRT model (9) for the MDS-UPDRS motor
subscale, analytic links allowing a direct translation between
the latent variable of the IRT model and the expected mean
and SD were derived on the TS scale for the CV model and
on the Z score scale for the BI model. For the CV model, the
expected value and the variance of the total score as a
function of the latent variable Ψ were calculated according to:

E YjΨð Þ ¼ ∑
M

m¼1
∑
s¼1

Sm

s � P Ym ¼ sjΨð Þ

Var YjΨð Þ ¼ ∑
M

m¼1
∑
s¼1

S j

s−E YjΨð Þð Þ2 � P Ym ¼ sjΨð Þ

where P(Ym = s │Ψ) is the response probability for item m
and category s given a particular latent variable value (from
the published ICCs), M is the number of items in the MDS-
UPDRS motor subscale, and Sm is the number of categories
for item m. The analytic link for the BI model is given in
Supplemental Material 1.

In a second step, the analytically derived link functions
for the expected value and the standard deviation
(SD YjΨð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var YjΨð Þp
) were approximated using empiri-

cal Chebyshev polynomials across the whole disease range for
the motor subscale, i.e. Ψ ranged from − 4 to + 8. Starting
from 1, the polynomial degree was increased until the
maximum deviation between analytic link and polynomial
approximation was below a pre-specified tolerance (0.01 and
0.01 for the expected value and SD of the CV model,

respectively, and 0.01 and 0.005 for the corresponding BI
values).

All calculations were implemented in R and were made
available in the package piraid (11) (for full details on how to
automatically create polynomials and control streams for a
given composite scale, see Supplemental Material 2, where
relevant piraid R code is supplied with some illustrative
examples).

For the fully IRT-informed models (I-CV, I-BI), link
functions were used between Ψ and mean TS/Z score as
well as between Ψ and SD. The partially IRT-informed
models illustrate how much improvement either the
description of mean or SD brings, respectively, but if the
IRT-informed approach is taken, it should of course be
natural to use the fully IRT-informed models. For the
partially (mean) IRT-informed models (MI-CV, MI-BI),
only the link between Ψ and mean TS/Z score was used.
For the partially (SD) IRT-informed models (SDI-CV,
SDI-BI), link functions were only implemented between
mean TS/Z score and SD(Y|Ψ). All these polynomials as
well as examples of h(·) functions are given in Supple-
mental Material 3, and NONMEM control stream exam-
ples for I-CV and I-BI are given in Supplemental Material
4. The NONMEM control stream for the IRT simulation
model, including the ICC parameters, is shown in Supple-
mental Material 5.

Information Content

Fisher information, often used in optimal design to
understand the compare different study designs, can also
be used to appreciate what parts of the data are considered
most informative under a given model. For that purpose,
the Fisher information for Ψ was calculated for the IRT,
the I-CV, and the I-BI model according to the equation
presented in Supplemental Material 6. The resulting
information, as a function of Ψ, was visualized graphically
and the information content from a S-CV model with
homoscedastic residual error model was overlaid. The
calculation of information content is conditioned of the
model being an adequate description of the data, which is
the case for the IRT, I-CV, and I-BI model, but not the S-
CV model.

Table I. Properties of the Investigated Models

Model Description Scale Standard deviation

S-CV Standard CV model TS Homoscedastic (estimated θ)
SDI-CV Partially (SD) IRT-informed CV model Heteroscedastic (fixed SD(Y|Ψ))
MI-CV Partially (mean) IRT-informed CV model Ψ Homoscedastic (estimated θ)
I-CV Fully IRT-informed CV model Heteroscedastic (fixed SD(Y|Ψ))
S-BI Standard BI model Z Homoscedastic (estimated θ)
SDI-BI Partially (SD) IRT-informed BI model Heteroscedastic (fixed SD(Y|Ψ))
MI-BI Partially (mean) IRT-informed BI model Ψ Homoscedastic (estimated θ)
I-BI Fully IRT-informed BI model Heteroscedastic (fixed SD(Y|Ψ))

BI bounded integer, CV continuous variable, IRT item response theory, Ψ latent variable of IRT, SD(Y|Ψ) standard deviation from IRT
model, TS total score, Z latent variable of BI
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Applications

Applications to Simulated Data

The approach of IRT-informed TS-analysis was investi-
gated on two simulated datasets. First, one simulation of 1000
individuals at 10 occasions was performed with IRT latent
variable baseline at 0.654 and no disease progression,
meaning that subjects had the same value of the latent
variable throughout the study. This dataset was analysed with
S-CV and S-BI models with homoscedastic SD—both with
and without an associated log-normally distributed IIV.
Alternatively, SD(Y|Ψ) was used to describe the SD,
meaning no parameter relating to SD was estimated. Addi-
tional complexity on top of SD(Y|Ψ) was also evaluated,
which allowed for higher or lower (non-negative) SD but
retaining the shape of SD(Y|Ψ): multiplication by a param-
eter (bound to be positive), lognormal IIV in SD, multiplica-
tion by a parameter with lognormal IIV, and lastly addition of
a parameter (bound to be positive) with lognormal IIV.

Second, another simulation of 1000 individuals at 10
occasions was performed with IRT latent variable baseline at
0.654 and a linear disease progression of 0.449 year−1. The
dataset was again analysed with CV and BI models both with
homoscedastic SD and SD(Y|Ψ), this time in combination
with the disease progression model. Both linear disease
progression on TS or Z and linear disease progression on Ψ
through E(Y|Ψ) were evaluated.

Parameter Precision and Bias

Models that use the IRT-informed link functions allow
estimation of baseline and disease progression parameters on
the same scale as the IRT model. It is therefore of interest to
assess whether such parameters can be accurately estimated.
For each studied scenario, containing studies of 1000 subjects
over 10 occasions, 100 datasets were simulated and parameter
estimated based on the simulated data. In each of these, the
IRT model was used as simulation model and the I-CV, MI-
CV, I-BI, and MI-BI models were used for parameter
estimation. The precision was evaluated through the width
of the percentiles of the estimated parameter values and the
bias through the percent difference of the mean parameter
estimate from the true parameter value.

Application to Real Data

The real dataset was the same as in the previously
described (3), and came from the Parkinson’s Progression
Markers Initiative (PPMI) (www.ppmi-info.org) (12) with 428
de novo patients with Parkinson’s disease who were followed
up to 48 months, totaling 2720 observations. Both CV and BI
models were used to fit the data, where inclusion of E(Y|Ψ)
and/or SD(Y|Ψ) was evaluated, and the base model structure
(in both standard and IRT-informed models) was the same as
previously reported (3, 9), with disease progression described
through a linear slope and the effect of medication included
as an offset effect:

h �ð Þ ¼ θ1 þ θ2 � t−θ3 �X1

where θ1 is the baseline, θ2 the slope, θ3 the effect of
medication, X1 the covariate of medication (1/0), and t time.
The same additional complexity models for SD(Y|Ψ) as
described for the simulated datasets were evaluated, but the
base model structure was always the same. Improved model
fit was assessed by objective function value (OFV) or Akaike
information criterion (AIC), and visual predictive checks
(VPC).

Software

Nonlinear mixed-effects modelling was performed with
NONMEM version 7.4 (ICON Development Solutions,
Ellicott City, MD), executed through PsN version 4.9 (13,
14). The Laplacian estimation method with η-ε interaction
was used for all the CV models, while BI models were
estimated with stochastic approximation expectation maximi-
zation (SAEM). To be able to compare the OFV between
different models, importance sampling with expectation only
was added in a second estimation step. Graphics were made
with R version 3.6.2 (15) and the polynomials were calculated
in piraid (11).

RESULTS

Derivation of IRT-Informed Functions

High-order polynomials (12–23) were sufficient to ade-
quately map Ψ to TS and Z scales. As Ψ increased from low
to high values, the TS increased with an S-shape, as seen in
Fig. 1. The SD of TS showed strong deviation from
homoscedasticity, with decreasing SD towards the extremes
and symmetry around the mid-point. The SD of the total
score as a function of the mean total score, shown in
Supplemental Fig. 1, had a similar pattern.

The Z scores increased linearly in the range of − 2 <Ψ <
5 (see Fig. 2). At the asymptotes, the relation was slightly S-
shaped. The SD for the Z score also showed symmetry but
with the lowest SD at the mid-point and higher SD towards
the extremes. The SD of the Z score as a function of the
mean Z score, shown in Supplemental Fig. 2, had a similar
pattern.

Information Content

Figure 3 illustrates the differences in information content
for the latent variable under different models. The informa-
tion is calculated under the assumption that the respective
model holds. The curve from the IRT model, hence,
represents a theoretical upper bound for the information
content as this is the true model in this case. It should be
noted that the specific information value for the homosce-
dastic CV model is dependent on the distribution of scores in
the dataset; one should therefore rather focus on the shape of
the curve and not its height. The figure highlights how the
homoscedastic CV model tends to underestimate the infor-
mation content at the centre of the scale and overestimate it
at the scale boundaries. The two IRT-informed models have
similar information content curves and acknowledge the
decreased information content at the scale boundaries. At
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the centre of the scale, where a given total score can be
achieved through a larger set of response patterns than at the
boundaries, the IRT model maintains the largest advantage in
information content. Towards the boundaries, the difference
between IRT model and IRT-informed total score models
diminishes.

Applications

Application to Simulated Data

In Table II, the results of TS-analysis of the simulated
dataset with no disease progression are shown. For both CV
and BI models, there was a significant decrease in OFV after

adding SD(Y|Ψ) as a description of SD. There was no added
benefit of modifying the function by multiplication or addition
of extra parameters (results not shown).

In Table III, the results of TS-analysis of the simulated
dataset with disease progression are shown. The best CV and
BI models were fully IRT-informed (I-CV, I-BI) and had a
667-point and 263-point improvement in OFV compared to
their respective standard models (S-CV, S-BI). The IRT-
informed models also had one parameter less than the
standard models, since SD was described through SD(Y|Ψ)
and, thus, not estimated. The partially (SD) IRT-informed BI
model (SDI-BI) had almost the same OFV as I-BI, indicating
that the fit was similar on Z scale and Ψ scale, shown in
Supplemental Table 1.

Fig. 1. Mean TS and SD as a function of the latent variable (Ψ) for a CV model

Fig. 2. Mean Z score and SD as a function of the latent variable (Ψ) for a BI model
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Parameter Precision and Bias

Parameter precision and bias for the case of IRT model
simulations and re-estimation by CV and BI models are
presented in Supplemental Fig. 3. The parameters of interest
were the baseline and linear slope of the IRT model (i.e. on the
Ψ scale) used for simulations. The parameter precision was
comparable between the models and there was no sign of bias.

Application to Real Data

In Table IV, the fit to the real data is shown for CV and
BI models. The partially IRT-informed models are shown in
Supplemental Table 2. The best CV model was fully IRT-
informed (I-CV) with both a scaling factor and IIV on
SD(Y|Ψ), and had a 364-point OFV improvement over the
standard homoscedastic CV model (S-CV) with one addi-
tional parameter. The best BI model was the partially (SD)
IRT-informed (SDI-BI) with scaling and IIV on SD(Y|Ψ),
with a 309-point OFV difference compared to the standard BI
model (S-BI) and one additional parameter. However, the
fully IRT-informed BI model (I-BI) with the same compo-
nents was comparable in fit and was chosen as the final

model. The best BI model had slightly lower OFV than the
best CV model.

As seen in Fig. 4, the fit for both CV and BI models was
improved between the base and final model by using IRT-
informed functions of mean and SD. The base CV model
predicted scores outside the scale range which also resulted in
wide confidence intervals for the predictions near the scale
boundaries, seen in the 5th and 95th percentiles of theVPC. The
final CV model has improved fit and lower uncertainty in the
outer percentiles. The base BI model with homoscedastic SD
respected the scale boundaries and had quite good fit, but was
still improved by IRT-informed functions, with the improve-
ments mostly seen for the median and 5th percentile of the
observations/predictions. The final I-CVand I-BI had similar fit.

DISCUSSION

The following section will discuss the general benefits of
IRT-informed TS-analyses, which will be followed by the
conceptual advantages shown through simulation examples,
then the application to real data, and lastly some perspectives
on limitations and future prospects.

The IRT-informed functions allow modellers to link IRT
and TS models in a formal way. This improves the TS models,
as the expected variability in scores can be better described.
The functions to describe SD do not require additional
parameters, yet improve the fit, as they allow the SD to vary
with the disease severity and follow the nature of TS data.

The functions further make it possible to retrieve the
parameters of an IRTmodel with a TSmodel, which for example
could be useful for assessing potential treatment effects. The IRT-
informed functions also improve the predictive performance of
the models, which is especially helpful for the standard CV
analyses that otherwise predict scores outside the boundaries.

The information of different model types can also be
assessed via the links, and relative information can be
compared. When item-level data is available in some datasets
but not others, the link functions allow these data to be jointly
analysed—which can help in bridging information between
different studies and data bases.

Conceptual Advantages

The mapping between Ψ and TS showed a strong
nonlinear relationship, which is expected since the TS is
bounded while the latent variable is not. In contrast, the Z
score and Ψ mapped rather linearly in the relevant disease
range, both being variables that can take on any real value.

Fig. 3. Comparison of latent variable information content versus total
score under the IRT, the I-CV, the I-BI and the (homoscedastic) S-
CV model. The grey-shaded areas illustrate that, under the IRT
model, total information is the sum of information from the individual
items (the 5 most informative items over the whole score range are
labelled)

Table II. ΔOFV for Simulated Data with No Disease Progression

Model Standard deviation θ ΔOFV OFV No. of estimated parameters AIC

S-CV Homoscedastic (estimated θ) 3.5 - 58,064 3 58,070
SDI-CV Heteroscedastic (fixed SD(Y|Ψ)) - − 299 57,765 2 57,769
S-BI Homoscedastic (estimated θ) 0.15 - 58,118 3 58,124
SDI-BI Heteroscedastic (fixed SD(Y|Ψ)) - −430 57,687 2 57,691

AIC Akaike information criterion, BI bounded integer, CV continuous variable, IRT item response theory, OFV objective function value,
ΔOFV difference in OFV relative to standard model, Ψ latent variable of IRT, S-BI standard BI model, S-CV standard CV model, SD(Y|Ψ)
standard deviation from IRT model, SDI-BI partially (SD) IRT-informed BI model, SDI-CV partially (SD) IRT-informed CV model
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With simulated data, modelling a linear disease progression
on Ψ via E(Y|Ψ) greatly improved the fit for the CV model,
compared to a linear disease progression on TS. When
subsequently adding SD(Y|Ψ), it further improved the fit.
However, for the BI model there was only a marginal benefit
of modelling via E(Y|Ψ) after adding SD(Y|Ψ).

Following the S-shaped relation between Ψ and TS, it is
natural that the CVmodel is improved using the IRT-information
for themeanwhen there is a linear disease progression onΨ. This
relation could also produce correlations between the baseline and
slope parameters in the standard CVmodel since a baseline close
to either boundary would mean a lower slope estimate. In the
analysis of simulated data—where slope and baseline were
uncorrelated—there was no large correlation estimated, likely
since the baselinewas in the linear range of the relation.However,
correlations could be introduced or changed when transforming a
variable and should be investigated.

The unexplained variability between observations was
clearly not homoscedastic for either of the models. Towards
the boundaries, the variability of TS was dramatically decreased
almost symmetrically from themaximum value, which it reached
at the midpoint. The fold difference between the maximum and
minimum variability was roughly 4. For the unexplained
variability of Z scores, the shape was also symmetrical, but with
a nadir at the midpoint and around 3 times higher at Z≈− 2 or
Z≈ 2, and decreasing again at the extremes. Thus, there was a

lower fold difference between the highest and lowest variability
in the BI model as compared to the CV model, which might
explain why the addition of SD(Y|Ψ) seemed more important
for CVmodels than for BI models. The Z scores are not equally
spaced; instead, the distance between cut-points increases as Z
deviates from 0. This affects the shape of the SD(Y|Ψ) curve
and explains why the function has the nadir around 0.

Behaviour with Real Data

When applied to real data, a linear disease progression
was superior on the Ψ scale over the TS scale for the best CV
model (ΔOFV 74), but for the best BI model, there was no
difference in fit between linear disease progression on Ψ scale
or Z scale (ΔOFV +5). This is in line with the results from
simulations, and suggests that Ψ and Z map close to each
other and a linear disease progression is in better agreement
with these scales than the TS scale.

For the simulated datasets, the SD(Y|Ψ) function provided
the best description of SD and the fit was not improved by any
additions or multiplications of the polynomial used. For the real
data, however, it was better to allow individual variation of the
SD(Y|Ψ) function as the description of some individuals
benefitted from a reduced SD while others from an increased
SD. The reduced SD for some individuals may be due to
Markovian features in the responses—i.e. sequential observed

Table III. ΔOFV for Simulated Data with Disease Progression

Model Disease progression Standard deviation θ ΔOFV OFV No. of estimated parameters AIC

S-CV Linear on TS Homoscedastic (estimated θ) 3.8 - 62,171 6 62,183
I-CV Linear on Ψ (via E(TS|Ψ)) Heteroscedastic (fixed SD(Y|Ψ)) - −667 61,505 5 61,515
S-BI Linear on Z Homoscedastic (estimated θ) 0.14 - 61,767 6 61,779
I-BI Linear on Ψ (via E(Z|Ψ)) Heteroscedastic (fixed SD(Y|Ψ)) - −263 61,504 5 61,514

AIC Akaike information criterion, BI bounded integer, CV continuous variable, I-BI fully IRT-informed BI model, I-CV fully IRT-informed
CV model, IIV inter-individual variability, IRT item response theory, OFV objective function value, ΔOFV difference in OFV relative to
standard model, Ψ latent variable of IRT, S-BI standard BI model, S-CV standard CV model, SD(Y|Ψ) standard deviation from IRT model, TS
total score, Z latent variable of BI

Table IV. ΔOFV for Real Data

Model Disease progression Standard deviation θ IIV (%CV) ΔOFV OFV No. of estimated parameters AIC

S-CV Linear on TS Homoscedastic (estimated θ) 5.3 - - 187741 10 18,794
I-CV Linear on Ψ Heteroscedastic (fixed SD(Y|Ψ)) - - +261 19,035 9 19,053

Heteroscedastic (SD(Y|Ψ) ∙θ) 1.4 - −206 18,568 10 18,588
Heteroscedastic (SD(Y|Ψ) ∙θ ∙ eη) 1.4 24 −364 184112 14 18,439

S-BI Linear on Z Homoscedastic (estimated θ) 0.22 - - 186863 10 18,706
I-BI Linear on Ψ Heteroscedastic (fixed SD(Y|Ψ)) - - +390 19,076 9 19,094

Heteroscedastic (SD(Y|Ψ) ∙θ) 1.4 - −97 18,590 10 18,610
Heteroscedastic (SD(Y|Ψ) ∙θ ∙ eη) 1.3 38 −304 183834 14 18,411

AIC Akaike information criterion, BI bounded integer, CV continuous variable, %CV coefficient of variation in percent, I-BI fully IRT-
informed BI model, I-CV fully IRT-informed CV model, IIV inter-individual variability, IRT item response theory, OFV objective function
value, ΔOFV difference in OFV relative to standard model, Ψ latent variable of IRT, S-BI standard BI model, S-CV standard CV model, SD(Y|
Ψ) standard deviation from IRT model, TS total score, Z latent variable of BI
1Base CV model
2 Final CV model
3Base BI model
4 Final BI model
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scores in an individual have the same value to a higher extent
than predicted by the model. Such features are well-known in
categorical data analyses and have also been described, and
modelled (16). Most individuals benefitted from a higher
variability, since the best model had higher SD than SD(Y|Ψ)
for both the CV and BI models. This indicates the presence of
additional sources of variability than those accounted for in the
ICCs of the IRT model. One likely explanation is that
observations of different items are correlated in a way not
captured by the IRT model. When simulating items of the IRT
models including additional correlations across items, the overall
SD was indeed different, and typically higher, than the theoret-
ically expected (results not shown). The highest variability is seen
around the mid-point of the scale and very few patients in this
study were at, or close to, the scale boundaries—which explains
the increased mean variability in models with homoscedastic
unexplained variability. Further, describing the time trajectory
with a simple model induces some model misspecification, which
adds to the residual error magnitude.

Since the TS-analysis has no information about which items
contributed to the score, it is natural that more observations are
needed to gain the same information as an IRT model with item-
level data. The item-level data is more informative because the
ICCs are different for all items and different items have different
information about the underlying latent variable. In contrast to
the IRT model, the CV and BI models make no use of the
different items ability to inform on the underlying latent variable.
Indeed, the more heterogeneity in information content across
items, the larger the difference between analyses on item-level
and total score level (17). The standard CV model assumes
constant information across all expected values. This represents
an underestimation of the information in part of the scale and
hence underutilizing the information, but also overestimates the
information at other values, and may therefore interpret patterns
that only represent noise as signals of model misspecification.

Perspectives

We have shown the method applied to a composite scale
where the TS is the sum of item scores. The Extended
Disability Status Scale (EDSS) for multiple sclerosis, for
example, uses a decision tree to arrive at the TS. To derive
the analytical solution of the link functions and information
content would in that case require a different approach.
However, the option of simulating across a wide range of Ψ
from the IRT model to approximate the link functions would
still exist and through these simulation-based link functions
arrive at the information content.

In this work we only focused on one subscale, the MDS-
UPDRSmotor subscale. If a scale withN subscales is considered,
the IRT model will have N latent variables and N different TS
should be characterized, which should be possible with a
straightforward extension of the methodology presented here.

The degree of the polynomials used to fit the mean and
SD as a function of the latent variable is a potential source of
error. However, the tolerance of the Chebyshev polynomials
can be adjusted to achieve a satisfactory fit, and such
functionality has been built into the piraid package. When
adjusting the polynomials through higher tolerance, the OFV
changed only marginally in this work.

The only disease progression model that was investigated
was a linear slope on the Ψ scale, as this was reported in the
previously published IRT model of these data (8). Of course, in
reality there may be other functions that better describe disease
progression on the latent variable scale for the real data, which
also had a medication effect identified as an offset effect onΨ in
the IRT model (9). In the CV model, the medication effect was
also described as an offset effect, however on TS. Thus, the
interpretation is different at different disease severities, due to
the S-shaped relation between Ψ and TS. As the BI models
mapped linearly in the relevant disease severity range (5th and

Fig. 4. Visual predictive checks (VPC) of model fit for base and final CV and BI models for the real data. The circles
represent the total score observations, the solid line represents the median, and dashed lines represent the 2.5th and 97.5th
percentiles. The shaded areas represent the model predicted 95% confidence interval of the corresponding percentiles
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95th percentiles of Zwere− 2.3 and− 0.22), the interpretation of
the medication effect on Z is similar to that on Ψ. Again, more
advanced functions could have been evaluated. The properties
of TS models under model misspecification were not investi-
gated here, but could be a future work. While our current
approach with polynomial link functions assumes perfect
knowledge of the underlying ICCs, a possible future extension
could use the analytic link functions in combination with an
informative prior to allow taking uncertainty into account.

There are many possible approaches to model TS data
with CV models. A logit transform for the TS is one way to
ensure predictions within the boundaries of the
scale—however then the boundaries will only be
asymptotical. In this work we only investigated untrans-
formed TS with additive error as this is a common choice.
Also for the BI model, a constant SD was used as the aim of
this work was to illustrate the benefits of IRT-informed
modelling of TS in a standard setting. Apart from the models
mentioned above, other models for TS data (not evaluated in
this work) are for example beta regression and coarsened grid
models.

The usefulness of IRT-informed models to better de-
scribe the unexplained variability of composite scale end-
points is encouraging. This will facilitate analyses of TS data
without the need to develop new IRT models. The impact on
precision and accuracy in clinical trials is yet to be quantified,
but is under investigation in a follow-up project (18). The
IRT-informed functions broaden the options available to
modellers dealing with TS data, and could be considered in
standard analysis plans as yet another possible model to be
determined from the data.

CONCLUSIONS

IRT-informed functions provide a formal link between
IRT models and TS models and allow longitudinal TS
modelling to be improved without adding further parameters
to the model. This approach allows information of different
model types, based on item- and TS-level data, to be directly
compared and their relative merits better understood. To
facilitate for modellers, IRT-informed functions can be
automatically generated through the piraid package.
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