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Cancer develops from mutated cells in normal tissues. Whether somatic
mutations alter normal cell dynamics is key to understanding cancer risk
and guiding interventions to reduce it. An analysis of the first incomplete
moment of size distributions of clones carrying cancer-associated mutations
in normal human eyelid skin gives a good fit with neutral drift, arguing
mutations do not affect cell fate. However, this suggestion conflicts with
genetic evidence in the same dataset that argues for strong positive selection
of a subset of mutations. This implies cells carrying these mutations have a
competitive advantage over normal cells, leading to large clonal expansions
within the tissue. In the normal epithelium, clone growth is constrained by
the limited size of the proliferating compartment and competition with
surrounding cells. We show that if these factors are taken into account, the
first incomplete moment of the clone size distribution is unable to exclude
non-neutral behaviour. Furthermore, experimental factors can make a non-
neutral clone size distribution appear neutral. We validate these principles
with a new experimental dataset showing that when experiments are
appropriately designed, the first incomplete moment can be a useful
indicator of non-neutral competition. Finally, we discuss the complex
relationship between mutant clone sizes and genetic selection.
1. Introduction
Large-scale sequencing of cancer genomes has led to the discovery of many
recurrently occurring genetic mutations that are potential ‘drivers’ of the
disease [1–3]. Recently, however, a number of studies investigating normal
tissues have found that many of these mutations are also present in apparently
healthy tissue [4–9]. To understand tumorigenesis, it is therefore important to
study the acquisition and spread of mutations in normal tissue.

The most common human cancers are derived from squamous epithelia,
which consist of layers of keratinocytes [10]. Cells are continually shed from
the tissue surface and replaced by proliferation (figure 1a). The proliferating
cells accumulate mutations over time [12]. If such clones persist within the
otherwise normal tissue, they may acquire the additional genomic alterations
that lead to cancer [12]. A key question is whether these large, persistent
clones arise by neutral competition or are a consequence of cancer-associated
mutations increasing the competitive fitness of mutant cells above that of
wild-type cells. If the former, little can be done to alter the risk of cancers emer-
ging from mutant clones in normal tissue. However, if the founding clones of
cancers emerge by competitive selection, it is possible that interventions that
alter the fitness of mutant cells may decrease cancer risk. A dataset of mutant
clones detected in normal human eyelid skin appears to contain conflicting evi-
dence supporting both neutral and non-neutral mutant cell dynamics [4,11].
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Figure 1. Data collection and cell dynamics. (a) Proliferation occurs in the basal layer of the epithelium. After differentiation, cells migrate through the
suprabasal layers before being shed. Image from smart.servier.com, licensed under CC BY 3.0, edited from original. (b) DNA from a biopsy (left) containing
mutant clones (red and blue) is sequenced and the VAF ( proportion of reads containing the mutation, middle) used to infer clone sizes (right). (c) The
method of taking biopsies can affect the observed mutant clone size distribution. Isolated punch biopsies (top) may not capture the entirety of a mutant
clone; in the analysis in [11], clones that spanned multiple biopsies (shown in dashed area) were excluded. Ungapped gridded biopsies (bottom) enable the
reconstruction of larger clone sizes. (d ) The stochastic single progenitor model of cell dynamics. Each dividing cell (red) can produce two dividing cells (a),
two non-dividing differentiated cells (brown) (c ) or one of each type (b). In a homeostatic tissue or neutral clone, the probabilities of each symmetric
division option are balanced (left). An advantageous mutation would increase the proportion of dividing cells produced (middle), and a deleterious mutation
would increase the proportion of differentiated cells (right). Note that in the non-neutral case, the probabilities of each division type do not have to be fixed
over time, but can depend on the cell context. (e) Simulation of the model shown in (d ). If mutations introduce perpetual positive fate imbalances
then the population will eventually explode. Total population of 20 simulations with mutations introducing only small fate imbalances drawn from
N ∼ N (mean = 0.25%, std = 1.25%). ( f ) In the spatial Moran process, a differentiating cell (red) is replaced by the division of a neighbouring cell
(light blue).
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This ‘paradox’ has yet to be resolved [13,14], leading to
uncertainty over the somatic mutant cell dynamics in
normal epithelial tissues [15]. This paper aims to unpick
this apparent inconsistency.

The dataset in question is from a study of mutations in
normal human eyelid skin epidermis [4]. DNA was extracted
from small samples of epidermis. About 500 DNA molecules
of each targeted gene were sequenced and compared to the
genome of the same tissue donor (figure 1b). Somatic
mutations were detected as altered sequences present in
one or more samples [4]. The proportion of altered DNA
reads containing a mutation, the variant allele fraction
(VAF), was assumed to be proportional to the size of the
mutant clone (figure 1b).

An analysis of inferred sizes of the mutant clones in the
human eyelid data argues for neutral dynamics [11]. The
observed clone sizes can be compared to the predictions
of candidate mathematical models of cell dynamics to deter-
mine the best-fitting model [16]. Lineage tracing experiments
in homeostatic, unmutated mouse epidermis and oesophagus
suggest that these tissues are maintained by a single popu-
lation of equipotent progenitor cells (figure 1d ) [17–19]. The
outcome of individual cell divisions is unpredictable, but
on average, 50% of the progeny of dividing cells differentiate,
exit the proliferative compartment and are eventually shed
from the tissue while 50% remain to divide again. Such a
balanced stochastic cell fate leads to wide variation in clone
sizes, while the total cell population remains constant.
Mutant clone sizes observed in the human eyelid skin have
been compared to predictions from this neutral stochastic
model [11]. The comparison is made using the first incom-
plete moment of the clone size distribution (Methods),
which has been used in several studies to shed light on
mutant clone growth dynamics [11,20–23]. In economics,
the first incomplete moment is used to study inequality—
the value of the incomplete moment at £X shows how
much of the wealth is held by those with a fortune of £X
or higher [24]. It has a similar role for the clone size
analysis—it shows the proportion of the mutated cells that
are in clones of size x or larger. Using the first incomplete
moment has two advantages over using the clone size distri-
bution directly. Firstly, the first incomplete moment reduces
the fluctuations caused by low sample size [20] and secondly,
it simplifies the comparison of data to the neutral theory. It
is proposed that there will be a clear distinction between
the logarithm of the first incomplete moment (LFIM) from
neutral and non-neutral competition: neutral competition
will lead to a straight line, whereas non-neutral competition
will be indicated by a curved/kinked line. The neutral
model predicts that the first incomplete moment of mutant
clone sizes will have a negative exponential form [11]—
where there are many small clones and few large clones.
A deviation from the exponential shape could indicate non-
neutral competition—some clones have expanded to take
over more than their expected share of the tissue. To make
it easier to see this deviation, we use the LFIM, which turns
the exponential curve into a straight line. Non-neutral
competition would then be indicated by a deviation from
the straight line [11]. Using this criterion, the inferred
mutant clone sizes from the human eyelid appear largely
consistent with the neutral model [11].

However, the theory of neutral competition of cancer-
associated mutations is incompatible with results from
several mouse and human studies that observed non-neutral
mutant expansions in normal epithelial tissues [18,20,25].
Furthermore, signs of non-neutral clonal competition in the
eyelid mutational data can be detected using dN/dS analysis,
a method from population genetics. This examines the ratio
of protein-altering mutations (dN ) to silent mutations (dS)
for each gene [26]. Once relevant corrections have been
applied, a dN/dS ratio of 1 is indicative of neutral behaviour.
A dN/dS value of less than 1 indicates the mutated gene has
a negative effect on the competitive fitness of mutant cells
compared with normal cells. However, if a disruption of
the protein provides a growth advantage to the cell, then
the number of protein-altering mutations that expand to a
clone of detectable size will be increased, leading to a
dN/dS ratio greater than 1. Analysis of the human eyelid
mutations found six of the 74 sequenced genes had signifi-
cantly raised dN/dS ratios ranging from three to over 30,
consistent with mutations in those genes driving clonal expan-
sion [4]. Additionally, protein-altering missense mutations in
some driver genes, e.g. NOTCH1, NOTCH2 and TP53, were
not randomly distributed but concentrated in functional
domains. This suggests positive selection of function-altering
mutations, which is also incompatible with neutrality [4].

Here, we show that in some conditions, non-neutral
competition can produce a straight-line LFIM, and therefore,
a straight LFIM alone is not a clear indicator of neutral
dynamics. We can thus reconcile clone size distributions
and positive genetic selection.
2. Results
We began by noting several important constraints that apply
to the mutant clones in normal epithelia. Firstly, the cellular
structure and composition of the tissue remains at least
approximately constant. Secondly, the proliferative compart-
ments of the epidermis and oesophageal epithelium contain
few barriers to mutant clone expansion. In a tissue with a
high burden of mutations like the human eyelid, this means
that expanding clones will soon collide and compete with
each other as well as with unmutated cells. These two
constraints were not included in the mathematical model
used in the first incomplete moment analysis of the human
eyelid data [11], meaning mutant clones in this model
with a growth advantage (figure 1d, middle) could expand
without limit (figure 1e).

2.1. Spatial constraints alter clone size distributions of
non-neutral mutations

To address the effect of clonal competition, we used a math-
ematical model drawn from the study of population genetics.
We ran Moran-type [27] simulations of cell competition on
a two-dimensional (2D) grid to represent the epidermis
(figure 1f ). Cells lost through differentiation are replaced
by the division of a neighbouring cell (Methods), similar to
behaviour observed in mouse epidermis [28]. During each
division, there is a small chance that one of the daughter
cells will acquire a mutation (Methods).

Simulations of a 2D neutral model produced an approxi-
mately straight LFIM (figure 2a). A non-neutral spatial model
in which a small proportion of mutations change the fitness
of a cell (Methods) may deviate from a neutral appearance
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Figure 2. First incomplete moments of 2D simulations. (a–c) First incomplete moments of 2D simulations (Methods). The average of 1000 simulations is shown in
black, a selection of 20 individual simulations is shown in blue. (a) Neutral simulations. (b) Simulations where 1% of mutations are non-neutral. A deviation from
the straight line is seen at clone sizes of approximately 100 cells. (c) Simulations where 25% of mutations are non-neutral. (d ) Proportion of cells at the end of the
simulations with a fitness altered by non-neutral mutations. In the 25% non-neutral simulations, by the end of the simulation, almost the entirety of the tissue has
been colonized by non-neutral mutant clones. (e) dN/dS values from the simulations shown in (a–c). To enable this calculation for the neutral simulations, a
proportion of neutral mutations were labelled as non-neutral but did not affect cell fitness. (Online version in colour.)
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by curving away from the straight line (figure 2b). This was
due to the contrast between the relatively large non-neutral
clones and the smaller clones growing neutrally. Surprisingly,
however, simulations with a higher proportion of non-neutral
mutations may generate a straight line (figure 2c). This is
because almost all of the simulated tissue is taken over by
non-neutral clones (figure 2d ). The only neutral mutations
that persist are those that occur in clones with non-neutral
mutations, carried as ‘passengers’. As all remaining clones
exhibit similar behaviour, the LFIM is straightened. This
shows that a straight-line LFIM does not necessarily imply
neutral competition and is consistent with positive dN/dS
ratios (figure 2e). We concluded that since there is a high
burden of mutant clones in the eyelid, the tissue is likely to
be extensively colonized by non-neutral mutant cells, contri-
buting to the apparently neutral appearance of the clone size
distribution.

2.2. Impact of sampling methods on measurement of
clone size distributions

Another consideration that may impact the measurement of
clonal size distributions and hence inference of mutant
clone dynamics is experimental design. In the human eyelid
study, spatially separated tissue samples were collected
(figure 1c) [4]. The area of the sample defines an upper
limit on the reliable estimation of clone size. In the eyelid
experiment, the area of each sample was less than that of
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the largest clones. The lower limit of clone size detection is
also related to the sample area, since mutations present in
only a small fraction of the cells in the sample may not be
detected due to the technical noise in DNA sequencing [29].
We simulated the combined effects of spaced samples in
which only clones occupying 1% or more of the area of the
sample can be detected (Methods). Figure 3a–c shows these
effects on the first incomplete moments of the simulations
from figure 2a–c respectively. The results lead us to conclude
that these experimental factors may artefactually reduce a
deviation of LFIM from a straight line caused by non-neutral
competition (figures 2b and 3b).

2.3. Ability of logarithm of the first incomplete
moment to resolve neutral competition versus
selection

We next tested how well the LFIM could discriminate
between the neutral and non-neutral simulations using the
coefficient of determination, R2, to measure the straightness
of a line, as in previous studies [11,23] (Methods). For the
LFIM to be a successful indicator of neutrality, the neutral
simulations need to have a higher R2 than the non-neutral
simulations. Receiver operating characteristic (ROC) curves
show the accuracy of the LFIM as a test of neutrality
depended on both the underlying shape of a non-neutral
clone size distribution and on the experimental sampling
method (figure 3d ). For example, using the LFIM was little
better than a random guess (area under the curve, AUC =
0.52) when attempting to distinguish the neutral simulations
from figure 3a from the non-neutral simulations in figure 3c,
where the underlying shape of the non-neutral LFIM was lar-
gely straight (figure 2c) and the clones were measured using
simulated DNA sequencing of spatially separated biopsies.
2.4. Human oesophageal mutant clone sizes
demonstrate non-neutral growth

To validate this analysis, we drew on a second experiment
that measured mutant clones in normal human oesophageal
epithelium [5]. dN/dS analysis revealed mutations in 14 of
74 genes sequenced were under significant positive selection
[5]. This study used an ungapped sampling strategy in which
the epithelium was cut into gridded arrays of samples which
were then deep DNA sequenced, allowing the areas of clones
that extend over multiple samples to be determined [5]
(figure 1c). This key difference in design from the eyelid
experiment allowed us to investigate the effect of sampling
on the incomplete moment analysis of the eyelid data by
comparing the gridded data with what would have hap-
pened if the oesophagus was sampled in the same manner
as the eyelid skin (figure 1c). The LFIMs for clone sizes esti-
mated from both sampling approaches are shown in
figure 4. Taking figure 4d as an example, the gapped
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sampling approach results in an LFIM that fits well with a
straight line (R2 = 0.96) and therefore appears consistent
with neutral competition. However, if using the clone sizes
based on a gridded approach, the LFIM deviates from the
straight line (R2 = 0.78), suggesting non-neutral competition
may have occurred in the tissue. For each of the nine individ-
uals in the study, the LFIM exhibits a greater deviation from
the straight line when using gridded samples than when
using spaced samples.

An intriguing pattern can be seen within the oesophageal
data. With the exception of a few large clones, younger
patients have less curved LFIMs, as shown by the deviation
from a straight-line fit to the smallest 75% of clones (figure 4).
Older individuals by contrast show a more distinct deviation
from the line. This is consistent with simulations of the non-
neutral competition (figure 5). At early timepoints, only the
faster-growing non-neutral clones in the tail of the distri-
bution are observed (figure 5a), leading to a straight-line
LFIM. A curve is observed at later timepoints once the
slower-growing clones reach a size large enough to be
detected (figure 5b–d ). Future work with an increased
number of patients is required to confirm this apparent
trend. Unfortunately, a recent publication providing further
DNA sequencing of normal human oesophagus used isolated
punch biopsies and is therefore not suitable for this kind of
analysis [6].

2.5. Clone size as a marker of competitive selection of
mutations

We have shown that clone size and LFIM alone cannot
reliably classify clone sizes as neutral, due to a mixture of
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experimental limitations on the maximum and minimum
sizes of clones and the fundamental effects of competition
for space. In addition, where a curved LFIM is found, the
position of the curve cannot simply discriminate the neutral
and non-neutral mutant clones, although a trend of increas-
ing proportions of non-neutral mutations at larger clone
sizes is observed in both simulations (figure 6a,b) and
in vivo experiments [5]. Neutral mutations hitchhiking on
non-neutral clones may grow to large sizes, meaning that
analysis restricted to synonymous mutations and mutations
in non-expressed genes (Methods), which are not identified
as under selection by dN/dS analysis [5], may not reflect
purely neutral dynamics (figure 6c). This raises a question
of how to meaningfully interpret clone sizes observed in
a tissue. This is an important question as there remain a
small number of metrics for assessing the neutrality of
mutations. While our results have demonstrated the risks
of one specific interpretation of the LFIM, they also highlight
the dangers of relying on a single measure of neutrality,
especially if the underpinning mathematical assumptions
are under-explored.

In the specific case of the eyelid data, the original
conclusion of non-neutral competition was supported by
dN/dS analysis. While this is a widely used tool, this type
of analysis is sensitive to the mutation model used for the
neutral hypothesis [26], and detection of positive selection
may be unreliable for some types of mutations in some
genes. For example, almost all protein-truncating mutations
inactivate the protein in which they occur. By contrast,
missense mutations in some locations may reduce protein
function, while in others, they may generate a constitutively
active mutant [30]. In aggregate, these effects may result in
a dN/dS ratio close to 1.

Given the limitations of individual methods to assess
neutrality, we speculated that combining discrete approaches
may be more informative. To explore this, we directly
compared observed clone sizes and the associated dN/dS
ratios of mutations in specific genes. We selected nonsense
mutations from a panel of five mutated genes that were
identified as under the strongest positive selection in normal
oesophagus and which have well-characterized roles in
cancer (TP53, NOTCH1, NOTCH2, NOTCH3 and FAT1)
(figure 6d). For four genes, there is the expected relationship
between clone size and selection; that is, mutations in genes
under greater selection pressure grow into larger clones.
However, NOTCH2 clones are under selection according to
dN/dS criteria but have a similar size to synonymous clones.

There are multiple possible explanations for this
unexpected result for NOTCH2. The dN/dS ratio indicates
mutations that promote clonal expansion to a sufficient size
to be detected. However, the impact of a mutation on
clonal behaviour may alter over time. This may occur if
an initial expansion of a mutant clone increases the local
cell density. If mutant cell proliferation is sensitive to this
change of environment, the rate of clonal expansion may
slow. Another potential mechanism is that the mutant
clones grow initially due to an advantage over wild-type
cells, but are later constrained by the growth of neighbouring



0.05

10

10–1

10–2

0 500 1000 1500 2000
clone size (cells)

10

10–1

0

0.04

0.03

0.02

0.01

00

<
50

50
–9

9

10
0–

19
9

20
0–

39
9

clone size

40
0–

79
9

≥8
00

0.2

0.4

0.6

0.8

1.0

50

NOTCH2

FAT1 NOTCH3

NOTCH1

TP53

75 100
dN/dS ratio

all synonymous
mutations

125 150

no
n-

ne
ut

ra
l p

ro
po

rt
io

n

0.5 1.0 1.5 2.0
clone size (cells)

fi
rs

t i
nc

om
pl

et
e 

m
om

en
t

m
ed

ia
n 

V
A

F

(b)

(a) (c)

(d)

Figure 6. Clone size and selection. (a,b) Proportion of non-neutral clones in different size ranges. (a) The first incomplete moment of the clone size
distribution from a simulation with 1% non-neutral mutations. Coloured regions correspond to ranges of clone sizes described in b. (b) Proportion of non-neutral
clones in each clone size interval. Colours correspond to the regions shaded in a. (c) First incomplete moments of the human oesophagus mutation data for one
individual, aged 72–75 [5], including only synonymous mutations and mutations in genes that are non-expressed (Methods). The synonymous mutation T125T in
TP53 was excluded as it has been found to affect splicing [12,26]. Clone sizes which extend across multiple samples are merged using the methods of the original
study [5]. All mutations on chromosomes 1–22 were assumed to be heterozygous. The extent of deviation from the straight line can be seen by comparing
the data (solid) to the dashed red line, which shows a straight-line fit to the smallest 75% of clones. (d ) Median VAF for nonsense mutations in the five
most significantly selected genes from the dN/dS analysis plotted against the dN/dS ratio for nonsense mutations. Combined results for all individuals in the
study. The dashed line shows the median VAF of all synonymous mutations. Note that many of these synonymous mutations are likely to be passengers on
non-neutral clonal expansions, and therefore, the line does not represent the median VAF of mutations that have grown solely under neutral drift. One-sided
Mann–Whitney tests show that, aside from NOTCH2 ( p = 0.06), nonsense mutant clones in the genes shown are significantly larger than synonymous mutant
clones ( p < 0.0001).
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clones as the tissue is mutated over time. Both of these
behaviours could lead to a high dN/dS ratio with only a
modest increase in clone size, and are similar to observations
of a Trp53 missense mutation in mouse epidermis, where
mutant clones have a strong competitive advantage over
wild-type cells, but their expansion is constrained [18].

The reverse observation, large clone sizes accompanied
by only a modest dN/dS ratio, may indicate that mutations
in a small region or hotspot in the gene can lead to extensive
clonal expansion, but mutations in the rest of the gene are
under weaker selective pressure. An example from the oeso-
phagus data is PIK3CA, which has the largest median clone
size of the 14 genes found to be under positive selection
in human oesophagus, largely due to the multiple large
clones of the hotspot mutation H1047R. This highlights the
importance of not just considering the gene in which a
mutation occurs, but also the location of the mutation in
the structure of the protein. Where large-scale experiments
have been performed, more than half of all non-synonymous
point mutations in T4 lysozyme fail to substantially
effect protein function [31], and mutations in the P53 DNA-
binding domain were found to have a ‘broad phenotypic
spectrum’ [32]. It follows that using the structure–function
relationship to interpret and confirm the mechanism of
frequently observed point mutations would support analysis
and understanding of such datasets. Other factors such as
epistatic interactions with other mutations [33] or age-related
changes to the tissue microenvironment [34] could also lead
to plastic and context-dependent mutant clone behaviour
and a complex relationship between dN/dS ratios and
clone sizes.

3. Discussion
We have presented two complementary explanations to
resolve the apparent paradox regarding the dynamics of
mutant clones in normal human eyelid skin. Both show
how non-neutral competition can be consistent with a
straight-line LFIM of the inferred mutant clone size distri-
bution—previously claimed to be an indication of neutral
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competition. Therefore, the mutant clone sizes observed in
the normal human eyelid no longer appear to contradict
the range of studies that suggest a number of mutations can
drive non-neutral expansion of mutant clones in epithelia.
We have also shown the benefits of using multiple orthog-
onal approaches to infer clone behaviour. Finding a
consensus can provide a high degree of confidence in the
analytical conclusions, and inconsistencies may reveal an
issue with one of the methods or help to identify interesting
outliers in the data.

We have found that by considering spatial constraints of
the tissue, non-neutral simulations can produce a straight-
line LFIM, providing a counter example to the proposition
that a straight-line LFIM implies neutral competition. We
have also shown how the experimental method used to
measure the sizes of mutant clones in the eyelid could hide
signs of non-neutrality in the clone size distribution. Using
isolated single samples which are too small in relation to
the clone sizes will lead to underestimation of the size of a
significant proportion of clones, as occurred in the eyelid
experiment, and could lead to an apparently neutral clone
size distribution. However, using over-large samples will
reduce the ability to detect smaller clones, which can also
lead to a straight-line LFIM because only the largest mutant
clones are observed [23] (figure 5a). By using a grid of
adjacent samples, the larger clones can be more accurately
measured without compromising the detection of smaller
clones, and can reveal the signs of non-neutrality that
would otherwise have been hidden.

We have discussed the effects of sampling in detail.
However, there are other potential confounding factors that
could appear during DNA sequencing experiments. For
example, comparing clone size distributions between genes
may be hindered by variations in read coverage and the
frequency of sequencing errors across genes, which could
lead to different detection limits for small clones in different
genes, and therefore different average clone sizes. Furthermore,
multiple independent but identical mutations within the same
sample would be observed as a single clone (although this is
likely to be rare [11]) and some large clones may be caused
by somatic mosaicism rather than positive selection [6].

We conclude that mathematical and in silico models will
be important tools for understanding clonal competition
in pre-cancerous tissues. However, difficulties lie in the com-
plex ways in which mutants grow. Specific mutations may
increase cell fitness through multiple mechanisms specific
to the individual gene function. In Notch1, for example,
missense mutations inactivate the protein by disrupting
the Notch1–Jagged interface, or through the loss of protein-
stabilizing disulfide bonds [5]. Equally, truncating mutations,
or the introduction of new splice sites, may reduce the
expression levels of functional protein in the cell. Hotspot
mutations also demonstrate that the effects of mutations
can also vary hugely within the same gene. Mutants may
interact in complex ways with other mutants as neighbours
or within the same clone and may even depend on the
order in which the mutations appear [35,36]. The behaviour
of the mutant clone can also change over time, reacting to
a changing local environment that may be altered by the
mutant itself [18]. Exploring the consequences of adaptive
mutant behaviour, while still using models which are
simple enough to fit to data and interpret, will be an ongoing
challenge in the work ahead.
4. Methods
4.1. Simulations
The simulations were carried out on a 500 × 500 hexagonal
lattice whose edges were wrapped to form a torus. Each cell
was assigned a fitness value of 1 at the start of a simulation.
Similar to a Moran process [27], one cell was randomly
selected at each simulation step to differentiate (was removed
from the simulation) and a neighbouring cell was selected
to divide to fill the space, with fitter cells having a higher
chance of dividing (figure 1f ). During each division, there
was a chance that a mutation would occur in the new cell.
If the cell did not mutate during division or if the mutation
was neutral, the new cell produced would inherit the
fitness of its parent cell. If the mutation was non-neutral,
a random value drawn from a normal distribution, N ∼N
(mean = 0.1, std = 0.1), was added to the fitness of a cell. We
show in the electronic supplementary material that our
particular choice of distribution does not affect the conclusions
of the analysis.

Estimates of cell cycle time in human tissues are hard
to verify. However, we did not fit simulations to data, only
demonstrated general properties of the models; hence, the exact
division rates used do not affect the conclusions of the analysis.
For the neutral simulations, we used a division rate of 0.5 per
week as estimated from the LFIM of clones in the human
eyelid under the assumption of neutral competition [11]. In the
non-neutral simulations, the fittest clones can expand much
faster than neutral, and therefore, we reduced the division rate
to 0.033 per week, so that maximum mutant clone sizes were
similar to the neutral simulations. The simulations ran for
3000 weeks (approx. 58 years).

The somatic mutation rate for human tissue has been
estimated at approximately 10−9 mutations per base pair per
cell division [37], although we note that exposure to UV or
mutagenic agents (such as stomach acid and alcohol) may sub-
stantially alter the mutation rate. With roughly 106 bp included
in the targeted sequencing experiment [4], this leads to a
mutation rate of 10−3 mutations per cell division which we use
for the neutral simulations. We use a higher mutation rate
of 1.5 × 10−2 mutations per cell division for the non-neutral simu-
lations so that the total clone numbers were similar in the neutral
and non-neutral simulations.

Clone sizes were defined by the number of cells containing
each mutation at the end of the simulation.
4.2. Biopsy and sequencing simulations
Biopsies were simulated by taking 25 non-overlapping 70 × 70
cell squares from each grid. Assuming a density of basal cells
of 10 000 mm−2 [38] and that half of basal cells are progenitors,
this would make our biopsies approximately 1 mm2, similar in
size to those used in the human eyelid [4].

Small clones may only appear in a very small proportion
of sequenced DNA reads (if any) and are therefore hard to
distinguish from sequencing errors [29], meaning they are not
successfully detected as somatic mutations. To replicate this,
we assumed a constant 1000× read depth and a requirement
of 10 reads as a minimum to observe the mutant. For each
mutant, we had a true frequency f, the proportion of cells
which contained the mutant. We assumed all mutations were
heterozygous, so the true VAF was given by 0.5f. Each read
then had a 0.5f chance of containing the mutation, so the total
number of mutant reads observed, readsobs, was given by a
draw from a binomial distribution with n = 1000, p = 0.5f. If
readsobs was greater than 10, we recorded the mutant as
having a VAF of readsobs/1000, otherwise the mutant was
unobserved and not included in the results.



Table 1. RNA levels for genes under positive selection in the oesophagus.
RNA-seq data from the Human Protein Atlas [39] (Methods) for the genes
under positive selection in the human oesophagus [5].

Gene TPM

NOTCH1 4.1

NOTCH2 22

NOTCH3 45.3

TP53 32.4

CUL3 60.1

FAT1 14.9

ARID1A 19.7

KMT2D 12.6

AJUBA 12

PIK3CA 7.3

ARID2 7

NFE2L2 267.1

TP63 60.9

CCND1 78.9
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4.3. First incomplete moment test
We used the first incomplete moment as defined in [11]

m1(n,t) ¼
1P1

m¼1 mPm(t)

X1

m¼n
mPm(t),

where Pm(t) is the proportion of surviving clones that have m
cells at time t. Normalization using average clone size,P1

m¼1 mPm(t), means that m1(n,t) ¼ 1 for all values of n smaller
or equal to the smallest observed clone size. As in previous
studies [11,23], we used R2, the coefficient of determination, to
assess whether the log of the first incomplete moment was a
straight line. The line fitting was constrained to pass through
the point (m, 1), where m was the smallest observed clone size.
4.4. dN/dS ratio
Neutral and non-neutral mutations were introduced into the
simulations with a known ratio, a. dN/dS was calculated as
follows:

dN
dS

¼ N
aS

,

where N was the number of observed non-neutral clones and S
was the number of observed neutral clones.
4.5. RNA expression
RNA levels for genes in the human oesophagus were obtained
from RNA-seq data from the Human Protein Atlas [39] (available
from www.proteinatlas.org, accessed 1 October 2018). We used
these data to select a set of genes that are not expressed and
are therefore highly unlikely to be selected for. It is not clear at
which transcripts per million (TPM) value a gene would have
sufficient expression to make selection possible. We therefore
used a conservative threshold of 0.0 TPM. The genes with 0.0
TPM in the gene panel sequenced in the oesophagus [5] were
ADAM29, GRM3, KCNH5, MUC17, PTPRT, SCN11A, SCN1A
and SPHKAP. All genes under positive selection in the human
oesophagus mutation data [5] have a non-zero TPM (table 1).

Data accessibility. Source code is accessible via Zenodo at doi:10.5281/
zenodo.2839478.
Authors’ contributions. M.W.J.H., P.H.J. and B.A.H. wrote the paper.
M.W.J.H. wrote the code and ran the analyses. P.H.J. and B.A.H.
supervised the study.

Competing interests. We declare we have no competing interests.

Funding. This work was supported by a Medical Research Council
Grant-in-Aid to the MRC Cancer unit and core grants from the Well-
come Trust to the Wellcome Sanger Institute, 098051 and 206194.
M.W.J.H. acknowledges support from the Harrison Watson Fund at
Clare College, Cambridge. P.H.J. is supported by a Cancer Research
UK Programme grant no. (C609/A17257) and B.A.H. acknowledges
support from the Royal Society (grant no. UF130039).

Acknowledgements. We thank members of the Hall group at the MRC-
Cancer Unit and the Jones and Martincorena groups at the Wellcome
Sanger Institute for valuable discussions.
References
1. Forbes SA et al. 2017 COSMIC: somatic cancer
genetics at high-resolution. Nucleic Acids Res.
45(D1), D777–D783. (doi:10.1093/nar/gkw1121)

2. The Cancer Genome Atlas Research N, Kim J et al.
2017 Integrated genomic characterization of
oesophageal carcinoma. Nature 541, 169. (doi:10.
1038/nature20805)

3. Pickering CR et al. 2014 Mutational landscape of
aggressive cutaneous squamous cell carcinoma. Clin.
Cancer Res. 20, 6582. (doi:10.1158/1078-0432.CCR-
14-1768)

4. Martincorena I et al. 2015 High burden and
pervasive positive selection of somatic mutations in
normal human skin. Science 348, 880–886. (doi:10.
1126/science.aaa6806)

5. Martincorena I et al. 2018 Somatic mutant clones
colonize the human esophagus with age. Science
362, 911–917. (doi:10.1126/science.aau3879)

6. Yokoyama A et al. 2019 Age-related remodelling of
oesophageal epithelia by mutated cancer drivers.
Nature 565, 312–317. (doi:10.1038/s41586-018-
0811-x)

7. Salk JJ et al. 2018 Ultra-sensitive sequencing for
cancer detection reveals progressive clonal selection
in normal tissue over a century of human lifespan.
bioRxiv. 457291.

8. Lee-Six H et al. 2018 The landscape of somatic
mutation in normal colorectal epithelial cells.
bioRxiv. 416800.

9. Moore L et al. 2018 The mutational landscape of
normal human endometrial epithelium. bioRxiv.
505685.

10. Dotto GP, Rustgi Anil K. 2016 Squamous cell
cancers: a unified perspective on biology and
genetics. Cancer Cell 29, 622–637. (doi:10.1016/j.
ccell.2016.04.004)

11. Simons BD. 2016 Deep sequencing as a probe of
normal stem cell fate and preneoplasia in human
epidermis. Proc. Natl Acad. Sci. USA 113, 128–133.
(doi:10.1073/pnas.1516123113)
12. Martincorena I, Campbell PJ. 2015 Somatic
mutation in cancer and normal cells. Science 349,
1483–1489. (doi:10.1126/science.aab4082)

13. Martincorena I, Jones PH, Campbell PJ. 2016
Constrained positive selection on cancer
mutations in normal skin. Proc. Natl Acad. Sci.
USA 113, E1128–E1129. (doi:10.1073/pnas.
1600910113)

14. Simons BD. 2016 Reply to Martincorena et al.:
evidence for constrained positive selection of cancer
mutations in normal skin is lacking. Proc. Natl Acad.
Sci. USA. 113, E1130–E1131. (doi:10.1073/pnas.
1601045113)

15. Abbosh C, Venkatesan S, Janes SM, Fitzgerald RC,
Swanton C. 2017 Evolutionary dynamics in pre-
invasive neoplasia. Curr. Opin. Syst. Biol. 2, 1–8.
(doi:10.1016/j.coisb.2017.02.009)

16. Klein AM, Simons BD. 2011 Universal patterns of
stem cell fate in cycling adult tissues. Development
138, 3103–3111. (doi:10.1242/dev.060103)

http://www.proteinatlas.org
http://dx.doi.org/doi:10.5281/zenodo.2839478
http://dx.doi.org/doi:10.5281/zenodo.2839478
http://dx.doi.org/10.1093/nar/gkw1121
http://dx.doi.org/10.1038/nature20805
http://dx.doi.org/10.1038/nature20805
http://dx.doi.org/10.1158/1078-0432.CCR-14-1768
http://dx.doi.org/10.1158/1078-0432.CCR-14-1768
http://dx.doi.org/10.1126/science.aaa6806
http://dx.doi.org/10.1126/science.aaa6806
http://dx.doi.org/10.1126/science.aau3879
http://dx.doi.org/10.1038/s41586-018-0811-x
http://dx.doi.org/10.1038/s41586-018-0811-x
http://dx.doi.org/10.1016/j.ccell.2016.04.004
http://dx.doi.org/10.1016/j.ccell.2016.04.004
http://dx.doi.org/10.1073/pnas.1516123113
http://dx.doi.org/10.1126/science.aab4082
http://dx.doi.org/10.1073/pnas.1600910113
http://dx.doi.org/10.1073/pnas.1600910113
http://dx.doi.org/10.1073/pnas.1601045113
http://dx.doi.org/10.1073/pnas.1601045113
http://dx.doi.org/10.1016/j.coisb.2017.02.009
http://dx.doi.org/10.1242/dev.060103


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190230

11
17. Clayton E, Doupé DP, Klein AM, Winton DJ, Simons
BD, Jones PH. 2007 A single type of progenitor cell
maintains normal epidermis. Nature 446, 185–189.
(doi:10.1038/nature05574)

18. Murai K et al. 2018 Epidermal tissue adapts to
restrain progenitors carrying clonal p53 mutations.
Cell Stem Cell 23, 687–699. (doi:10.1016/j.stem.
2018.08.017)

19. Doupé DP, Alcolea MP, Roshan A, Zhang G, Klein
AM, Simons BD, Jones PH. 2012 A single progenitor
population switches behavior to maintain and repair
esophageal epithelium. Science 337, 1091–1093.
(doi:10.1126/science.1218835)

20. Klein AM, Brash DE, Jones PH, Simons BD. 2010
Stochastic fate of p53-mutant epidermal progenitor
cells is tilted toward proliferation by UV B during
preneoplasia. Proc. Natl Acad. Sci. USA 107,
270–275. (doi:10.1073/pnas.0909738107)

21. Teixeira VH et al. 2013 Stochastic homeostasis in
human airway epithelium is achieved by neutral
competition of basal cell progenitors. Elife 2,
e00966. (doi:10.7554/eLife.00966)

22. Lan X et al. 2017 Fate mapping of human
glioblastoma reveals an invariant stem cell
hierarchy. Nature 549, 227–232. (doi:10.1038/
nature23666)

23. Lynch M, Lynch C, Craythorne E, Liakath-Ali K,
Mallipeddi R, Barker J, Watt FM. 2017 Spatial
constraints govern competition of mutant clones in
human epidermis. Nat. Commun. 8, 1119. (doi:10.
1038/s41467-017-00993-8)

24. Butler RJ, McDonald JB. 1989 Using incomplete
moments to measure inequality. J. Econom. 42,
109–119. (doi:10.1016/0304-4076(89)90079-1)
25. Alcolea MP, Greulich P, Wabik A, Frede J, Simons
BD, Jones PH. 2014 Differentiation imbalance in
single oesophageal progenitor cells causes clonal
immortalization and field change. Nat. Cell Biol. 16,
615. (doi:10.1038/ncb2963)

26. Martincorena I, Raine KM, Gerstung M, Dawson KJ,
Haase K, Van Loo P, Davies H, Stratton MR,
Campbell PJ. 2017 Universal patterns of selection in
cancer and somatic tissues. Cell 171, 1029–1041.
(doi:10.1016/j.cell.2017.09.042)

27. Moran PAP. 1958 Random processes in genetics. In
Mathematical proceedings of the cambridge
philosophical society. Cambridge, UK: Cambridge
University Press.

28. Mesa KR, Kawaguchi K, Cockburn K, Gonzalez D,
Boucher J, Xin T, Klein AM, Greco V. 2018
Homeostatic epidermal stem cell self-renewal is
driven by local differentiation. Cell Stem Cell 23,
677–686. (doi:10.1016/j.stem.2018.09.005)

29. Gerstung M, Papaemmanuil E, Campbell PJ.
2014 Subclonal variant calling with multiple
samples and prior knowledge. Bioinformatics
30, 1198–1204. (doi:10.1093/bioinformatics/
btt750)

30. Davoli T, Xu AW, Mengwasser KE, Sack LM, Yoon JC,
Park PJ, Elledge SJ. 2013 Cumulative
haploinsufficiency and triplosensitivity drive
aneuploidy patterns and shape the cancer
genome. Cell 155, 948–962. (doi:10.1016/j.cell.
2013.10.011)

31. Rennell D, Bouvier SE, Hardy LW, Poteete AR. 1991
Systematic mutation of bacteriophage T4 lysozyme.
J. Mol. Biol. 222, 67–88. (doi:10.1016/0022-
2836(91)90738-R)
32. Kotler E et al. 2018 A systematic p53 mutation
library links differential functional impact to cancer
mutation pattern and evolutionary conservation.
Mol. Cell 71, 178–90.e8. (doi:10.1016/j.molcel.2018.
06.012)

33. Ashworth A, Lord Christopher J, Reis-Filho Jorge S.
2011 Genetic interactions in cancer progression and
treatment. Cell 145, 30–38. (doi:10.1016/j.cell.
2011.03.020)

34. Rozhok AI, DeGregori J. 2015 Toward an
evolutionary model of cancer: considering the
mechanisms that govern the fate of somatic
mutations. Proc. Natl Acad. Sci. USA 112, 8914.
(doi:10.1073/pnas.1501713112)

35. Kent DG, Green AR. 2017 Order matters: the order
of somatic mutations influences cancer evolution.
Cold Spring Harb. Perspect. Med. 7, a027060.
(doi:10.1101/cshperspect.a027060)

36. Clarke M, Woodhouse S, Piterman N, Hall BA, Fisher
J. 2019 Using state space exploration to determine
how gene regulatory networks constrain mutation
order in cancer evolution. In Automated reasoning
for systems biology and medicine, pp. 133–153.
Cham, Switzerland: Springer.

37. Milholland B, Dong X, Zhang L, Hao X, Suh Y, Vijg J.
2017 Differences between germline and somatic
mutation rates in humans and mice. Nat. Commun.
8, 15183. (doi:10.1038/ncomms15183)

38. Jones PH, Harper S, Watt FM. 1995 Stem cell
patterning and fate in human epidermis. Cell 80,
83–93. (doi:10.1016/0092-8674(95)90453-0)

39. Uhlén M et al. 2015 Tissue-based map of the
human proteome. Science 347, 1260419. (doi:10.
1126/science.1260419)

http://dx.doi.org/10.1038/nature05574
http://dx.doi.org/10.1016/j.stem.2018.08.017
http://dx.doi.org/10.1016/j.stem.2018.08.017
http://dx.doi.org/10.1126/science.1218835
http://dx.doi.org/10.1073/pnas.0909738107
http://dx.doi.org/10.7554/eLife.00966
http://dx.doi.org/10.1038/nature23666
http://dx.doi.org/10.1038/nature23666
http://dx.doi.org/10.1038/s41467-017-00993-8
http://dx.doi.org/10.1038/s41467-017-00993-8
http://dx.doi.org/10.1016/0304-4076(89)90079-1
http://dx.doi.org/10.1038/ncb2963
http://dx.doi.org/10.1016/j.cell.2017.09.042
http://dx.doi.org/10.1016/j.stem.2018.09.005
http://dx.doi.org/10.1093/bioinformatics/btt750
http://dx.doi.org/10.1093/bioinformatics/btt750
http://dx.doi.org/10.1016/j.cell.2013.10.011
http://dx.doi.org/10.1016/j.cell.2013.10.011
http://dx.doi.org/10.1016/0022-2836(91)90738-R
http://dx.doi.org/10.1016/0022-2836(91)90738-R
http://dx.doi.org/10.1016/j.molcel.2018.06.012
http://dx.doi.org/10.1016/j.molcel.2018.06.012
http://dx.doi.org/10.1016/j.cell.2011.03.020
http://dx.doi.org/10.1016/j.cell.2011.03.020
http://dx.doi.org/10.1073/pnas.1501713112
http://dx.doi.org/10.1101/cshperspect.a027060
http://dx.doi.org/10.1038/ncomms15183
http://dx.doi.org/10.1016/0092-8674(95)90453-0
http://dx.doi.org/10.1126/science.1260419
http://dx.doi.org/10.1126/science.1260419

	Relating evolutionary selection and mutant clonal dynamics in normal epithelia
	Introduction
	Results
	Spatial constraints alter clone size distributions of non-neutral mutations
	Impact of sampling methods on measurement of clone size distributions
	Ability of logarithm of the first incomplete moment to resolve neutral competition versus selection
	Human oesophageal mutant clone sizes demonstrate non-neutral growth
	Clone size as a marker of competitive selection of mutations

	Discussion
	Methods
	Simulations
	Biopsy and sequencing simulations
	First incomplete moment test
	dN/dS ratio
	RNA expression
	Data accessibility
	Authors' contributions
	Competing interests
	Funding

	Acknowledgements
	References


